Proteomic Advances in Milk and Dairy Products
Abstract
:1. Introduction
2. Milk Proteins and Their Significance in Human Nutrition
Milk Compound (g/L of Milk) | Cow a | Goat a | Sheep b | Buffalo c | Camel d |
---|---|---|---|---|---|
Crude protein | 29.4 | 35.84 | 55.83 | 60.10 | 26.5 |
Casein | 24 | 29.64 | 41.39 | 50.38 | 17.34 |
αs-casein | 11.12 | 9.83 | 17.69 | 24.14 | 2.89 |
β-casein | 12.88 | 19.80 | 13.95 | 18.45 | 12.78 |
k-casein | 9.74 | 7.79 | 1.67 | ||
Whey protein | 5.04 | 6.20 | - | - | - |
α-lactoalbumin | - | - | 6.57 | 4.30 | 2.01 |
β-lactoglobulin | - | - | 7.86 | 5.42 | - |
3. Milk Proteomics
3.1. Concept of Proteomics and Applied Strategies
3.1.1. Separation Techniques
3.1.2. Characterization Techniques
3.2. Advances in Proteomics in the Characterization of Milk and Dairy Products
3.3. Benefits of Recent Proteomic Advances in Milk and Dairy Production
3.3.1. Ensuring the Safety of Milk and Dairy Products
3.3.2. Checking the Authenticity of Milk and Dairy Products
3.3.3. Industrial Operations of Milk and Dairy Products Affecting Quality
3.3.4. Future Prospects of Proteomics for Food Quality Control in Industry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tyers, M.; Mann, M. From Genomics to Proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Roncada, P.; Piras, C.; Soggiu, A.; Turk, R.; Urbani, A.; Bonizzi, L. Farm Animal Milk Proteomics. J. Proteom. 2012, 75, 4259–4274. [Google Scholar] [CrossRef]
- O’Donnell, R.; Holland, J.W.; Deeth, H.C.; Alewood, P. Milk Proteomics. Int. Dairy J. 2004, 14, 1013–1023. [Google Scholar] [CrossRef]
- Issaq, H.J.; Conrads, T.P.; Janini, G.M.; Veenstra, T.D. Methods for Fractionation, Separation and Profiling of Proteins and Peptides. Electrophoresis 2002, 23, 3048–3061. [Google Scholar] [CrossRef]
- Almeida, A.M.; Bassols, A.; Bendixen, E.; Bhide, M.; Ceciliani, F.; Cristobal, S.; Eckersall, P.D.; Hollung, K.; Lisacek, F.; Mazzucchelli, G.; et al. Animal Board Invited Review: Advances in Proteomics for Animal and Food Sciences. Animal 2014, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, S.; Mixa, A. Milk and Dairy Product Technology, 1st ed.; Taylor and Francis: New York, NY, USA, 1998; ISBN 9780203747162. [Google Scholar]
- FAO (Faostat). Available online: http://www.fao.org/faostat/es/#data/QL 2021 (accessed on 20 April 2021).
- Coppola, S.; Blaiotta, G.; Ercolini, D. Dairy products. In Molecular Techniques in the Microbial Ecology of Fermented Foods; Coccolin, L., Ercolini, D., Eds.; Springer: New York, NY, USA, 2008; pp. 31–90. [Google Scholar]
- Guetouache, M.; Guessas, B.; Medjekal, S. Composition and Nutritional Value of Raw Milk. Issues Biol. Sci. Pharm. Res. 2014, 2, 115–122. [Google Scholar] [CrossRef]
- Muehlhoff, E.; Bennett, A.; McMahon, D. Milk and Dairy Products in Human Nutrition; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251078631. [Google Scholar]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Milk proteins. In Dairy Chemistry and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 145–239. [Google Scholar]
- Pellegrino, L.; Masotti, F.; Cattaneo, S.; Hogenboom, J.A.; de Noni, I. Nutritional quality of milk proteins. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: New York, NY, USA, 2013; pp. 515–538. [Google Scholar]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. Asian Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F. Milk: An overview. In Milk Proteins: From Expression to Food; Thompson, A., Boland, M., Singh, H., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 1–54. [Google Scholar]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Milk proteins: An overview. In Milk Proteins: From Expression to Food; Boland, M., Singh, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–98. [Google Scholar]
