DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101)
Abstract
:1. Introduction
2. Results
2.1. Optimization and Electronic Structure of ZnTiO3 and TiO2
2.2. Adsorption of the MB Dye on the Structures
3. Discussion
3.1. Optimization and Electronic Structure of ZnTiO3 and TiO2
3.2. Adsorption of the MB Dye on the Oxide Models
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Obodo, K.O.; Noto, L.L.; Mofokeng, S.J.; Ouma, C.N.M.; Braun, M.; Dhlamini, M.S. Influence of Tm, Ho and Er dopants on the properties of Yb activated ZnTiO3 perovskite: A density functional theory insight. Mater. Res. Express 2018, 5. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Zhang, W.; Wang, L.; Chen, X.; Gao, Y. Microwave-assisted synthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 134–141. [Google Scholar] [CrossRef]
- Ozturk, B.; Soylu, G.S.P. Promoting role of transition metal oxide on ZnTiO3-TiO2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int. 2016, 42, 11184–11192. [Google Scholar] [CrossRef]
- Grabis, J.; Letlena, A.; Sīpola, I. Preparation and properties of photocalysts in ZnO/TiO2 system. Key Eng. Mater. 2019, 800, 170–174. [Google Scholar] [CrossRef]
- Cherifi, K.; Cheknane, A.; Benghia, A.; Hilal, H.S.; Rahmoun, K.; Benyoucef, B.; Goumri-Said, S. Exploring N3 ruthenium dye adsorption onto ZnTiO3 (101) and (110) surfaces for dye sensitized solar cell applications: Full computational study. Mater. Today Energy 2019, 13, 109–118. [Google Scholar] [CrossRef]
- Lee, C.-G.; Na, K.-H.; Kim, W.-T.; Park, D.-C.; Yang, W.-H.; Choi, W.-Y. TiO2/ZnO nanofibers prepared by electrospinning and their photocatalytic degradation of methylene blue compared with TiO2 nanofibers. Appl. Sci. 2019, 9, 3404. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Mohammadi, T.; Mohebbi, S. Photocatalytic degradation of methylene blue with zno nanoparticles; a joint experimental and theoretical study. J. Mex. Chem. Soc. 2017, 60, 218–225. [Google Scholar] [CrossRef]
- Sinha, D.; De, D.; Goswami, D.; Mondal, A.; Ayaz, A. ZnO and TiO2 nanostructured dye sensitized solar photovoltaic cell. Mater. Today Proc. 2019, 11, 782–788. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Uyar, T. ZnO-TiO2 composites and ternary ZnTiO3 electrospun nanofibers: The influence of annealing on the photocatalytic response and reusable functionality. CrystEngComm 2018, 20, 5801–5813. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, C.; Wei, L.; Fan, Q.; Ma, F.; Zeng, J.; Yi, J.; Yang, K.; Ji, H. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(VI) ions. Sci. Total Environ. 2020, 706, 136026. [Google Scholar] [CrossRef]
- Zalani, N.M.; Kaleji, B.K.; Mazinani, B. Synthesis and characterisation of the mesoporous ZnO-TiO2 nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light. Mater. Technol. 2019, 35, 281–289. [Google Scholar] [CrossRef]
- Dutta, D.P.; Singh, A.; Tyagi, A. Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. J. Environ. Chem. Eng. 2014, 2, 2177–2187. [Google Scholar] [CrossRef]
- Fu, R.; Wang, Q.; Gao, S.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides. J. Power Sources 2015, 285, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiong, J.; Huang, J.; Feng, Z.; Luo, J. Novel g-C3N4/h′ZnTiO3-a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J. Alloys Compd. 2019, 774, 768–778. [Google Scholar] [CrossRef]
