A Spectroscopic Validation of the Improved Lennard–Jones Model
Abstract
:1. Introduction
2. Methodologies
3. Results and Discussions
3.1. Equilibrium Distances, Dissociation Energies and Potential Energy Curves
3.2. Rovibrational Energies, Spectroscopic Constants, and Lifetime
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statements
Acknowledgments
Conflicts of Interest
Sample Availability:Samples of the compounds are not available from the authors. |
References
- Maitland, G.; Rigby, M.; Smith, E.; Wakeham, W.; Henderson, D. Intermolecular forces: Their origin and determination. Phys. Today 1983, 36, 57. [Google Scholar] [CrossRef]
- Jones, J.E. On the determination of molecular fields.—ii. from the equation of state of a gas. Proc. R. Soc. Lond. A 1924, 106, 463–477. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces: Their Origin and Determination; Academic Press: London, UK, 1985. [Google Scholar]
- Farrar, J.; Lee, Y.; Goldman, V.; Klein, M. Neon interatomic potentials from scattering data and crystalline properties. Chem. Phys. Lett. 1973, 19, 359–362. [Google Scholar] [CrossRef]
- Siska, P.E.; Parson, J.M.; Schafer, T.P.; Lee, Y.T. Intermolecular potentials from crossed beam differential elastic scattering measurements. III. He+ He and Ne+ Ne. J. Chem. Phys. 1971, 55, 5762–5770. [Google Scholar] [CrossRef]
- Simons, G.; Parr, R.G.; Finlan, J.M. New alternative to the Dunham potential for diatomic molecules. J. Chem. Phys. 1973, 59, 3229–3234. [Google Scholar] [CrossRef]
- Bickes, R.W.; Bernstein, R.B. The Simons-Parr-Finlan modified Dunham expansion: A generalized potential model for the analysis of differential elastic molecular beam scattering cross sections. Chem. Phys. Lett. 1974, 26, 457–462. [Google Scholar] [CrossRef]
- Bickes, R.W.; Bernstein, R.B. The SPF–Dunham expansion for the potential well: A regression model for systematic analysis of differential elastic beam scattering cross sections. J. Chem. Phys. 1977, 66, 2408–2420. [Google Scholar] [CrossRef]
- Hepburn, J.; Scoles, G.; Penco, R. A simple but reliable method for the prediction of intermolecular potentials. Chem. Phys. Lett. 1975, 36, 451–456. [Google Scholar] [CrossRef]
- Smith, K.M.; Rulis, A.M.; Scoles, G.; Aziz, R.A.; Nain, V. Intermolecular forces in mixtures of helium with the heavier noble gases. J. Chem. Phys. 1977, 67, 152–163. [Google Scholar] [CrossRef]
- Aziz, R.A.; Chen, H.H. An accurate intermolecular potential for argon. J. Chem. Phys. 1977, 67, 5719–5726. [Google Scholar] [CrossRef]