- O’ Mahony, J.A.; Fox, P.F. Milk proteins: Introduction and historical aspects. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: New York, NY, USA, 2013; pp. 43–85. [Google Scholar]
- Farkye, N.Y.; Shah, N. Milk proteins. In Applied Food Protein Chemistry; Ustunol, Z., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 427–458. [Google Scholar]
- Fox, P.F.; Brodkorb, A. The Casein Micelle: Historical Aspects, Current Concepts and Significance. Int. Dairy J. 2008, 18, 677–684. [Google Scholar] [CrossRef]
- Dalgleish, D.G. On the Structural Models of Bovine Casein Micelles—Review and Possible Improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Kilara, A.; Vaghela, M.N. Whey proteins. In Proteins in Food Processing, 2nd ed.; Rickey, I.I., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 93–126. [Google Scholar]
- Pepe, G.; Tenore, G.C.; Mastrocinque, R.; Stusio, P.; Campiglia, P. Potential Anticarcinogenic Peptides from Bovine Milk. J. Amino Acids 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cakir, B.; Tunali-Akbay, T. Potential Anticarcinogenic Effect of Goat Milk-Derived Bioactive Peptides on HCT-116 Human Colorectal Carcinoma Cell Line. Anal. Biochem. 2021, 622. [Google Scholar] [CrossRef] [PubMed]
- Zarogoulidis, P.; Tsakiridis, K.; Karapantzou, C.; Lampaki, S.; Kioumis, I.; Pitsiou, G.; Papaiwannou, A.; Hohenforst-Schmidt, W.; Huang, H.; Kesisis, G.; et al. Use of Proteins as Biomarkers and Their Role in Carcinogenesis. J. Cancer 2015, 6, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Kim, J.W.; Cheon, S.; Nam, M.S.; Kim, K.K. Alpha-Casein and Beta-Lactoglobulin from Cow Milk Exhibit Antioxidant Activity: A Plausible Link to Antiaging Effects. J. Food Sci. 2019, 84, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, J.; Ivanova, I. Antibacterial Peptides from Goat and Sheep Milk Proteins. Biotechnol. Biotechnol. Equip. 2010, 24, 1799–1803. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, L.S.; Morales, E.R.; de la Torre Adarve, G.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of Goat and Cow Milk Produced under Similar Conditions and Analyzed by Identical Methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Pelmus, R.S.; Pistol, G.C.; Lazar, C.; Marin, D.E.; Gras, M.; Radu, M.; Ghita, E. Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Romanian Local Sheep Breed Teleorman Black Head Tsigai. Rom. Biotechnol. Lett. 2012, 17, 7583. [Google Scholar]
- Bonfatti, V.; Giantin, M.; Rostellato, R.; Dacasto, M.; Carnier, P. Separation and Quantification of Water Buffalo Milk Protein Fractions and Genetic Variants by RP-HPLC. Food Chem. 2013, 136, 364–367. [Google Scholar] [CrossRef]
- Omar, A.; Harbourne, N.; Oruna-Concha, M.J. Quantification of Major Camel Milk Proteins by Capillary Electrophoresis. Int. Dairy J. 2016, 58, 31–35. [Google Scholar] [CrossRef]
- Korhonen, H.J.; Marnila, P. Milk bioactive proteins and peptides. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; Young, W.P., George, F.W., Haenlein, D., Eds.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2013; pp. 148–171. [Google Scholar]
- Lawrance, I.C.; Klopcic, B.; Wasinger, V.C. Proteomics: An Overview proteomics: What does it mean? Inflamm. Bowel Dis. 2005, 11, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Pasquali, C.; Appel, R.D.; Ou, K.; Golaz, O.; Sanchez, J.-C.; Yan, J.X.; Gooley, A.A.; Hughes, G.; Humphery-Smith, I.; et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis. Biotechnology 1996, 14, 61–65. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. Proteome and Proteomics: New Technologies, New Concepts, and New Words. Electrophoresis 1998, 19, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Bendixen, E. Understanding the proteome. In Proteomics in Food: Principles and Applications; Toldrá, F., Nollet, L.M.L., Eds.; Springer: New York, NY, USA, 2013; pp. 3–19. [Google Scholar]