- Yu, J.; Li, N.; Zhu, L.; Xu, X. Application of ZnTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory. J. Alloys Compd. 2016, 681, 88–95. [Google Scholar] [CrossRef]
- Sarkar, M.; Sarkar, S.; Biswas, A.; De, S.; Kumar, P.R.; Mothi, E.M.; Kathiravan, A. Zinc titanate nanomaterials—Photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye. Nano-Struct. Nano-Objects 2020, 21, 100412. [Google Scholar] [CrossRef]
- Baamran, K.S.; Tahir, M. Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Convers. Manag. 2019, 200, 112064. [Google Scholar] [CrossRef]
- Liu, Q.-J.; Zhang, N.-C.; Liu, F.-S.; Wang, H.-Y.; Liu, Z.-T. Theoretical study of structural, elastic, electronic properties, and dispersion of optical functions of hexagonal ZnTiO3. Phys. Status Solidi Basic Res. 2013, 250, 1810–1815. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, C.-L.; Zhou, Y.-L.; Wu, Z.-J.; Yuan, J.-M.; Li, W.-S. Synthesis and characterization of ZnTiO3 with high photocatalytic activity. Trans. Nonferrous Met. Soc. China Engl. Ed. 2015, 25, 2272–2278. [Google Scholar] [CrossRef]
- Li, M.; Jiao, B. Synthesis and photoluminescence properties of ZnTiO3:Eu3+ red phosphors via sol-gel method. J. Rare Earths 2015, 33, 231–238. [Google Scholar] [CrossRef]
- Lv, J.; Tang, M.; Quan, R.; Chai, Z. Synthesis of solar heat-reflective ZnTiO3 pigments with novel roof cooling effect. Ceram. Int. 2019, 45, 15768–15771. [Google Scholar] [CrossRef]
- Sowmyashree, A.; Somya, A.; Kumar, C.P.; Rao, S. Novel nano corrosion inhibitor, integrated zinc titanate nano particles: Synthesis, characterization, thermodynamic and electrochemical studies. Surf. Interfaces 2021, 22, 100812. [Google Scholar] [CrossRef]
- Tavakoli-Azar, T.; Mahjoub, A.R.; Sadjadi, M.S.; Farhadyar, N.; Sadr, M.H. Improving the photocatalytic performance of a perovskite ZnTiO3 through ZnTiO3@S nanocomposites for degradation of Crystal violet and Rhodamine B pollutants under sunlight. Inorg. Chem. Commun. 2020, 119, 108091. [Google Scholar] [CrossRef]
- Raveendra, R.; Prashanth, P.; Krishna, R.H.; Bhagya, N.; Nagabhushana, B.; Naika, H.R.; Lingaraju, K.; Nagabhushana, H.; Prasad, B.D. Synthesis, structural characterization of nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent. J. Asian Ceram. Soc. 2014, 2, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Kurajica, S.; Minga, I.; Blazic, R.; Muzina, K.; Tominac, P. Adsorption and degradation kinetics of methylene blue on as-prepared and calcined titanate nanotubes. Athens J. Sci. 2018, 5, 7–22. [Google Scholar] [CrossRef]
- Sahu, A.; Chaurasiya, R.; Hiremath, K.; Dixit, A. Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells. Sol. Energy 2018, 163, 338–346. [Google Scholar] [CrossRef]
- Inaguma, Y.; Aimi, A.; Shirako, Y.; Sakurai, D.; Mori, D.; Kojitani, H.; Akaogi, M.; Nakayama, M. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect. J. Am. Chem. Soc. 2013, 136, 2748–2756. [Google Scholar] [CrossRef]
- Ruiz-Fuertes, J.; Winkler, B.; Bernert, T.; Bayarjargal, L.; Morgenroth, W.; Koch-Müller, M.; Refson, K.; Milman, V.; Tamura, N. Ferroelectric soft mode of polar ZnTiO3 investigated by Raman spectroscopy at high pressure. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 214110. [Google Scholar] [CrossRef] [Green Version]
- Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.-H.; Ahn, S.; Lee, C.S. Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H2 evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 2017, 7, 2579–2590. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Soofivand, F.; Sobhani-Nasab, A.; Shakouri-Arani, M.; Faal, A.Y.; Bagheri, S. Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 2016, 27, 2066–2075. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Cheng, X.; Wang, Q.; Wang, Y.; Pan, Z. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram. Int. 2014, 40, 8891–8895. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.D.J.; Castanedo-Perez, R.; Torres-Delgado, G.; Méndez-López, A.; Zelaya-Angel, O. Analysis of the photocatalytic activity of CdS+ZnTiO3 nanocomposite films prepared by sputtering process. Superlattices Microstruct. 2016, 100, 148–157. [Google Scholar] [CrossRef]
- Yadav, B.; Yadav, A.; Singh, S.; Singh, K. Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor. Sens. Actuators B Chem. 2013, 177, 605–611. [Google Scholar] [CrossRef]
- Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N.; Zamanian, A. Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation. Int. J. Hydrog. Energy 2020, 45, 9484–9495. [Google Scholar] [CrossRef]
- Edalatfar, M.; Yazdani, F.; Salehi, M.B. Synthesis and identification of ZnTiO3 nanoparticles as a rheology modifier additive in water-based drilling mud. J. Pet. Sci. Eng. 2021, 201, 108415. [Google Scholar] [CrossRef]
- Bhagwat, U.O.; Wu, J.J.; Asiri, A.M.; Anandan, S. Synthesis of ZnTiO3@TiO2 heterostructure nanomaterial as a visible light photocatalyst. ChemistrySelect 2019, 4, 6106–6112. [Google Scholar] [CrossRef]
- Lei, S.; Fan, H.; Ren, X.; Fang, J.; Ma, L.; Liu, Z. Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C 2017, 5, 4040–4047. [Google Scholar] [CrossRef]
- Pantoja-Espinoza, J.C.; Domínguez-Arvizu, J.L.; Jiménez-Miramontes, J.A.; Hernández-Majalca, B.C.; Meléndez-Zaragoza, M.J.; Salinas-Gutiérrez, J.M.; Herrera-Pérez, G.M.; Collins-Martínez, V.H.; López-Ortiz, A. Comparative study of Zn2Ti3O8 and ZnTiO3 photocatalytic properties for hydrogen production. Catalysts 2020, 10, 1372. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; Pérez, S.G.; Jaramillo, X.; Cabello, F.M. Synthesis of the ZnTiO3/TiO2 nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye. Nanomaterials 2020, 10, 1891. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; González, S.; Montesdeoca-Mendoza, F.; Medina, F. Structuring of zntio3/tio2 adsorbents for the removal of methylene blue, using zeolite precursor clays as natural additives. Nanomaterials 2021, 11, 898. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.J.T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef] [PubMed]
- Xiao-Chao, Z.; Cai-Mei, F.; Zhen-Hai, L.; Pei-De, H. Electronic structures and optical properties of ilmenite-type hexagonal ZnTiO3. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2011, 27, 47–51. [Google Scholar] [CrossRef]
- Conesa, J.C. Band structures and nitrogen doping effects in zinc titanate photocatalysts. Catal. Today 2013, 208, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Assis, F.; Albeniz, S.; Korili, S. Removal of dyes from wastewaters by adsorption on pillared clays. Chem. Eng. J. 2011, 168, 1032–1040. [Google Scholar] [CrossRef]
- Laysandra, L.; Sari, M.W.M.K.; Soetaredjo, F.E.; Foe, K.; Putro, J.N.; Kurniawan, A.; Ju, Y.-H.; Ismadji, S. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 2017, 3, e00488. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, M.; Javanbakht, V. Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation. J. Mater. Sci. Mater. Electron. 2018, 29, 9908–9919. [Google Scholar] [CrossRef]
