Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mathematical Models for MAE of P. fruticosa Leaves
2.2. Kinetics of Chlorophyll Content from P. fruticosa Leaves via MAE
2.3. Kinetics of Antioxidant Activity from P. fruticosa Leaves via MAE
3. Materials and Methods
3.1. Material and Chemicals
3.2. The Extraction Process
3.3. Determination of Chlorophyll Content
3.4. Determination of Antioxidant Activity
3.5. Mathematical Model for Extraction Process
3.5.1. The First-Order Model
3.5.2. The Second-Order Model
3.5.3. The Power-Law Model
3.5.4. Elovich’s Equation
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brophy, J.J.; Lassak, E.V.; Suksamrarn, A. Constituents of the Volatile Leaf Oils of Polyscias fruticosa (L.) Harms. Flavour Fragr. J. 1990, 5, 179–182. [Google Scholar] [CrossRef]
- Bernard, B.M.; Pakianathan, N.; Venkataswamy, R.; Divakar, M.C. A Pharmacognostic Report on the Leaf and Root of Polyscias fruticosa (L.) Harms. Anc. Sci. Life 1998, 18, 165. [Google Scholar] [PubMed]
- Huan, V.D.; Yamamura, S.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Nham, N.T.; Chau, H.M. Oleanane Saponins from Polyscias Fruticosa. Phytochemistry 1998, 47, 451–457. [Google Scholar] [CrossRef]
- Boye, A.; Osei-owusu, A.K.; Koffuor, G.A.; Yao, V.; Barku, A.; Amponsah, E. Assessment of Polyscias fruticosa (L.) Harm (Araliaceae) Leaf Extract on Male Fertility in Male Wistar Rats Assessment of Polyscias fruticosa (L.) Harm (Araliaceae) Leaf Extract on Male Fertility in Rats. Intercult. Ethnopharmacol. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Koffuor, G.A.; Boye, A.; Ofori-Amoah, J.; Kyei, S.; Abokyi, S.; Nyarko, R.A.; Bangfu, R.N. Anti-Inflammatory and Safety Assessment of Polyscias fruticosa (L.) Harms (Araliaceae) Leaf Extract in Ovalbumin-Induced Asthma. J. Phytopharm. 2014, 3, 337–342. [Google Scholar]
- Saito, S.; Sumita, S.; Tamura, N.; Nagamura, Y.; Nishida, K.; Ito, M.; Ishiguro, I. Saponins from the Leaves of Aralia Elata SEEM. (Araliaceae). Pharm. Soc. Jpn. 1990, 38, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Luan, T.C.; Lutomski, J.; Hoa, T.T. Polyacetylenes in the Araliaceae Family. Herba Pol. 1992, 38, 3–11. [Google Scholar]
- Hanh, T.T.H.; Dang, N.H.; Dat, N.T. α -Amylase and α -Glucosidase Inhibitory Saponins from Polyscias Fruticosa Leaves. J. Chem. 2016, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Boye, A.; Acheampong, D.O.; Yao, V.; Barku, A.; Yussam, A.; Asiamah, E.A. Follicular Development and Post-Implantation Loss Assessments in Non- Pregnant and Pregnant Rats Orally Exposed to Polyscias Fruticosa Leaf Extract Follicular Development and Post-Implantation Loss Assessments in Non-Pregnant and Pregnant Rats Orally Expo. Complement. Med. Res. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Yen, T.T. Improvement of Learning Ability in Mice and Rats with the Root Extract of Ding Lang (Policias fruticosum L.). Acta Physiol. Hung. 1990, 75, 69–76. [Google Scholar]
- VC, V.O. Dictionary of Vietnamese Medicinal Plants; Publishing House Medicine: Ho Chi Minh City, Vietnam, 2012; Volume 1. [Google Scholar]
- Humphrey, A.M. Chlorophyll as a Color and Functional Ingredient. Food Sci. 2004, 69, 422–425. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, Absorption, and Cancer Preventative Activity of Dietary Chlorophyll Derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Chernomorsky, S.; Segelman, A.; Poretz, R.D. Effect of Dietary Chlorophyll Derivatives on Mutagenesis and Tumor Cell Growth. Teratog. Carcinog. Mutagen. 1999, 19, 313–322. [Google Scholar] [CrossRef]
- Okai, Y.; Higashi-okai, K. Potent Suppressing Activity of the Non-Polyphenolic Fraction of Green Tea (Camellia Sinensis) against Genotoxin-Induced Umu C Gene Expression in Salmonella Typhimurium (TA 1535/PSK 1002)—Association with Pheophytins a and B. Cancer Lett. 1997, 120, 117–123. [Google Scholar] [CrossRef]