- Issaq, H.J.; Veenstra, T.D. Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE): Advances and Perspectives. BioTechniques 2008, 44, 697–700. [Google Scholar] [CrossRef] [Green Version]
- May, C.; Brosseron, F.; Pfeiffer, K.; Meyer, H.E.; Marcus, K. Proteome analysis with classical 2D-PAGE. In Quantitative Methods in Proteomics; Marcus, K., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 37–46. [Google Scholar]
- Gygi, S.P.; Corthals, G.L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of Two-Dimensional Gel Electrophoresis-Based Proteome Analysis Technology. Proc. Natl. Acad. Sci. USA 2000, 97, 9390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-Dimensional Gel Electrophoresis in Proteomics: Past, Present and Future. J. Proteom. 2010, 73, 2064–2077. [Google Scholar] [CrossRef] [Green Version]
- Zagorchev, L.; Dimitrova, M.; Odjakova, M.; Teofanova, D.; Hristov, P. Electrophoretic Characterization of Milk Proteins from Bulgarian Rhodopean Cattle. Bulg. J. Agric. Sci. 2013, 19, 197–200. [Google Scholar]
- Hsieh, J.F.; Pan, P.H. Proteomic Profiling of the Coagulation of Milk Proteins Induced by Chymosin. J. Agric. Food Chem. 2012, 60, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, E.; Agostoni, C.; Giovannini, M.; Riva, E.; Zetterström, R.; Fortin, R.; Greppi, G.F.; Bonizzi, L.; Roncada, P. Proteomic Evaluation of Milk from Different Mammalian Species as a Substitute for Breast Milk. Acta Paediatr. Int. J. Paediatr. 2005, 94, 1708–1713. [Google Scholar] [CrossRef]
- Bonfatti, V.; Grigoletto, L.; Cecchinato, A.; Gallo, L.; Carnier, P. Validation of a New Reversed-Phase High-Performance Liquid Chromatography Method for Separation and Quantification of Bovine Milk Protein Genetic Variants. J. Chromatogr. A 2008, 1195, 101–106. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.-H.; Wang, Z.-H.; Li, H.-M. Determination of Major Bovine Milk Proteins by Reversed Phase High Performance Liquid Chromatography. Chin. J. Anal. Chem. 2009, 37, 1667–1670. [Google Scholar] [CrossRef]
- Haselberg, R.; de Jong, G.J.; Somsen, G.W. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Intact Proteins 2007-2010. Electrophoresis 2011, 32, 66–82. [Google Scholar] [CrossRef]
- Boitz, L.I.; Fiechter, G.; Seifried, R.K.; Mayer, H.K. A Novel Ultra-High Performance Liquid Chromatography Method for the Rapid Determination of β-Lactoglobulin as Heat Load Indicator in Commercial Milk Samples. J. Chromatogr. A 2015, 1386, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, F.; Morittu, V.M.; Cicino, C.; Palmieri, C.; Britti, D. Rapid Capillary Electrophoresis Approach for the Quantification of Ewe Milk Adulteration with Cow Milk. J. Chromatogr. A 2017, 1519, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products–A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A Critical Review of Bottom-up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, A.; Nacci, A.; Cataldi, T.R.I.; Calvano, C.D. Synthesis and Matrix Properties of α-Cyano-5-Phenyl-2,4-Pentadienic Acid (CPPA) for Intact Proteins Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Molecules 2020, 25, 54. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, R.; Passalacqua, S.; Salemi, S.; Malvagna, P.; Spina, E.; Garozzo, D. Identification of Adulteration in Milk by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2001, 36, 1031–1037. [Google Scholar] [CrossRef]