- Subramaniam, M.N.; Goh, P.S.; Abdullah, N.; Lau, W.J.; Ng, B.C.; Ismail, A.F. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. J. Nanoparticle Res. 2017, 19, 220. [Google Scholar] [CrossRef]
- Abdellah, M.; Nosier, S.; El-Shazly, A.; Mubarak, A. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex. Eng. J. 2018, 57, 3727–3735. [Google Scholar] [CrossRef]
- Sutanto, N.; Saharudin, K.A.; Sreekantan, S.; Kumaravel, V.; Akil, H.M. Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity. J. Sol-Gel Sci. Technol. 2020, 93, 354–370. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Wang, X.; Jia, X.; Xu, P.; Zhao, M.; Dai, R. Simultaneous efficient adsorption and photocatalytic degradation of methylene blue over iron(III)-based metal–organic frameworks: A comparative study. Transit. Met. Chem. 2019, 44, 789–797. [Google Scholar] [CrossRef]
- Chang-Guo, Z. Development and application of first-principles electronic structure approach for molecules in solution based on fully polarizable continuum model. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2011, 27, 1–10. [Google Scholar] [CrossRef]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhao, J.; Yang, Y.; Lu, Z.; Shi, W. Understanding electronic and optical properties of La and Mn co-doped anatase TiO2. Comput. Condens. Matter 2016, 6, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Qi, K.; Selvaraj, R.; Al Fahdi, T.; Al-Kindy, S.; Kim, Y.; Wang, G.-C.; Tai, C.-W.; Sillanpää, M. Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study. Appl. Surf. Sci. 2016, 387, 750–758. [Google Scholar] [CrossRef]
- Koch, D.; Golub, P.; Manzhos, S. Stability of charges in titanium compounds and charge transfer to oxygen in titanium dioxide. J. Phys. Conf. Ser. 2018, 1136, 012017. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, B.; Wang, Y.-S.; Qin, Z.; Ke, S.-H. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO3-type ZnTiO3. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Pastore, M.; De Angelis, F. Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: Adsorption modes, electronic structure and implication for electron injection/recombination. Phys. Chem. Chem. Phys. 2012, 14, 920–928. [Google Scholar] [CrossRef]
- Samanta, P.K.; English, N.J. Opto-electronic properties of stable blue photosensitisers on a TiO2 anatase-101 surface for efficient dye-sensitised solar cells. Chem. Phys. Lett. 2019, 731, 136624. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, X.; Zhao, C.; Zhang, M.; Zhang, Z.; Wang, J. An anti-symmetric dual (ASD) Z-scheme photocatalytic system: (ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 6592–6607. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Yuan, P.-H.; Fan, C.-M.; Wang, Y.; Ding, G.-Y.; Wang, Y.-F. Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water. Ceram. Int. 2012, 38, 4173–4180. [Google Scholar] [CrossRef]
- Khan, S.; Cho, H.; Kim, D.; Han, S.S.; Lee, K.H.; Cho, S.-H.; Song, T.; Choi, H. Defect engineering toward strong photocatalysis of Nb-doped anatase TiO2: Computational predictions and experimental verifications. Appl. Catal. B Environ. 2017, 206, 520–530. [Google Scholar] [CrossRef]
