Gastroprotective Activities of Ethanol Extract of Black Rice Bran (Oryza sativa L.) in Rats
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening of BRB Using Liquid Chromatography–Mass Spectrometry (LC-MS) and High-Performance Liquid Chromatography (HPLC) Analyses
2.2. Gastroprotective Activities of BRB in Rats
2.2.1. Effect of BRB on Acidified Ethanol (EtOH/HCl)-Induced Gastric Ulcer
2.2.2. Effect of BRB on Indomethacin-Induced Gastric Ulcer
2.2.3. Effect of BRB on Restraint Water Immersion Stress-Induced Gastric Ulcer
2.3. Mechanisms of Gastroprotection of BRB
2.3.1. Effect of BRB on Gastric Secretion Following Pyloric Ligation in Rats
2.3.2. Effect of BRB on Gastric Wall Mucus Production in Rats
2.3.3. Effect of BRB on the Levels of MDA and Nitric Oxide (NO) in Gastric Tissue
2.3.4. Effect of BRB on Antioxidant Activity Examined via 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Assay and Total Phenolic Content
2.4. Acute Oral Toxicity Testing of BRB
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Preparation of Ethanol Extract
4.2. Phytochemical Screening
4.2.1. LC-MS Analysis
4.2.2. HPLC Analysis
4.3. Experimental Animals
4.4. Evaluation of Gastroprotective Activities
4.4.1. Acidified Ethanol (EtOH/HCl)-Induced Gastric Ulcer
4.4.2. Indomethacin-Induced Gastric Ulcer
4.4.3. Restraint Water Immersion Stress-Induced Gastric Ulcer
4.5. Investigation of Gastroprotective Mechanisms
4.5.1. Pylorus Ligation
4.5.2. Quantification of Gastric Wall Mucus
4.5.3. Determination of MDA as Lipid Peroxidation Product
4.5.4. Determination of NO
4.5.5. Determination of Antioxidant Activity by DPPH Assay
4.5.6. Determination of Total Phenolic Contents
4.6. Acute Oral Toxicity Test
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Leodolter, A.; Kulig, M.; Brasch, H.; Meyer-Sabellek, W.; Willich, S.N.; Malfertheiner, P. A Meta-Analysis Comparing Eradication, Healing and Relapse Rates in Patients with Helicobacter Pylori-Associated Gastric or Duodenal Ulcer. Aliment. Pharmacol. Ther. 2001, 15, 1949–1958. [Google Scholar] [CrossRef] [Green Version]
- McGwin, G. The Association between Ranitidine Use and Gastrointestinal Cancers. Cancers 2020, 13, 24. [Google Scholar] [CrossRef]
- McQuaid, K.R. Drugs used in the treatment of gastrointestinal diseases. In Basic & Clinical Pharmacology, 14th ed.; Katzung, B.G., Masters, S.B., Trevor, A.J., Eds.; McGraw-Hill Companies, Inc.: New York, NY, USA, 2017. [Google Scholar]
- Deng, G.-F.; Xu, X.-R.; Zhang, Y.; Li, D.; Gan, R.-Y.; Li, H.-B. Phenolic Compounds and Bioactivities of Pigmented Rice. Crit. Rev. Food Sci. Nutr. 2013, 53, 296–306. [Google Scholar] [CrossRef]
- Choi, S.P.; Kim, S.P.; Kang, M.Y.; Nam, S.H.; Friedman, M. Protective Effects of Black Rice Bran against Chemically-Induced Inflammation of Mouse Skin. J. Agric. Food Chem. 2010, 58, 10007–10015. [Google Scholar] [CrossRef]
- Jang, W.-S.; Seo, C.-R.; Jang, H.H.; Song, N.-J.; Kim, J.-K.; Ahn, J.-Y.; Han, J.; Seo, W.D.; Lee, Y.M.; Park, K.W. Black Rice (Oryza sativa L.) Extracts Induce Osteoblast Differentiation and Protect against Bone Loss in Ovariectomized Rats. Food Funct. 2015, 6, 265–275. [Google Scholar] [CrossRef]