- Cunsolo, V.; Muccilli, V.; Saletti, R.; Foti, S. Mass Spectrometry in Food Proteomics: A Tutorial. J. Mass Spectrom. 2014, 49, 768–784. [Google Scholar] [CrossRef]
- Vincent, D.; Elkins, A.; Condina, M.R.; Ezernieks, V.; Rochfort, S. Quantitation and Identification of Intact Major Milk Proteins for High-Throughput LC-ESI-Q-TOF MS Analyses. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Chalmers, M.J.; Gaskell, S.J. Advances in Mass Spectrometry for Proteome Analysis. Curr. Opin. Biotechnol. 2000, 11, 384–390. [Google Scholar] [CrossRef]
- Rogowska-Wrzesinska, A.; le Bihan, M.C.; Thaysen-Andersen, M.; Roepstorff, P. 2D Gels Still Have a Niche in Proteomics. J. Proteom. 2013, 88, 4–13. [Google Scholar] [CrossRef]
- Manso, M.A.; Léonil, J.; Jan, G.; Gagnaire, V. Application of Proteomics to the Characterisation of Milk and Dairy Products. Int. Dairy J. 2005, 15, 845–855. [Google Scholar] [CrossRef]
- Conti, A.; Napolitano, L.; Maria Cantisani, A.; Davoli, R.; Dall’Olio, S. Bovine β-Lactoglobulin H: Isolation by Preparative Isoelectric Focusing in Immobilized PH Gradients and Preliminary Characterization. J. Biochem. Biophys. Methods 1988, 16, 205–214. [Google Scholar] [CrossRef]
- Mansour, A.F.A.; Zayed, A.F.; Basha, O.A.A. Contamination of the Shell and Internal Content of Table Eggs With Some Pathogens During Different Storage Periods. Assiut Vet. Med. J 2015, 61, 8–15. [Google Scholar]
- Jardin, J.; Mollé, D.; Piot, M.; Lortal, S.; Gagnaire, V. Quantitative Proteomic Analysis of Bacterial Enzymes Released in Cheese during Ripening. Int. J. Food Microbiol. 2012, 155, 19–28. [Google Scholar] [CrossRef]
- Pourjoula, M.; Picariello, G.; Garro, G.; D’Auria, G.; Nitride, C.; Rheza Ghaisari, A.; Ferranti, P. The Protein and Peptide Fractions of Kashk, a Traditional Middle East Fermented Dairy Product. Food Res. Int. 2020, 132. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.W.; Boland, M.J. Post-translational modifications of caseins. In Milk Proteins, 2nd ed.; Singh, H., Boland, M., Thompson, A., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 141–168. [Google Scholar]
- Claverol, S.; Burlet-Schiltz, O.; Gairin, J.E.; Monsarrat, B. Characterization of Protein Variants and Post-Translational Modifications: ESI-MSn Analyses of Intact Proteins Eluted from Polyacrylamide Gels. Mol. Cell. Proteom. 2003, 2, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Walsh, G. Post-Translational Modifications of Protein Biopharmaceuticals. Drug Discov. Today 2010, 15, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Deeth, H.C.; Larsen, L.B. Proteomics of Major Bovine Milk Proteins: Novel Insights. Int. Dairy J. 2017, 67, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.H.; Bovenhuis, H.; Delacroix-Buchet, A.; Miranda, G.; Boichard, D.; Visker, M.H.P.W.; Martin, P. Genetic and Nongenetic Factors Contributing to Differences in AS-Casein Phosphorylation Isoforms and Other Major Milk Proteins. J. Dairy Sci. 2017, 100, 5564–5577. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, P.D.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Sørensen, J.; Bakman, M.; Qvist, K.B.; Larsen, L.B. Composition and Effect of Blending of Noncoagulating, Poorly Coagulating, and Well-Coagulating Bovine Milk from Individual Danish Holstein Cows. J. Dairy Sci. 2011, 94, 4787–4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, H.B.; Holland, J.W.; Poulsen, N.A.; Larsen, L.B. Milk Protein Genetic Variants and Isoforms Identified in Bovine Milk Representing Extremes in Coagulation Properties. J. Dairy Sci. 2012, 95, 2891–2903. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.K.; Verma, M. Post Translational Modifications of Milk Proteins in Geographically Diverse Goat Breeds. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, S.; Ghisaura, S.; Pagnozzi, D.; Biosa, G.; Tanca, A.; Roggio, T.; Uzzau, S.; Addis, M.F. The Sheep Milk Fat Globule Membrane Proteome. J. Proteom. 2011, 74, 350–358. [Google Scholar] [CrossRef]