- Douketis, C.; Scoles, G.; Marchetti, S.; Zen, M.; Thakkar, A.J. Intermolecular forces via hybrid hartree–fock–scf plus damped dispersion (hfd) energy calculations. An improved spherical model . J. Chem. Phys. 1982, 76, 3057–3063. [Google Scholar]
- Aziz, R.A.; Meath, W.J.; Allnatt, A.R. On the ne-ne potential-energy curve and related properties. Chem. Phys. 1983, 78, 295–309. [Google Scholar] [CrossRef]
- Dham, A.K.; Allnatt, A.R.; Meath, W.J.; Aziz, R.A. The kr-kr potential energy curve and related physical properties; the xc and hfd-b potential models. Mol. Phys. 1989, 67, 1291–1307. [Google Scholar] [CrossRef]
- Tang, K.T.; Toennies, J.P. An improved simple model for the van der waals potential based on universal damping functions for the dispersion coefficients. J. Chem. Phys. 1984, 80, 3726–3741. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Böhm, H.J.; Brode, S.; Tang, K.T.; Toennies, J.P. Interaction potentials for alkali ion–rare gas and halogen ion–rare gas systems. J. Chem. Phys. 1988, 88, 6290–6302. [Google Scholar] [CrossRef]
- Nyeland, C.; Toennies, J.P. Modelling of repulsive potentials from charge density distributions: A new site-site model applied to inert gas atoms with the diatomic molecules H2, N2, O2. Chem. Phys. 1988, 122, 337–346. [Google Scholar] [CrossRef]
- Pirani, F.; Albertı, M.; Castro, A.; Teixidor, M.M.; Cappelletti, D. Atom–bond pair-wise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 2004, 394, 37–44. [Google Scholar] [CrossRef]
- Maitland, G.C.; Smith, E.B. A simplified representation of intermolecular potential energy. Chem. Phys. Lett. 1973, 22, 443–446. [Google Scholar] [CrossRef]
- Pirani, F.; Brizi, S.; Roncaratti, L.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Beyond the lennard-jones model: A simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. PCCP 2008, 10, 5489–5503. [Google Scholar] [CrossRef]
- Nunzi, F.; Pannacci, G.; Tarantelli, F.; Belpassi, L.; Cappelletti, D.; Falcinelli, S.; Pirani, F. Leading interaction components in the structure and reactivity of noble gases compounds. Molecules 2020, 25, 2367. [Google Scholar] [CrossRef]
- Cappelletti, D.; Ronca, E.; Belpassi, L.; Tarantelli, F.; Pirani, F. Revealing Charge-Transfer Effects in Gas-Phase Water Chemistry. Acc. Chem. Res. 2012, 45, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Rittby, M.; Bartlett, R.J. An open-shell spin-restricted coupled cluster method: Application to ionization potentials in nitrogen. J. Phys. Chem. 1988, 92, 3033–3036. [Google Scholar] [CrossRef]