- McLeod, J.A.; Moewes, A.; Zatsepin, D.A.; Kurmaev, E.Z.; Wypych-Puszkarz, A.; Bobowska, I.; Opasinska, A.; Cholakh, S.O. Predicting the band gap of ternary oxides containing 3d10 and 3d0 metals. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 195207. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Gao, S.-P. The stability, electronic structure, and optical property of tio 2 polymorphs. J. Phys. Chem. C 2014, 118, 11385–11396. [Google Scholar] [CrossRef] [Green Version]
- Hossain, F.M.; Evteev, A.V.; Belova, I.V.; Nowotny, J.; Murch, G.E. First-principles calculations of a corrugated anatase TiO2 surface. Comput. Mater. Sci. 2012, 51, 78–82. [Google Scholar] [CrossRef]
- Cherifi, K.; Cheknane, A.; Hilal, H.S.; Benghia, A.; Rahmoun, K.; Benyoucef, B. Investigation of triphenylamine-based sensitizer characteristics and adsorption behavior onto ZnTiO3 perovskite (1 0 1) surfaces for dye-sensitized solar cells using first-principle calculation. Chem. Phys. 2020, 530, 110595. [Google Scholar] [CrossRef]
- Zhu, H.-C.; Li, C.-F.; Fu, Z.-H.; Wei, S.-S.; Zhu, X.-F.; Zhang, J. Increasing the open-circuit voltage and adsorption stability of squaraine dye binding onto the TiO2 anatase (1 0 1) surface via heterocyclic anchoring groups used for DSSC. Appl. Surf. Sci. 2018, 455, 1095–1105. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Geatches, D.L.; Pike, D.Q.; Greenwell, H.; Johnston, C.T.; Wilcox, J.; Cygan, R.T. Methylene blue adsorption on the basal surfaces of kaolinite: Structure and thermodynamics from quantum and classical molecular simulation. Clays Clay Miner. 2015, 63, 185–198. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, Y.; Xing, D. Adsorption orientation of methylene blue (MB+) on the silver colloid: SERS and DFT studies. In Proceedings of the 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, 30 August–3 September 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Orellana, W. D-π-A dye attached on TiO2(101) and TiO2(001) surfaces: Electron transfer properties from ab initio calculations. Sol. Energy 2021, 216, 266–273. [Google Scholar] [CrossRef]
- Qin, H.-C.; Qin, Q.-Q.; Luo, H.; Wei, W.; Liu, L.-X.; Li, L.-C. Theoretical study on adsorption characteristics and environmental effects of dimetridazole on TiO2 surface. Comput. Theor. Chem. 2019, 1150, 10–17. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Hydrogen adsorption on Ru-encapsulated, -doped and -supported surfaces of C60. Surfaces 2020, 3, 30. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Graetzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 1965, 137, A1697–A1705. [Google Scholar] [CrossRef]
- Wang, Y.A.; Xiang, P. From the Hohenberg-Kohn theory to the Kohn-Sham equations. In Recent Progress in Orbital-free Density Functional Theory; World Scientific: Singapore, 2013; pp. 3–12. [Google Scholar]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Voityuk, A.A.; Stasyuk, A.J.; Vyboishchikov, S.F. A simple model for calculating atomic charges in molecules. Phys. Chem. Chem. Phys. 2018, 20, 23328–23337. [Google Scholar] [CrossRef]
- Yu, M.; Trinkle, D.R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.V.; Raghavendra, V.; Subramanian, V. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. J. Chem. Sci. 2016, 128, 1527–1536. [Google Scholar] [CrossRef]
- Martinez, J.; Sinnott, S.B.; Phillpot, S.R. Adhesion and diffusion at TiN/TiO2 interfaces: A first principles study. Comput. Mater. Sci. 2017, 130, 249–256. [Google Scholar] [CrossRef] [Green Version]