- El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. [Google Scholar] [CrossRef]
- Milkovska-Stamenova, S.; Hoffmann, R. Diversity of Advanced Glycation End Products in the Bovine Milk Proteome. Amino Acids 2019, 51, 891–901. [Google Scholar] [CrossRef]
- Tacoma, R.; Fields, J.; Ebenstein, D.B.; Lam, Y.W.; Greenwood, S.L. Characterization of the Bovine Milk Proteome in Early-Lactation Holstein and Jersey Breeds of Dairy Cows. J. Proteom. 2016, 130, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Dige, M.S.; Gautam, D.; De, S.; Rout, P.K. Functional Milk Proteome Analysis of Genetically Diverse Goats from Different Agro Climatic Regions. J. Proteom. 2020, 227. [Google Scholar] [CrossRef]
- Soggiu, A.; Roncada, P.; Piras, C. Proteomics in milk and dairy products. In Proteomics in Domestic Animals: From Farm to Systems Biology; de Almeida, A.M., Eckersall, D., Miller, I., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 169–193. [Google Scholar]
- Gomes, F.; Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Ogola, H.; Shitandi, A.; Nanua, J. Effect of Mastitis on Raw Milk Compositional Quality. J. Vet. Sci. 2007, 8, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Piras, C.; Roncada, P.; Rodrigues, P.M.; Bonizzi, L.; Soggiu, A. Proteomics in Food: Quality, Safety, Microbes, and Allergens. Proteomics 2016, 16, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, S.; Cacciotto, C.; Pagnozzi, D.; Uzzau, S.; Pollera, C.; Penati, M.; Bronzo, V.; Addis, M.F. Impact of Staphylococcus aureus Infection on the Late Lactation Goat Milk Proteome: New Perspectives for Monitoring and Understanding Mastitis in Dairy Goats. J. Proteom. 2020, 221. [Google Scholar] [CrossRef] [PubMed]
- Abdelmegid, S.; Kelton, D.; Caswell, J.; Kirby, G. Proteomic 2d-Dige Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins. Microorganisms 2020, 8, 1883. [Google Scholar] [CrossRef]
- Currie, A.; Galanis, E.; Chacon, P.A.; Murray, R.; Wilcott, L.; Kirkby, P.; Honish, L.; Franklin, K.; Farber, J.; Parker, R.; et al. Outbreak of Escherichia coli O157:H7 Infections Linked to Aged Raw Milk Gouda Cheese, Canada, 2013. J. Food Prot. 2013, 81, 325–331. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, L.; Wilcott, L.; Naus, M. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Johler, S.; Weder, D.; Bridy, C.; Huguenin, M.C.; Robert, L.; Hummerjohann, J.; Stephan, R. Outbreak of Staphylococcal Food Poisoning among Children and Staff at a Swiss Boarding School Due to Soft Cheese Made from Raw Milk. J. Dairy Sci. 2015, 98, 2944–2948. [Google Scholar] [CrossRef] [Green Version]
- Raheem, D. Outbreaks of Listeriosis Associated with Deli Meats and Cheese: An Overview. AIMS Microbiol. 2016, 2, 230–250. [Google Scholar] [CrossRef]
- Mendonça, M.; Moreira, G.M.S.G.; Conceição, F.R.; Hust, M.; Mendonça, K.S.; Moreira, Â.N.; França, R.C.; da Silva, W.P.; Bhunia, A.K.; Aleixo, J.A.G. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Karasu-Yalcin, S.; Soylemez-Milli, N.; Eren, O.; Eryasar-Orer, K. Reducing Time in Detection of Listeria monocytogenes from Food by MALDI-TOF Mass Spectrometry. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Jadhav, S.; Sevior, D.; Bhave, M.; Palombo, E.A. Detection of Listeria monocytogenes from Selective Enrichment Broth Using MALDI-TOF Mass Spectrometry. J. Proteom. 2014, 97, 100–106. [Google Scholar] [CrossRef]