- Watts, J.D.; Gauss, J.; Bartlett, R.J. Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: Mbpt(4), ccsd+ t (ccsd), ccsd (t), and qcisd (t). Chem. Phys. Lett. 1992, 200, 1–7. [Google Scholar] [CrossRef]
- Kállay, M.; Surján, P.R. Higher excitations in coupled-cluster theory. J. Chem. Phys. 2001, 115, 2945–2954. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.A.; Woon, D.E.; Dunning, T.H., Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2 → H2 + H reaction. J. Chem. Phys. 1994, 100, 7410–7415. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Ochterski, J.W.; Petersson, G.A.; Montgomery, J.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1996, 104, 2598–2619. [Google Scholar] [CrossRef]
- Petersson, G.A.; Malick, D.K.; Wilson, W.G.; Ochterski, J.W.; Montgomery, J.A.; Frisch, M.J. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys. 1998, 109, 10570–10579. [Google Scholar] [CrossRef]
- Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 1988, 88, 563–594. [Google Scholar] [CrossRef]
- Pyykkö, P. Relativistic effects in chemistry: More common than you thought. Annu. Rev. Phys. Chem. 2012, 63, 45–64. [Google Scholar] [CrossRef]
- Autschbach, J. Perspective: Relativistic effects. J. Chem. Phys. 2012, 136, 150902. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, R.; Blomqvist, A.; Larsson, P.; Pyykkö, P.; Zaleski-Ejgierd, P. Relativity and the lead-acid battery. Phys. Rev. Lett. 2011, 106, 018301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolg, M. Relativistic effective core potentials. In Theoretical and Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2002; Volume 11, pp. 793–862. [Google Scholar]
- Dolg, M.; Cao, X. Relativistic pseudopotentials: Their development and scope of applications. Chem. Rev. 2012, 112, 403–480. [Google Scholar] [CrossRef]
- Peterson, K.A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. ii. small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119, 11113–11123. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian~09 Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Prudente, F.V.; Costa, L.S.; Neto, J.J.S. Discrete variable representation and negative imaginary potential to study metastable states and photodissociation processes. Application to diatomic and triatomic molecules. J. Mol. Struct. Theochem 1997, 394, 169–180. [Google Scholar] [CrossRef]
- Cunha, W.F.; Oliveira, R.M.; Roncaratti, L.F.; Martins, J.B.L.; Silva, G.M.; Gargano, R. Rovibrational energies and spectroscopic constants for H2O-Ng complexes. J. Mol. Model. 2014, 20, 2498. [Google Scholar] [CrossRef] [PubMed]