- Alupului, A.; Calinescu, I.; Lavric, V. Microwave Extraction of Active Principles from Medicinal Plants. UPB Sci. Bull. Ser. B 2012, 74, 1454–2331. [Google Scholar]
- Wang, H.; Ding, J.; Ren, N. Recent Advances in Microwave-Assisted Extraction of Trace Organic Pollutants from Food and Environmental Samples. TrAC Trends Anal. Chem. 2016, 75, 197–208. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [Green Version]
- Mihiretu, G.T.; Brodin, M.; Chimphango, A.F.; Øyaas, K.; Hoff, B.H.; Görgens, J.F. Single-Step Microwave-Assisted Hot Water Extraction of Hemicelluloses from Selected Lignocellulosic Materials—A Biorefinery Approach. Bioresour. Technol. 2017, 241, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez, N.; Conde, E.; Domínguez, H. Microwave Assisted Water Extraction of Plant Compounds. J. Chem. Technol. Biotechnol. 2015, 90, 590–607. [Google Scholar] [CrossRef]
- Fang, X.; Wang, J.; Zhou, H.; Jiang, X.; Zhu, L.; Gao, X. Microwave-assisted Extraction with Water for Fast Extraction and Simultaneous RP-HPLC Determination of Phenolic Acids in Radix Salviae Miltiorrhizae. J. Sep. Sci. 2009, 32, 2455–2461. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-Assisted Extraction of Tea Polyphenols and Tea Caffeine from Green Tea Leaves. Chem. Eng. Process. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Ko, M.Y.; Chang, Y.S. Microwave-Assisted Extraction of Ginsenosides from Ginseng Root. Microchem. J. 2003, 74, 131–139. [Google Scholar] [CrossRef]
- Asghari, J.; Ondruschka, B.; Mazaheritehrani, M. Extraction of Bioactive Chemical Compounds from the Medicinal Asian Plants by Microwave Irradiation. J. Med. Plants Res. 2011, 5, 495–506. [Google Scholar]
- Teng, H.; Ghafoor, K.; Choi, Y.H. Optimization of Microwave-Assisted Extraction of Active Components from Chinese Quince Using Response Surface Methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 694–701. [Google Scholar] [CrossRef]
- Pallavaram, C. Research Paper Study of Antioxidant Activity of Chlorophyll from Some Medicinal Plants. Biotechnology 2015, 4, 6–8. [Google Scholar]
- Meziane, S.; Kadi, H. Kinetics and Thermodynamics of Oil Extraction from Olive Cake. J. Am. Oil Chem. Soc. 2008, 85, 391–396. [Google Scholar] [CrossRef]
- Yan, M.-M.; Liu, W.; Fu, Y.-J.; Zu, Y.-G.; Chen, C.-Y.; Luo, M. Optimisation of the Microwave-Assisted Extraction Process for Four Main Astragalosides in Radix Astragali. Food Chem. 2010, 119, 1663–1670. [Google Scholar] [CrossRef]
- Martino, E.; Ramaiola, I.; Urbano, M.; Bracco, F.; Collina, S. Microwave-Assisted Extraction of Coumarin and Related Compounds from Melilotus officinalis (L.) Pallas as an Alternative to Soxhlet and Ultrasound-Assisted Extraction. J. Chromatogr. A 2006, 1125, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, L.; Chen, G. Microwave-Assisted Extraction Followed by Capillary Electrophoresis-Amperometric Detection for the Determination of Antioxidant Constituents in Folium Eriobotryae. J. Chromatogr. A 2008, 1193, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.G.C.; Veloso, A.F.; Maynard, I.F.N.; Marques, M.N.; de Souza, R.L.; Pereira, M.M.; Soares, C.M.F.; Lima, Á.S. Integrative Process to Extract Chlorophyll and Purify Rosmarinic Acid from Rosemary Leaves (Rosmarinus Officialis). J. Chem. Technol. Biotechnol. 2020, 95, 1503–1510. [Google Scholar] [CrossRef]