- German, E.; Faccio, R.; Mombrú, A.W. Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. Appl. Surf. Sci. 2018, 428, 118–123. [Google Scholar] [CrossRef]
- Pillai, R.S.; Khan, I.; Titus, E. C2-Hydrocarbon Adsorption in Nano-porous Faujasite: A DFT Study. Mater. Today Proc. 2015, 2, 436–445. [Google Scholar] [CrossRef]
Adsorbent | Software Used | Basis Set Used/Functional Used | Bandgap (eV) | Reference |
---|---|---|---|---|
ZnTiO3 | CASTEP | GGA/SP-PBE | 3.14 | [1] |
ZnTiO3 | CASTEP | GGA+U | 3.28 | [1] |
ZnTiO3 | MS-DMol3 | GGA/PBE | 3.10 | [5] |
ZnTiO3 | MS-DMol3 | GGA/PPE-grime | 3.53 | [5] |
ZnTiO3 | MS-DMol3 | GGA/PPE-TS | 3.12 | [5] |
ZnTiO3 | Experimental | 3.18 | [15] | |
ZnTiO3 | VASP | GGA/PBE | 2.96 | [15] |
ZnTiO3 | CASTEP | GGA/PW91 | 3.47 | [18] |
ZnTiO3 | ABINIT | HSE06 | 4.25 | [56] |
ZnTiO3 | ABINIT | GGA/NC | 3.25 | [56] |
ZnTiO3 | ABINIT | LDA/NC | 3.05 | [56] |
ZnTiO3 | ABINIT | GGA/ultrasoft | 2.96 | [56] |
ZnTiO3 | ABINIT | LDA/ultrasoft | 2.86 | [56] |
ZnTiO3 | VASP | GGA/PBE+U | 3.16 | This study |
ZnTiO3 | VASP | GGA/PBE | 2.20 | This study |
TiO2 | VASP | HSE06 | 3.20 | [62] |
TiO2 | VASP | GGA/PBE | 2.55 | [58] |
TiO2 | VASP | GGA/PBE+U | 3.11 | [58] |
TiO2 | Experimental | 3.20 | [53] | |
TiO2 | CASTEP | GGA/PBE | 2.70 | [53] |
TiO2 | CASTEP | GGA/PBE+U | 3.34 | [53] |
TiO2 | ABINIT | GGA/PBE | 2.08 | [64] |
TiO2 | ABINIT | GW | 3.71 | [64] |
TiO2 | VASP | GGA/PBE | 2.31 | This study |
TiO2 | VASP | GGA/PBE+U | 3.21 | This study |
Adsorbent | Dye | Software Used | Basis Set/Functional Used | Adsorption | References | |
---|---|---|---|---|---|---|
eV | kJ/mol | |||||
ZnTiO3 (101) | TPA-1 | CASTEP | GGA/PBE | −1.41 | −136.39 | [66] |
ZnTiO3 (101) | TPA-2 | CASTEP | GGA/PBE | −1.63 | −157.47 | [66] |
ZnTiO3 (101) | TPA-3 | CASTEP | GGA/PBE | −5.82 | −561.33 | [66] |
ZnTiO3 (101) | TPA-4 | CASTEP | GGA/PBE | −2.37 | −228.19 | [66] |
ZnTiO3 (101) (H) | MB | VASP | GGA/PBE | −1.31 | −126.76 | This study |
ZnTiO3 (101) (SP) | MB | VASP | GGA/PBE | −2.92 | −282.05 | This study |
TiO2 (101) | R4-BT | VASP | GGA/PBE | −1.40 | −135.46 | [58] |
TiO2 (101) | R4-F2BT | VASP | GGA/PBE | −1.39 | −134.50 | [58] |
TiO2 (101) | R4-BO | VASP | GGA/PBE | −1.39 | −134.50 | [58] |
TiO2 (101) | R6-Bz | VASP | GGA/PBE | −1.40 | −135.46 | [58] |
TiO2 (101) | R6-BT | VASP | GGA/PBE | −1.38 | −133.53 | [58] |
TiO2 (101) | R6-F2BT | VASP | GGA/PBE | −1.37 | −132.56 | [58] |
TiO2 (101) | R6-B0 | VASP | GGA/PBE | −1.37 | −132.56 | [58] |
TiO2 (101) | R6-Bz | VASP | GGA/PBE | −1.38 | −133.53 | [58] |
TiO2 (101) (SP) | MB | VASP | GGA/PBE | −0.12 | −11.61 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Fierro, X.; Capa, L.F.; Medina, F.; González, S. DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101). Molecules 2021, 26, 3780. https://doi.org/10.3390/molecules26133780
Jaramillo-Fierro X, Capa LF, Medina F, González S. DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101). Molecules. 2021; 26(13):3780. https://doi.org/10.3390/molecules26133780
Chicago/Turabian StyleJaramillo-Fierro, Ximena, Luis Fernando Capa, Francesc Medina, and Silvia González. 2021. "DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101)" Molecules 26, no. 13: 3780. https://doi.org/10.3390/molecules26133780
APA StyleJaramillo-Fierro, X., Capa, L. F., Medina, F., & González, S. (2021). DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101). Molecules, 26(13), 3780. https://doi.org/10.3390/molecules26133780