- Dunham, J.L. The energy levels of a rotating vibrator. Phys. Rev. 1932, 41, 721–731. [Google Scholar] [CrossRef]
- Slater, N.B. The rates of unimolecular reactions in gases. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1939; Volume 35, pp. 56–69. [Google Scholar]
- Laidler, K.L. Theories of Chemical Reaction Rates; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Goll, E.; Werner, H.J.; Stoll, H. A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. Phys. Chem. Chem. Phys. 2005, 7, 3917–3923. [Google Scholar] [CrossRef]
- Danielson, L.J.; Keil, M. Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits. J. Chem. Phys. 1988, 88, 851–870. [Google Scholar] [CrossRef]
- Powell, M.J.D. A method for minimizing a sum of squares of non-linear functions without calculating derivatives. Comput. J. 1965, 7, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, J.F.; Wang, F.Y.H. Does He2 exist? J. Chin. Chem. Soc. 1965, 38, 425–427. [Google Scholar] [CrossRef]
- Aziz, R.A.; Slaman, M.J. An examination of ab initio results for the helium potential energy curve. J. Chem. Phys. 1991, 94, 8047–8053. [Google Scholar] [CrossRef]
- Tang, K.T.; Toennies, J.P.; Yiu, C.L. Accurate analytical he-he van der waals potential based on perturbation theory. Phys. Rev. Lett. 1995, 744, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Diomede, P.; Laricchiuta, A.; Colonna, G.; Capitelli, M.; Ascenzi, D.; Scotoni, M.; Tosi, P.; Pirani, F. From microscopic to macroscopic modeling of supersonic seeded atomic beam. Lect. Notes Comput. Sci. 2008, 5072, 1131–1140. [Google Scholar]
- Luo, F.; McBane, G.C.; Kim, G.; Giese, C.F.; Gentry, W.R. The weakest bond:Experimental observation of helium dimer. J. Chem. Phys. 1993, 98, 3564–3567. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Giese, C.F.; Gentry, W.R. Direct measurement of the size of the helium dimer. J. Chem. Phys. 1996, 104, 1151–1154. [Google Scholar] [CrossRef]
- Schöllkopf, W.; Toennies, J.P. Nondestructive Mass selection of Small van der Walls Clusters. Science 1994, 266, 1345–1348. [Google Scholar] [CrossRef] [Green Version]
- Wolfgang, R. Energy and chemical reaction. ii. intermediate complexes vs. direct mechanisms. Acc. Chem. Res. 1970, 3, 48–54. [Google Scholar] [CrossRef]
Molecules | aug-cc-pVQZ | aug-cc-pV5Z | CBS | Exp. [46] | Exp. [20] | Exp. [47] |
---|---|---|---|---|---|---|
He | 3.01 | 2.99 | 2.97 | 2.97 | – | – |
He-Ne | 3.07 | 3.05 | 3.01 | 3.03 | – | – |
He-Ar | 3.54 | 3.51 | 3.49 | 3.48 | – | 3.48 |