- Nakamura, S.; Hara, T.; Joh, T.; Kobayashi, A.; Yamazaki, A.; Kasuga, K.; Ikeuchi, T.; Ohtsubo, K. Effects of Super-Hard Rice Bread Blended with Black Rice Bran on Amyloid β Peptide Production and Abrupt Increase in Postprandial Blood Glucose Levels in Mice. Biosci. Biotechnol. Biochem. 2017, 81, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-Y.; Zhou, J.; Luo, L.-P.; Han, B.; Li, F.; Chen, J.-Y.; Zhu, Y.-F.; Chen, W.; Yu, X.-P. Black Rice Anthocyanins Suppress Metastasis of Breast Cancer Cells by Targeting RAS/RAF/MAPK Pathway. Biomed. Res. Int. 2015, 2015, 414250. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.-J.; Yeh, P.-H.; Lin, J.-P.; Huang, A.-C.; Lien, J.-C.; Lin, H.-Y.; Chung, J.-G. Anthocyanins from Black Rice (Oryza sativa) Promote Immune Responses in Leukemia through Enhancing Phagocytosis of Macrophages in Vivo. Exp. Ther. Med. 2017, 14, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.Y.; Kim, H.-W.; Jang, H.-H.; Hwang, Y.-J.; Choe, J.-S.; Lim, Y.; Kim, J.-B.; Lee, Y.H. γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response. J. Med. Food 2017, 20, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Karbalaii, M.T.; Jaafar, H.Z.E.; Rahmat, A. Phytochemical Constituents, Antioxidant Activity, and Antiproliferative Properties of Black, Red, and Brown Rice Bran. Chem. Cent. J. 2018, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.; Kojima, R.; Ito, M. Influence of Aging on Gastric Ulcer Healing Activities of the Antioxidants Alpha-Tocopherol and Probucol. Eur. J. Pharmacol. 2008, 601, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; McKnight, W.; Reuter, B.K.; Vergnolle, N. NSAID-Induced Gastric Damage in Rats: Requirement for Inhibition of Both Cyclooxygenase 1 and 2. Gastroenterology 2000, 119, 706–714. [Google Scholar] [CrossRef]
- Fraites, M.J.P.; Cooper, R.L.; Buckalew, A.; Jayaraman, S.; Mills, L.; Laws, S.C. Characterization of the Hypothalamic-Pituitary-Adrenal Axis Response to Atrazine and Metabolites in the Female Rat. Toxicol. Sci. 2009, 112, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Gao, Q.; Jiao, Q.; Hao, W.; Gao, X.; Cao, J.-M. Gastric Mucosal Damage in Water Immersion Stress: Mechanism and Prevention with GHRP-6. World J. Gastroenterol. 2012, 18, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Trinovita, E.; Chany Saputri, F.; Mun’im, A. Potential Gastroprotective Activity of Rice Bran (Oryza sativa L.) Extracted by Ionic Liquid-Microwave-Assisted Extraction against Ethanol-Induced Acute Gastric Ulcers in Rat Model. Sci. Pharm. 2018, 86, 35. [Google Scholar] [CrossRef] [Green Version]
- Szelenyi, I.; Brune, K. Possible Role of Oxygen Free Radicals in Ethanol-Induced Gastric Mucosal Damage in Rats. Dig. Dis. Sci. 1988, 33, 865–871. [Google Scholar] [CrossRef]
- Barreto, J.C.; Smith, G.S.; Russell, D.H.; Miller, T.A. Gastric Damage Caused by Acidified Ethanol: Role of Molecular HCl. Am. J. Physiol. 1993, 265, G133–G137. [Google Scholar] [CrossRef]