- Derrien, M.; Badr, A.; Gosselin, A.; Desjardins, Y.; Angers, P. Optimization of a Green Process for the Extraction of Lutein and Chlorophyll from Spinach By-Products Using Response Surface Methodology (RSM). LWT-Food Sci. Technol. 2017, 79, 170–177. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction Modeling and Activities of Antioxidants from Pomegranate Marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Karacabey, E.; Bayindirli, L.; Artik, N.; Mazza, G. Modeling Solid-Liquid Extraction Kinetics of Trans-Reveratrol and Trans-ε-Viniferin from Grape Cane. J. Food Process Eng. 2013, 36, 103–112. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of Solid–Liquid Extraction Kinetics of Total Polyphenols from Grape Seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Jokić, S.; Velić, D.; Bilić, M.; Bucić-Kojić, A.; PlANiNić, M.; ToMAS, S. Modelling of Solid-Liquid Extraction Process of Total Polyphenols from Soybeans. Czech J. Food Sci. 2010, 28, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hadrich, B.; Dimitrov, K.; Kriaa, K. Modelling Investigation and Parameters Study of Polyphenols Extraction from Carob (Ceratonia siliqua L.) Using Experimental Factorial Design. J. Food Process. Preserv. 2017, 41, e12769. [Google Scholar] [CrossRef]
- Liu, D.; Vorobiev, E.; Savoire, R.; Lanoisellé, J.-L. Intensification of Polyphenols Extraction from Grape Seeds by High Voltage Electrical Discharges and Extract Concentration by Dead-End Ultrafiltration. Sep. Purif. Technol. 2011, 81, 134–140. [Google Scholar] [CrossRef]
- Thanh-Thuy, D.; Quoc-Duy, N.; Van-Linh, N.T. Kinetic study on polyphenol and antioxidant activity from karonda fruit (Carissa carandas) extraction via microwave. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 991, p. 12049. [Google Scholar]
- Franco, D.; Pinelo, M.; Sineiro, J.; Núñez, M.J. Processing of Rosa Rubiginosa: Extraction of Oil and Antioxidant Substances. Bioresour. Technol. 2007, 98, 3506–3512. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Luthria, D.L.; Robbins, R.J. Optimization of Extraction Process for Phenolic Acids from Black Cohosh (Cimicifuga racemosa) by Pressurized Liquid Extraction. J. Sci. Food Agric. 2006, 86, 156–162. [Google Scholar] [CrossRef]
- Alupului, A.; Calinescu, I.; Lavric, V. Ultrasonic vs. microwave extraction intensification of active principles from medicinal plants. In AIDIC Conference Series; ERIS C.T. S.r.l: Milano, Italy, 2009; Volume 9, pp. 1–8. [Google Scholar]
- Krishnan, R.Y.; Rajan, K.S. Microwave Assisted Extraction of Flavonoids from Terminalia Bellerica: Study of Kinetics and Thermodynamics. Sep. Purif. Technol. 2016, 157, 169–178. [Google Scholar] [CrossRef]
- Gfrerer, M.; Lankmayr, E. Screening, Optimization and Validation of Microwave-Assisted Extraction for the Determination of Persistent Organochlorine Pesticides. Anal. Chim. Acta 2005, 533, 203–211. [Google Scholar] [CrossRef]
- Alfaro, M.J.; Bélanger, J.M.R.; Padilla, F.C.; Jocelyn Paré, J.R. Influence of Solvent, Matrix Dielectric Properties, and Applied Power on the Liquid-Phase Microwave-Assisted Processes (MAPTM)11MAP Is a Trademark of Her Majesty the Queen in Right of Canada as Represented by the Minister of the Environment. Extraction Of Ginger (Zingiber officinale). Food Res. Int. 2003, 36, 499–504. [Google Scholar] [CrossRef]
- Askari, G.R.; Emam-Djomeh, Z.; Mousavi, S.M. An Investigation of the Effects of Drying Methods and Conditions on Drying Characteristics and Quality Attributes of Agricultural Products during Hot Air and Hot Air/Microwave-Assisted Dehydration. Dry. Technol. 2009, 27, 831–841. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Comparison of Microwave-Assisted Extraction and Conventional Extraction Techniques for the Extraction of Tanshinones from Salvia Miltiorrhiza Bunge. Biochem. Eng. J. 2002, 12, 71–77. [Google Scholar] [CrossRef]