He-Kr | 3.75 | 3.72 | 3.70 | 3.69 | – | 3.70 |
He-Xe | 4.04 | 4.01 | 4.00 | 3.98 | 3.99 | 4.00 |
He-Rn | 4.16 | 4.13 | 4.10 | – | – | – |
Ne | 3.15 | 3.13 | 3.10 | 3.09 | 3.09 | – |
Ne-Ar | 3.55 | 3.52 | 3.48 | 3.49 | 3.52 | – |
Ne-Kr | 3.72 | 3.69 | 3.65 | 3.62 | 3.66 | – |
Ne-Xe | 3.96 | 3.9 | 3.90 | 3.86 | 3.88 | – |
Ne-Rn | 4.06 | 4.02 | 3.98 | – | – | – |
Ar | 3.83 | 3.80 | 3.75 | 3.76 | 3.76 | – |
Ar-Kr | 3.96 | 3.94 | 3.90 | 3.88 | 3.91 | – |
Ar-Xe | 4.16 | 4.13 | 4.11 | 4.07 | 4.10 | – |
Ar-Rn | 4.23 | 4.20 | 4.16 | – | – | – |
Kr | 4.09 | 4.06 | 4.04 | 4.01 | 4.01 | – |
Kr-Xe | 4.27 | 4.25 | 4.22 | 4.17 | 4.20 | – |
Kr-Rn | 4.34 | 4.31 | 4.27 | – | – | – |
Xe | 4.44 | 4.41 | 4.38 | 4.36 | 4.35 | – |
Xe-Rn | 4.49 | 4.46 | 4.43 | – | – | – |
Rn | 4.54 | 4.50 | 4.47 | – | – | – |
Molecules | aug-cc-pVQZ | aug-cc-pV5Z | CBS | Exp. [46] | Exp. [20] | Exp. [47] |
---|---|---|---|---|---|---|
He | 0.806 | 0.849 | 0.914 | 0.944 | – | – |
He-Ne | 1.522 | 1.655 | 1.893 | 1.782 | – | – |
He-Ar | 2.204 | 2.373 | 2.599 | 2.492 | – | 2.59 |
He-Kr | 2.254 | 2.429 | 2.638 | 2.478 | – | 2.67 |
He-Xe | 2.172 | 2.349 | 2.551 | 2.356 | 2.624 | 2.64 |
He-Rn | 2.138 | 2.323 | 2.536 | – | – | – |
Ne | 2.879 | 3.199 | 3.750 | 3.641 | 3.660 | – |
Ne-Ar | 4.656 | 5.135 | 5.846 | 5.823 | 5.740 | – |
Ne-Kr | 5.017 | 5.536 | 6.269 | 6.169 | 6.160 | – |
Ne-Xe | 5.152 | 5.711 | 6.493 | 6.395 | 6.350 | – |
Ne-Rn | 5.259 | 5.854 | 6.740 | – | – | – |
Ar | 10.295 | 11.239 | 12.357 | 12.343 | 12.370 | – |
Ar-Kr | 12.119 | 13.165 | 14.373 | 15.658 | 14.330 | – |
Ar-Xe | 13.770 | 14.993 | 16.410 | 16.253 | 16.090 | – |
Ar-Rn | 14.758 | 16.100 | 17.632 | – | – | – |
Kr | 14.648 | 15.782 | 17.048 | 17.339 | 17.300 | – |
Kr-Xe | 17.159 | 18.504 | 20.005 | 20.120 | 19.950 | – |
Kr-Rn | 18.690 | 20.209 | 21.814 | – | – | – |
Xe | 20.878 | 22.501 | 24.307 | 24.327 | 24.200 | – |
Xe-Rn | 23.220 | 25.019 | 26.970 | – | – | – |
Rn | 26.222 | 28.220 | 30.320 | – | – | – |
Molecules | aug-cc-pVQZ | aug-cc-pV5Z | CBS |
---|---|---|---|
He | 8.67 | 8.74 | 8.68 |
He-Ne | 9.15 | 8.87 | 8.65 |
He-Ar | 9.15 | 9.31 | 8.94 |
He-Kr | 9.26 | 9.32 | 8.89 |
He-Xe | 9.58 | 9.40 | – |
He-Rn | 9.60 | 9.28 | 8.96 |
Ne | 9.70 | 9.18 | 8.33 |
Ne-Ar | 9.40 | 9.34 | 9.23 |
Ne-Kr | 9.63 | 9.49 | 9.27 |
Ne-Xe | 9.78 | 9.46 | 8.71 |
Ne-Rn | 9.49 | 9.31 | 8.85 |
Ar | 9.15 | 9.02 | 9.74 |
Ar-Kr | 9.37 | 9.00 | 9.22 |
Ar-Xe | 9.35 | 9.06 | 8.48 |
Ar-Rn | 9.12 | 8.83 | 8.84 |
Kr-Kr | 9.22 | 9.20 | 8.60 |
Kr-Xe | 9.40 | 8.80 | 8.71 |
Kr-Rn | 8.89 | 8.68 | 8.79 |
Xe | 9.24 | 9.03 | 8.74 |