- Mózsik, G.; Bódis, B.; Figler, M.; Király, A.; Karádi, O.; Pár, A.; Rumi, G.; Sütõ, G.; Tóth, G.; Vincze, A. Mechanisms of Action of Retinoids in Gastrointestinal Mucosal Protection in Animals, Human Healthy Subjects and Patients. Life Sci. 2001, 69, 3103–3112. [Google Scholar] [CrossRef]
- Murata, K.; Oyagi, A.; Takahira, D.; Tsuruma, K.; Shimazawa, M.; Ishibashi, T.; Hara, H. Protective Effects of Astaxanthin from Paracoccus carotinifaciens on Murine Gastric Ulcer Models. Phytother. Res. 2012, 26, 1126–1132. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The Beneficial Effect of Vanillic Acid on Ulcerative Colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef] [PubMed]
- de Lira Mota, K.S.; Dias, G.E.N.; Pinto, M.E.F.; Luiz-Ferreira, A.; Souza-Brito, A.R.M.; Hiruma-Lima, C.A.; Barbosa-Filho, J.M.; Batista, L.M. Flavonoids with Gastroprotective Activity. Molecules 2009, 14, 979–1012. [Google Scholar] [CrossRef] [Green Version]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Anthocyanins in cereals. J. Chromatogr. A 2004, 1054, 129–141. [Google Scholar] [CrossRef]
- Pedro, A.C.; Granato, D.; Rosso, N.D. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chem. 2016, 191, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizui, T.; Doteuchi, M. Effect of Polyamines on Acidified Ethanol-Induced Gastric Lesions in Rats. Jpn. J. Pharmacol. 1983, 33, 939–945. [Google Scholar] [CrossRef]
- Cho, C.H.; Ogle, C.W. A Correlative Study of the Antiulcer Effects of Zinc Sulphate in Stressed Rats. Eur. J. Pharmacol. 1978, 48, 97–105. [Google Scholar] [CrossRef]
- Nwafor, P.A.; Okwuasaba, F.K.; Binda, L.G. Antidiarrhoeal and Antiulcerogenic Effects of Methanolic Extract of Asparagus Pubescens Root in Rats. J. Ethnopharmacol. 2000, 72, 421–427. [Google Scholar] [CrossRef]
- Takagi, K.; Kasuya, Y.; Watanabe, K. Studies on The Drugs for Peptic Ulcer A Reliable Method for Producing Stress Ulcer in Rats. Chem. Pharm. Bull. 1964, 12, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Shay, H.; Komarov, S.A.; Fels, S.S.; Meranze, D.; Gruenstein, M.; Siplet, H. A simple method for uniform production of gastric ulceration in the rat. Gastroenterology 1945, 5, 43–61. [Google Scholar]
- Corne, S.J.; Morrissey, S.M.; Woods, R.J. Proceedings: A Method for the Quantitative Estimation of Gastric Barrier Mucus. J. Physiol. 1974, 242, 116P–117P. [Google Scholar] [PubMed]
- OECD. Guidelines for the Testing of Chemicals. Section 4-Health Effects (No 420 Acute Oral Toxicity–Fixed Dose Procedure); Organization for Economic Cooperation and Development: Paris, France, 2002. [Google Scholar]
Group | Dose (mg/kg) | Ulcer Index (mm) | Inhibition (%) |
---|---|---|---|
Control | - | 179.20 ± 19.15 | - |
Omeprazole | 10 | 26.27 ± 8.16 * | 85.34 |
BRB | 200 | 167.03 ± 23.39 | 6.78 |
400 | 91.80 ± 8.92 * | 48.77 | |
800 | 60.93 ± 10.70 * | 66.00 |
Group | Dose (mg/kg) | Ulcer Index (mm) | Inhibition (%) |
---|---|---|---|
Control | - | 9.80 ± 3.84 | - |
Omeprazole | 10 | 1.45 ± 0.55 * | 85.20 |
BRB | 200 | 5.48 ± 1.27 * | 44.05 |
400 | 4.48 ± 0.77 * | 54.25 | |
800 | 2.36 ± 0.37 * | 78.85 |
Group | Dose (mg/kg) | Ulcer Index (mm) | Inhibition (%) |
---|---|---|---|
Control | - | 6.63 ± 1.25 | - |