- Amarni, F.; Kadi, H. Kinetics Study of Microwave-Assisted Solvent Extraction of Oil from Olive Cake Using Hexane: Comparison with the Conventional Extraction. Innov. Food Sci. Emerg. Technol. 2010, 11, 322–327. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of Microwave-Assisted Extraction of Polyphenols from Myrtus communis L. Leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant Activity of Chlorophylls and Their Derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Baiano, A.; Del Nobile, M.A. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Crit. Rev. Food Sci. Nutr. 2016, 56, 2053–2068. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Endo, Y.; Usuki, R.; Kaneda, T. Antioxidant Effects of Chlorophyll and Pheophytin on the Autoxidation of Oils in the Dark. II. The Mechanism of Antioxidative Action of Chlorophyll. J. Am. Oil Chem. Soc. 1985, 62, 1387–1390. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Shetty, N.P.; Giridhar, P. Effect of Different Drying Methods on Chlorophyll, Ascorbic Acid and Antioxidant Compounds Retention of Leaves of Hibiscus sabdariffa L. Sci. Food Agric. 2015, 95, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kitanović, S.; Milenović, D.; Veljković, V.B. Empirical Kinetic Models for the Resinoid Extraction from Aerial Parts of St. John’s Wort (Hypericum perforatum L.). Biochem. Eng. J. 2008, 41, 1–11. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C. Modeling and Kinetics Study of Conventional and Assisted Batch Solvent Extraction. Chem. Eng. Res. Des. 2013, 92, 1169–1186. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H. Kinetics Studies on Effects of Extraction Techniques on Bioactive Compounds from Vernonia Cinerea Leaf. J. Food Sci. Technol. 2019, 56, 580–588. [Google Scholar] [CrossRef]
- Xiao, X.; Song, W.; Wang, J.; Li, G. Microwave-Assisted Extraction Performed in Low Temperature and in Vacuo for the Extraction of Labile Compounds in Food Samples. Anal. Chim. Acta 2012, 712, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, G.W.; Peppas, N.A. Analysis of Non-Fickian Transport in Polymers Using Simplified Exponential Expressions. J. Memb. Sci. 1984, 17, 329–331. [Google Scholar] [CrossRef]
- Paterson, I.F.; Chowdhry, B.Z.; Leharne, S.A. Polycyclic Aromatic Hydrocarbon Extraction from a Coal Tar-Contaminated Soil Using Aqueous Solutions of Nonionic Surfactants. Chemosphere 1999, 38, 3095–3107. [Google Scholar] [CrossRef]
Material/Solvent Ratio (g/mL) | Microwave Power (W) | Cs (mg/mL) | K (mL/mg/min) | Ys (mg/g) |
---|---|---|---|---|
1:40 | 300 | 74.71 | 2.99 | |
450 | 100.44 | 4.02 | ||
600 | 105.06 | 4.20 | ||
1:80 | 300 | 49.43 | 3.95 | |
450 | 67.53 | 5.40 | ||
600 | 68.53 | 5.48 | ||
1:40 | 300 | 47.05 | 1.88 | |
450 | 47.53 | 1.90 | ||
600 | 48.25 | 1.93 | ||
1:80 | 300 | 28.41 | 2.27 | |
450 | 30.64 | 2.45 | ||
600 | 35.15 | 2.81 |
Material/Solvent Ratio (g/mL) | Microwave Power (W) | Cs (mg/mL) | K (mL/mg/min) | Ys (mg/g) |
---|---|---|---|---|
1:40 | 300 | 692.23 | 27.69 | |
450 | 751.78 | 30.07 | ||
600 | 761.03 | 30.44 | ||
1:80 | 300 | 459.11 | 36.73 | |
450 | 493.67 | 39.49 | ||
600 | 501.64 | 40.13 |
Chlorophyll Compounds | Antioxidant Activity | |
---|---|---|
r | p-Value (2-Tailed) | |
Chlorophyll a | 0.976 | 0.000 |
Chlorophyll b | 0.950 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.-D.; Nguyen, Q.-D.; Nguyen, T.-V.-L. Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction. Molecules 2021, 26, 3761. https://doi.org/10.3390/molecules26123761
Nguyen T-T-D, Nguyen Q-D, Nguyen T-V-L. Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction. Molecules. 2021; 26(12):3761. https://doi.org/10.3390/molecules26123761
Chicago/Turabian StyleNguyen, Thi-Thuy-Dung, Quoc-Duy Nguyen, and Thi-Van-Linh Nguyen. 2021. "Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction" Molecules 26, no. 12: 3761. https://doi.org/10.3390/molecules26123761
APA StyleNguyen, T. -T. -D., Nguyen, Q. -D., & Nguyen, T. -V. -L. (2021). Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction. Molecules, 26(12), 3761. https://doi.org/10.3390/molecules26123761