Xe-Rn | 9.17 | 8.75 | 8.40 |
Rn | 8.71 | 8.68 | 8.19 |
Molecules | Methods | |||||
---|---|---|---|---|---|---|
Exp. [46] | 33.2 | – | – | – | – | |
D-ILJ- | 33.64 | – | – | – | – | |
He | D-ILJ-CBS- | 33.13 | – | – | – | – |
D-ILJ-CBS-FIT | 32.72 | – | – | – | – | |
D-LJ-CBS | 31.83 | – | – | – | – | |
Exp. [46] | 28.5 | – | – | – | – | |
D-ILJ- | 28.35 | 7.75 | 1.8 × 10 | 3.6 × 10 | 4.0 × 10 | |
Ne | D-ILJ-CBS- | 28.64 | 7.71 | 1.8 × 10 | 3.6 × 10 | 4.0 × 10 |
D-ILJ-CBS-FIT | 27.89 | 7.16 | 1.1 × 10 | 3.5 × 10 | 3.0 × 10 | |
D-LJ-CBS | 27.51 | 7.98 | 5.9 × 10 | 3.9 × 10 | 3.5 × 10 | |
Exp. [46] | 30.9 | – | – | – | – | |
D-ILJ- | 30.54 | 2.67 | 3.8 × 10 | 3.0 × 10 | 2.0 × 10 | |
Ar | DVR-ILJ-CBS-9 | 30.60 | 2.69 | 3.8 × 10 | 3.9 × 10 | 2.4 × 10 |
D-ILJ-CBS- | 30.54 | 2.63 | 2.0 × 10 | 4.0 × 10 | 1.7 × 10 | |
DVR-ILJ-CBS-FIT | 31.48 | 2.91 | 5.2 × 10 | 4.0 × 10 | 2.5 × 10 | |
D-ILJ-CBS-FIT | 31.40 | 2.84 | 2.9 × 10 | 4.1 × 10 | 1.8 × 10 | |
DVR-LJ-CBS | 29.37 | 2.75 | 7.5 × 10 | 4.3 × 10 | 1.5 × 10 | |
D-LJ-CBS | 29.37 | 2.73 | 6.6 × 10 | 4.4 × 10 | 1.2 × 10 | |
Exp. [46] | 23.6 | – | – | – | – | |
D-ILJ- | 23.33 | 1.09 | 4.0 × 10 | 9.0 × 10 | 2.1 × 10 | |
Kr | DVR-ILJ-CBS- | 22.99 | 1.08 | 6.1 × 10 | 9.0 × 10 | 2.5 × 10 |
D-ILJ-CBS- | 22.99 | 1.08 | 4.5 × 10 | 9.0 × 10 | 2.1 × 10 | |
DVR-ILJ-CBS-FIT | 22.64 | 1.04 | 4.9 × 10 | 8.9 × 10 | 2.4 × 10 | |
D-ILJ-CBS-FIT | 22.63 | 1.03 | 3.5 × 10 | 8.9 × 10 | 2.0 × 10 | |
DVR-LJ-CBS | 22.09 | 1.12 | 1.5 × 10 | 9.8 × 10 | 1.7 × 10 | |
D-LJ-CBS | 22.09 | 1.12 | 1.4 × 10 | 9.9 × 10 | 1.5 × 10 | |
Exp. [46] | 20.9 | – | – | – | – | |
D-ILJ- | 20.33 | 0.59 | 1.0 × 10 | 3.0 × 10 | 4.5 × 10 | |
Xe | DVR-ILJ-CBS- | 20.24 | 0.58 | 1.8 × 10 | 3.0 × 10 | 4.9 × 10 |
D-ILJ-CBS- | 20.24 | 0.58 | 1.5 × 10 | 3.0 × 10 | 4.3 × 10 | |
DVR-ILJ-CBS-FIT | 20.03 | 0.57 | 1.5 × 10 | 3.0 × 10 | 4.8 × 10 | |
D-ILJ-CBS-FIT | 20.03 | 0.57 | 1.3 × 10 | 3.0 × 10 | 4.2 × 10 | |
DVR-LJ-CBS | 18.24 | 0.59 | 5.3 × 10 | 3.3 × 10 | 3.5 × 10 | |
D-LJ-CBS | 19.44 | 0.60 | 4.9 × 10 | 3.3 × 10 | 3.2 × 10 | |
DVR-ILJ-CBS- | 16.36 | 0.32 | 6.9 × 10 | 1.1 × 10 | 1.2 × 10 | |
Rn | D-ILJ-CBS- | 16.31 | 0.32 | 5.9 × 10 | 1.1 × 10 | 1.1 × 10 |
DVR-ILJ-CBS-FIT | 15.87 | 0.30 | 4.1 × 10 | 1.1 × 10 | 1.2 × 10 | |
D-ILJ-CBS-FIT | 16.11 | 0.31 | 4.9 × 10 | 1.1 × 10 | 1.1 × 10 | |
DVR-LJ-CBS | 15.67 | 0.34 | 1.9 × 10 | 1.2 × 10 | 9.0 × 10 | |
D-LJ-CBS | 16.36 | 0.34 | 1.9 × 10 | 1.2 × 10 | 8.4 × 10 |
Molecules | Methods | |||||
---|---|---|---|---|---|---|
Exp. [46] | 35.0 | – | – | – | – | |