Omeprazole | 10 | 0.57 ± 0.23 * | 91.45 |
BRB | 200 | 5.33 ± 0.93 | 19.56 |
400 | 4.80 ± 1.08 | 27.60 | |
800 | 2.55 ± 0.50 * | 61.54 |
Group | Gastric Volume (mL) | Gastric pH | Total Acidity (mEq/100 g/h) |
---|---|---|---|
Control | 4.28 ± 0.36 | 2.57 ± 0.34 | 3.79 ± 1.47 |
Omeprazole (10 mg/kg) | 2.65 ± 0.26 * | 5.47 ± 0.19 * | 0.05 ± 0.01 * |
BRB (800 mg/kg) | 3.83 ± 0.11 | 2.97 ± 0.53 | 2.99 ± 1.55 |
Group | Dose | Amount of Gastric Wall Mucus (µg of Alcian Blue/g of Wet Stomach) |
---|---|---|
Normal control a | - | 8.80 ± 0.67 |
BRB-normal a | 800 mg/kg | 9.49 ± 0.57 * |
Ulcer control b | - | 6.78 ± 0.93 # |
Misoprostol b | 100 µg/kg | 9.73 ± 0.81 * |
BRB-ulcer b | 800 mg/kg | 7.54 ± 0.92 # |
Group | Dose (mg/kg) | Level of MDA in Gastric Tissue (µmol/g Protein) |
---|---|---|
Normal control a | - | 111.39 ± 9.60 * |
Ulcer control b | - | 175.31 ± 6.68 # |
Omeprazole b | 10 | 93.63 ± 3.82 * |
BRB-ulcer b | 800 | 105.28 ± 7.13 * |
Group | Dose (mg/kg) | Level of NO in Gastric Tissue (µg/g of Protein) |
---|---|---|
Normal control a | - | 13.78 ± 0.36 * |
Ulcer Control b | - | 6.19 ± 0.27 |
Omeprazole b | 10 | 11.50 ± 0.30 * |
BRB-ulcer b | 800 | 5.46 ± 0.32 |
Group | Body Weight (g) | Total Weight Changes (g) | Average Weight Changes (%) | ||
---|---|---|---|---|---|
Day 1 | Day 7 | Day 14 | |||
Control | 174.0 ± 2.2 | 202.0 ± 1.8 | 202.0 ± 1.8 | 28.0 ± 3.4 | 16.09 |
BRB 2000 mg/kg | 164.0 ± 2.2 | 188.0 ± 3.4 | 188.0 ± 1.8 | 34.0 ± 2.2 | 20.73 |
Group | Heart | Liver | Spleen | Pancreas | Uterus | Lung | Kidney | Ovary | ||
---|---|---|---|---|---|---|---|---|---|---|
L | R | L | R | |||||||
Control | 0.86 (0.06) | 5.54 (0.46) | 0.55 (0.04) | 0.48 (0.06) | 0.33 (0.04) | 1.80 (0.11) | 0.67 (0.07) | 0.72 (0.10) | 0.08 (0.02) | 0.08 (0.02) |
BRB 2000 mg/kg | 0.77 (0.02) | 4.54 (0.14) | 0.46 (0.02) | 0.40 (0.05) | 0.24 (0.04) | 1.57 (0.08) | 0.64 (0.03) | 0.67 (0.02) | 0.06 (0.02) | 0.06 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonchaiyaphum, P.; Arpornchayanon, W.; Khonsung, P.; Chiranthanut, N.; Pitchakarn, P.; Kunanusorn, P. Gastroprotective Activities of Ethanol Extract of Black Rice Bran (Oryza sativa L.) in Rats. Molecules 2021, 26, 3812. https://doi.org/10.3390/molecules26133812
Tonchaiyaphum P, Arpornchayanon W, Khonsung P, Chiranthanut N, Pitchakarn P, Kunanusorn P. Gastroprotective Activities of Ethanol Extract of Black Rice Bran (Oryza sativa L.) in Rats. Molecules. 2021; 26(13):3812. https://doi.org/10.3390/molecules26133812
Chicago/Turabian StyleTonchaiyaphum, Peerachit, Warangkana Arpornchayanon, Parirat Khonsung, Natthakarn Chiranthanut, Pornsiri Pitchakarn, and Puongtip Kunanusorn. 2021. "Gastroprotective Activities of Ethanol Extract of Black Rice Bran (Oryza sativa L.) in Rats" Molecules 26, no. 13: 3812. https://doi.org/10.3390/molecules26133812
APA StyleTonchaiyaphum, P., Arpornchayanon, W., Khonsung, P., Chiranthanut, N., Pitchakarn, P., & Kunanusorn, P. (2021). Gastroprotective Activities of Ethanol Extract of Black Rice Bran (Oryza sativa L.) in Rats. Molecules, 26(13), 3812. https://doi.org/10.3390/molecules26133812