- Ho, M.H.K.; Wong, W.H.S.; Chang, C. Clinical Spectrum of Food Allergies: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2014, 46, 225–240. [Google Scholar] [CrossRef]
- D’Auria, E.; Mameli, C.; Piras, C.; Cococcioni, L.; Urbani, A.; Zuccotti, G.V.; Roncada, P. Precision Medicine in Cow’s Milk Allergy: Proteomics Perspectives from Allergens to Patients. J. Proteom. 2018, 188, 173–180. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Lorenzo, J.M.; Gagaoua, M.; Franco, D. Current Trends in Proteomic Advances for Food Allergen Analysis. Biology 2020, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; de Angelis, E.; Montemurro, N.; Pilolli, R. Comprehensive Overview and Recent Advances in Proteomics MS Based Methods for Food Allergens Analysis. TrAC Trends Anal. Chem. 2018, 106, 21–36. [Google Scholar] [CrossRef]
- Natale, M.; Bisson, C.; Monti, G.; Peltran, A.; Garoffo, L.P.; Valentini, S.; Fabris, C.; Bertino, E.; Coscia, A.; Conti, A. Cow’s Milk Allergens Identification by Two-Dimensional Immunoblotting and Mass Spectrometry. Mol. Nutr. Food Res. 2004, 48, 363–369. [Google Scholar] [CrossRef]
- Kamthania, M.; Saxena, J.; Saxena, K.; Sharma, D.K. Milk Adultration: Methods Of Detection & Remedial Measures. Int. J. Eng. Tech. Res. 2014, 1, 15–20. [Google Scholar]
- Roncada, P.; Gaviraghi, A.; Liberatori, S.; Canas, B.; Bini, L.; Greppi, G.F. Identification of Caseins in Goat Milk. Proteomics 2002, 2, 723–726. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Masotti, A.; Salvatori, G.; Scapaticci, M.; Muraca, M.; Putignani, L. A Sensitive and Effective Proteomic Approach to Identify She-Donkey’s and Goat’s Milk Adulterations by MALDI-TOF MS Fingerprinting. Int. J. Mol. Sci. 2014, 15, 13697–13719. [Google Scholar] [CrossRef] [Green Version]
- Mikulec, N.; Plavljanić, D.; Radeljević, B.; Havranek, J.J. Proving the Adulteration of Ewe and Goat Cheeses with Cow Milk Using the Reference Method of Isoelectric Focusing of γ-Casein Potential of Microencapsulation in Cheese Production View Project. Mljekarstvo 2013, 63, 115–121. [Google Scholar]
- Ortea, I.; O’Connor, G.; Maquet, A. Review on Proteomics for Food Authentication. J. Proteom. 2016, 147, 212–225. [Google Scholar] [CrossRef]
- Guerreiro, J.S.; Barros, M.; Fernandes, P.; Pires, P.; Bardsley, R. Principal Component Analysis of Proteolytic Profiles as Markers of Authenticity of PDO Cheeses. Food Chem. 2013, 136, 1526–1532. [Google Scholar] [CrossRef]
- Rau, J.; Korte, N.; Dyk, M.; Wenninger, O.; Schreiter, P.; Hiller, E. Rapid Animal Species Identification of Feta and Mozzarella Cheese Using MALDI-TOF Mass-Spectrometry. Food Control 2020, 117. [Google Scholar] [CrossRef]
- Nardiello, D.; Natale, A.; Palermo, C.; Quinto, M.; Centonze, D. Milk Authenticity by Ion-Trap Proteomics Following Multi-Enzyme Digestion. Food Chem. 2018, 244, 317–323. [Google Scholar] [CrossRef]
- Motta, T.M.C.; Hoff, R.B.; Barreto, F.; Andrade, R.B.S.; Lorenzini, D.M.; Meneghini, L.Z.; Pizzolato, T.M. Detection and Confirmation of Milk Adulteration with Cheese Whey Using Proteomic-like Sample Preparation and Liquid Chromatography–Electrospray–Tandem Mass Spectrometry Analysis. Talanta 2014, 120, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.K.; Chang, L.W.; Chung, Y.Y.; Lee, M.H.; Ling, Y.C. Quantification of Cow Milk Adulteration in Goat Milk Using High-Performance Liquid Chromatography with Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1167–1171. [Google Scholar] [CrossRef]