D-ILJ- | 35.57 | 25.79 | 1.46 | 2.9 × 10 | 9.8 × 10 | |
He-Ne | D-ILJ-CBS- | 36.42 | 26.10 | 1.47 | 2.9 × 10 | 9.7 × 10 |
D-ILJ-CBS-FIT | 35.93 | 25.10 | 1.19 | 2.9 × 10 | 9.0 × 10 | |
D-LJ-CBS | 34.99 | 26.94 | 0.32 | 3.1 × 10 | 7.2 × 10 | |
Exp. [46] | 34.8 | – | – | – | – | |
D-ILJ- | 35.31 | 17.36 | 7.1 × 10 | 1.4 × 10 | 3.3 × 10 | |
He-Ar | D-ILJ-CBS- | 35.27 | 17.26 | 7.0 × 10 | 1.4 × 10 | 3.3 × 10 |
D-ILJ-CBS-FIT | 35.18 | 17.15 | 6.8 × 10 | 1.4 × 10 | 3.2 × 10 | |
D-LJ-CBS | 33.88 | 17.85 | 2.29 | 1.5 × 10 | 2.4 × 10 | |
Exp. [46] | 32.0 | – | – | – | – | |
D-ILJ- | 32.90 | 14.54 | 5.4 × 10 | 1.0 × 10 | 2.3 × 10 | |
He-Kr | D-ILJ-CBS- | 32.70 | 14.54 | 5.4 × 10 | 1.0 × 10 | 2.3 × 10 |
D-ILJ-CBS-FIT | 32.57 | 14.37 | 5.1 × 10 | 1.0 × 10 | 2.3 × 10 | |
D-LJ-CBS | 31.42 | 15.04 | 1.77 | 1.1 × 10 | 1.7 × 10 | |
Exp. [46] | 29.1 | – | – | – | – | |
D-ILJ- | 29.97 | 12.23 | 4.0 × 10 | 8.4 × 10 | 1.6 × 10 | |
He-Xe | D-ILJ-CBS- | 29.50 | 12.20 | 4.3 × 10 | 8.6 × 10 | 1.7 × 10 |
D-ILJ-5z-FIT | 28.67 | 12.69 | 5.4 × 10 | 9.0 × 10 | 1.9 × 10 | |
D-LJ-CBS | 28.34 | 12.62 | 1.39 | 9.4 × 10 | 1.2 × 10 | |
Exp. | – | – | – | – | – | |
He-Rn | D-ILJ-CBS- | 28.52 | 11.45 | 3.9 × 10 | 7.8 × 10 | 1.5 × 10 |
D-ILJ-CBS-FIT | 28.48 | 11.40 | 3.8 × 10 | 7.8 × 10 | 1.5 × 10 | |
D-LJ-CBS | 27.40 | 11.85 | 1.27 | 8.5 × 10 | 1.1 × 10 | |
Exp. [46] | 28.2 | – | – | – | – | |
D-ILJ- | 27.07 | 4.47 | 6.5 × 10 | 1.3 × 10 | 1.0 × 10 | |
DVR-ILJ-CBS- | 28.47 | 5.29 | 2.7 × 10 | 4.2 × 10 | 7.6 × 10 | |
Ne-Ar | D-ILJ-CBS- | 27.63 | 4.57 | 6.7 × 10 | 1.3 × 10 | 1.0 × 10 |
DVR-ILJ-CBS-FIT | 28.74 | 5.43 | 2.9 × 10 | 4.3 × 10 | 7.6 × 10 | |
D-ILJ-CBS-FIT | 27.87 | 4.69 | 7.6 × 10 | 1.3 × 10 | 1.0 × 10 | |
DVR-LJ-CBS | 26.74 | 4.92 | 2.8 × 10 | 5.0 × 10 | 4.1 × 10 | |
D-LJ-CBS | 26.55 | 4.74 | 2.1 × 10 | 1.4 × 10 | 8.1 × 10 | |
Exp. [46] | 26.2 | – | – | – | – | |
D-ILJ- | 24.40 | 3.40 | 4.2 × 10 | 8.0 × 10 | 5.0 × 10 | |
DVR-ILJ-CBS- | 25.12 | 3.72 | 1.3 × 10 | 2.8 × 10 | 3.6 × 10 | |
Ne-Kr | D-ILJ-CBS- | 24.77 | 3.42 | 4.2 × 10 | 8.3 × 10 | 5.7 × 10 |
DVR-ILJ-CBS-FIT | 25.39 | 3.84 | 1.4 × 10 | 2.8 × 10 | 3.6 × 10 | |
D-ILJ-CBS-FIT | 25.02 | 3.52 | 4.8 × 10 | 8.0 × 10 | 5.0 × 10 | |
DVR-LJ-CBS | 23.89 | 3.63 | 1.7 × 10 | 3.2 × 10 | 2.0 × 10 | |
D-LJ-CBS | 23.80 | 3.54 | 1.3 × 10 | 9.1 × 10 | 4.2 × 10 | |
Exp. [46] | 24.3 | – | – | – | – | |
D-ILJ- | 22.58 | 2.81 | 3.0 × 10 | 6.0 × 10 | 3.0 × 10 | |
DVR-ILJ-CBS- | 22.94 | 2.95 | 8.2 × 10 | 5.7 × 10 | 6.0 × 10 | |
Ne-Xe | D-ILJ-CBS- | 22.75 | 2.78 | 3.0 × 10 | 6.0 × 10 | 3.6 × 10 |