- Czerwenka, C.; Muller, L.; Lindner, W. Detection of the Adulteration of Water Buffalo Milk and Mozzarella with Cow’s Milk by Liquid Chromatography-Mass Spectrometry Analysis of β-Lactoglobulin Variants. Food Chem. 2010, 122, 901–908. [Google Scholar] [CrossRef]
- Calvano, C.D.; de Ceglie, C.; Monopoli, A.; Zambonin, C.G. Detection of Sheep and Goat Milk Adulterations by Direct MALDI-TOF MS Analysis of Milk Tryptic Digests. J. Mass Spectrom. 2012, 47, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, V.; Muccilli, V.; Saletti, R.; Foti, S. MALDI-TOF Mass Spectrometry for the Monitoring of She-Donkey’s Milk Contamination or Adulteration. J. Mass Spectrom. 2013, 48, 148–153. [Google Scholar] [CrossRef]
- Russo, R.; Severino, V.; Mendez, A.; Lliberia, J.; Parente, A.; Chambery, A. Detection of Buffalo Mozzarella Adulteration by an Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry Methodology. J. Mass Spectrom. 2012, 47, 1407–1414. [Google Scholar] [CrossRef]
- Russo, R.; Rega, C.; Chambery, A. Rapid Detection of Water Buffalo Ricotta Adulteration or Contamination by Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 497–503. [Google Scholar] [CrossRef]
- Calvano, C.D.; Monopoli, A.; Loizzo, P.; Faccia, M.; Zambonin, C. Proteomic Approach Based on MALDI-TOF MS to Detect Powdered Milk in Fresh Cow’s Milk. J. Agric. Food Chem. 2013, 61, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Cordewener, J.H.G.; Luykx, D.M.A.M.; Frankhuizen, R.; Bremer, M.G.E.G.; Hooijerink, H.; America, A.H.P. Untargeted LC-Q-TOF Mass Spectrometry Method for the Detection of Adulterations in Skimmed-Milk Powder. J. Sep. Sci. 2009, 32, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Agregán, R.; Munekata, P.E.S.; Zhang, W.; Zhang, J.; Pérez-Santaescolástica, C.; Lorenzo, J.M. High-Pressure Processing in Inactivation of Salmonella spp. in Food Products. Trends Food Sci. Technol. 2021, 107, 31–37. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, L.; Kontopodi, E.; Boeren, S.; Zhang, L.; Zhou, P.; Hettinga, K. Changes in the Milk Serum Proteome after Thermal and Non-Thermal Treatment. Innov. Food Sci. Emerg. Technol. 2020, 66. [Google Scholar] [CrossRef]
- Carulli, S.; Calvano, C.D.; Palmisano, F.; Pischetsrieder, M. MALDI-TOF MS Characterization of Glycation Products of Whey Proteins in a Glucose/Galactose Model System and Lactose-Free Milk. J. Agric. Food Chem. 2011, 59, 1793–1803. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H. Application of Proteomics to the Areas of Milk Production, Processing and Quality Control—A Review. Int. J. Dairy Technol. 2014, 67, 153–166. [Google Scholar] [CrossRef]
- Ebner, J.; Baum, F.; Pischetsrieder, M. Identification of Sixteen Peptides Reflecting Heat and/or Storage Induced Processes by Profiling of Commercial Milk Samples. J. Proteom. 2016, 147, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Meltretter, J.; Schmidt, A.; Humeny, A.; Becker, C.M.; Pischetsrieder, M. Analysis of the Peptide Profile of Milk and Its Changes during Thermal Treatment and Storage. J. Agric. Food Chem. 2008, 56, 2899–2906. [Google Scholar] [CrossRef]
- Dalabasmaz, S.; Dittrich, D.; Kellner, I.; Drewello, T.; Pischetsrieder, M. Identification of Peptides Reflecting the Storage of UHT Milk by MALDI-TOF-MS Peptide Profiling. J. Proteom. 2019, 207. [Google Scholar] [CrossRef]
- Liu, H.; Grosvenor, A.J.; Li, X.; Wang, X.-l.; Ma, Y.; Clerens, S.; Dyer, J.M.; Day, L. Changes in Milk Protein Interactions and Associated Molecular Modification Resulting from Thermal Treatments and Storage. J. Food Sci. 2019, 84, 1737–1745. [Google Scholar] [CrossRef]
- Petrella, G.; Pati, S.; Gagliardi, R.; Rizzuti, A.; Mastrorilli, P.; la Gatta, B.; di Luccia, A. Study of Proteolysis in River Buffalo Mozzarella Cheese Using a Proteomics Approach. J. Dairy Sci. 2015, 98, 7560–7572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.A.; Bezerra, V.S.; Pimentel, M. do C.B.; Porto, A.L.F.; Cavalcanti, M.T.H.; Filho, J.L.L. Proteomic and Peptidomic Profiling of Brazilian Artisanal “Coalho” Cheese. J. Sci. Food Agric. 2016, 96, 4337–4344. [Google Scholar] [CrossRef]
- Pappa, E.C.; Robertson, J.A.; Rigby, N.M.; Mellon, F.; Kandarakis, I.; Mills, E.N.C. Application of Proteomic Techniques to Protein and Peptide Profiling of Teleme Cheese Made from Different Types of Milk. Int. Dairy J. 2008, 18, 605–614. [Google Scholar] [CrossRef]
- Han, J.Z.; Wang, Y.B. Proteomics: Present and Future in Food Science and Technology. Trends Food Sci. Technol. 2008, 19, 26–30. [Google Scholar] [CrossRef]
- Mora, L.; Gallego, M.; Toldrá, F. New Approaches Based on Comparative Proteomics for the Assessment of Food Quality. Curr. Opin. Food Sci. 2018, 22, 22–27. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Franco, D.; Serrano, M.P.; Maggiolino, A.; Landete-Castillejos, T.; De Palo, P.; Lorenzo, J.M. A proteomic-based approach for the search of biomarkers in Iberian wild deer (Cervus elaphus) as indicators of meat quality. J. Proteom. 2019, 205, 103422. [Google Scholar] [CrossRef] [PubMed]
Composition (g/100 g) | |||||
---|---|---|---|---|---|
Cow | Buffalo | Goat | Sheep | Camel | |
Water | 87.8 | 83.2 | 87.7 | 82.1 | 84.8 |
Protein | 3.3 | 4 | 3.4 | 5.6 | 3.9 |
Fat | 3.3 | 7.5 | 3.9 | 6.4 | 5 |
Lactose | 4.7 | 4.4 | 4.4 | 5.1 | 4.2 |
Ash | 0.7 | 0.8 | 0.8 | 0.9 | 0.9 |
Adulteration | Protein Marker | Technology Used | Detection Limit | Reference |
---|---|---|---|---|
Ewe and water buffalo milks with cow milk | α-lactalbumin | MALDI-TOF MS | <5% | Cozzolino et al. [51] |
β-lactoglobulin | ||||
Fresh cow milk with powdered milk | α-lactalbumin | _ | ||
β-lactoglobulin | ||||
Goat milk with cow milk | β-lactoglobulin | ESI-MS | 5% | Chen et al. [101] |
Water buffalo milk and mozzarella cheese with cow milk | β-lactoglobulin | ESI-MS | _ | Czerwenka et al. [102] |
Sheep and goat milks with cow milk | αs1-casein | MALDI-TOF MS | 5% | Calvano et al. [103] |
αs2-casein | ||||
β-casein | ||||
κ-casein | ||||
β-lactoglobulin | ||||
Donkey milk with bovine or caprine milk | α-lactalbumin | MALDI-TOF MS | 0.5-2% | Cunsolo et al. [104] |
β-lactoglobulin | ||||
Mozzarella cheese made with bovine milk | β-casein | ESI-Q-TOF MS/MS | _ | Russo et al. [105] |
Ricotta cheese made with bovine milk | β-lactoglobulin | MALDI-TOF MS | 5% | Russo et al. [106] |
Fresh cow milk with powdered cow milk | αs1-casein | MALDI-TOF MS | <1% | Calvano et al. [107] |
αs2-casein | ||||
β-casein | ||||
κ-casein | ||||
α-lactalbumin | ||||
β-lactoglobulin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agregán, R.; Echegaray, N.; López-Pedrouso, M.; Kharabsheh, R.; Franco, D.; Lorenzo, J.M. Proteomic Advances in Milk and Dairy Products. Molecules 2021, 26, 3832. https://doi.org/10.3390/molecules26133832
Agregán R, Echegaray N, López-Pedrouso M, Kharabsheh R, Franco D, Lorenzo JM. Proteomic Advances in Milk and Dairy Products. Molecules. 2021; 26(13):3832. https://doi.org/10.3390/molecules26133832
Chicago/Turabian StyleAgregán, Rubén, Noemí Echegaray, María López-Pedrouso, Radwan Kharabsheh, Daniel Franco, and José M. Lorenzo. 2021. "Proteomic Advances in Milk and Dairy Products" Molecules 26, no. 13: 3832. https://doi.org/10.3390/molecules26133832
APA StyleAgregán, R., Echegaray, N., López-Pedrouso, M., Kharabsheh, R., Franco, D., & Lorenzo, J. M. (2021). Proteomic Advances in Milk and Dairy Products. Molecules, 26(13), 3832. https://doi.org/10.3390/molecules26133832