DVR-ILJ-CBS-FIT | 23.36 | 3.11 | 9.7 × 10 | 5.8 × 10 | 6.1 × 10 | |
D-ILJ-CBS-FIT | 22.49 | 2.70 | 2.5 × 10 | 6.0 × 10 | 3.0 × 10 | |
DVR-LJ-CBS | 21.91 | 2.94 | 1.2 × 10 | 6.5 × 10 | 3.4 × 10 | |
D-LJ-CBS | 21.86 | 2.88 | 9.8 × 10 | 6.6 × 10 | 2.7 × 10 |
Molecules | Methods | |||||
---|---|---|---|---|---|---|
Exp. | – | – | – | – | – | |
D-ILJ- | – | – | – | – | – | |
DVR-ILJ-CBS- | 22.39 | 2.66 | 5.8 × 10 | 5.1 × 10 | 4.4 × 10 | |
Ne-Rn | D-ILJ-CBS- | 22.08 | 2.53 | 2.5 × 10 | 5.1 × 10 | 2.9 × 10 |
DVR-ILJ-CBS-FIT | 22.27 | 2.61 | 5.4 × 10 | 5.1 × 10 | 4.4 × 10 | |
D-ILJ-CBS-FIT | 21.96 | 2.49 | 2.3 × 10 | 5.1 × 10 | 2.8 × 10 | |
DVR-LJ-CBS | 21.42 | 2.68 | 9.7 × 10 | 5.8 × 10 | 2.5 × 10 | |
D-LJ-CBS | 21.22 | 2.62 | 8.3 × 10 | 5.6 × 10 | 2.1 × 10 | |
Exp. [46] | 27.9 | – | – | – | – | |
D-ILJ- | 27.10 | 1.79 | 1.0 × 10 | 2.0 × 10 | 6.8 × 10 | |
DVR-ILJ-CBS- | 27.23 | 1.81 | 1.6 × 10 | 2.0 × 10 | 9.0 × 10 | |
Ar-Kr | D-ILJ-CBS- | 27.22 | 1.80 | 1.0 × 10 | 2.1 × 10 | 6.9 × 10 |
DVR-ILJ-CBS-FIT | 28.00 | 1.96 | 2.3 × 10 | 2.0 × 10 | 9.4 × 10 | |
D-ILJ-CBS-FIT | 27.44 | 1.84 | 1.0 × 10 | 2.0 × 10 | 7.0 × 10 | |
DVR-LJ-CBS | 26.16 | 1.87 | 3.8 × 10 | 2.3 × 10 | 5.8 × 10 | |
D-LJ-CBS | 26.15 | 1.86 | 3.4 × 10 | 2.3 × 10 | 5.1 × 10 | |
Exp. [46] | 27.1 | – | – | – | – | |
D-ILJ- | 25.71 | 1.43 | 7.0 × 10 | 1.0 × 10 | 3.9 × 10 | |
DVR-ILJ-CBS- | 25.94 | 1.44 | 1.0 × 10 | 1.3 × 10 | 4.7 × 10 | |
Ar-Xe | D-ILJ-CBS- | 25.93 | 1.43 | 7.0 × 10 | 1.4 × 10 | 3.8 × 10 |
DVR-ILJ-CBS-FIT | 25.42 | 1.36 | 7.5 × 10 | 1.0 × 10 | 4.6 × 10 | |
D-ILJ-CBS-FIT | 25.41 | 1.35 | 5.0 × 10 | 1.0 × 10 | 3.6 × 10 | |
DVR-LJ-CBS | 24.92 | 1.48 | 2.4 × 10 | 1.5 × 10 | 3.1 × 10 | |
D-LJ-CBS | 24.92 | 1.48 | 2.2 × 10 | 1.5 × 10 | 2.8 × 10 | |
Exp. | – | – | – | – | – | |
D-ILJ- | – | – | – | – | – | |
DVR-ILJ-CBS- | 22.76 | 1.25 | 9.5 × 10 | 1.2 × 10 | 1.1 × 10 | |
Ar-Rn | D-ILJ-CBS- | 25.26 | 1.26 | 5.6 × 10 | 1.1 × 10 | 2.7 × 10 |
DVR-ILJ-CBS-FIT | 22.64 | 1.23 | 8.7 × 10 | 1.1 × 10 | 3.8 × 10 | |
D-ILJ-CBS-FIT | 25.10 | 1.24 | 5.1 × 10 | 1.1 × 10 | 2.7 × 10 | |
DVR-LJ-CBS | 21.71 | 1.25 | 2.1 × 10 | 1.3 × 10 | 2.4 × 10 | |
D-LJ-CBS | 24.27 | 1.30 | 1.8 × 10 | 1.2 × 10 | 2.0 × 10 | |
Exp. [46] | 22.7 | – | – | – | – | |
D-ILJ- | 21.65 | 0.82 | 2.0 × 10 | 5.0 × 10 | 1.0 × 10 | |
DVR-ILJ-CBS- | 21.58 | 0.81 | 3.4 × 10 | 1.9 × 10 | 4.2 × 10 | |
Kr-Xe | D-ILJ-CBS- | 21.58 | 0.81 | 2.7 × 10 | 5.4 × 10 | 1.0 × 10 |
DVR-ILJ-CBS-FIT | 21.34 | 0.79 | 2.0 × 10 | 1.9 × 10 | 4.1 × 10 | |
D-ILJ-CBS-FIT | 21.34 | 0.78 | 2.0 × 10 | 5.0 × 10 | 9.9 × 10 | |
DVR-LJ-CBS | 19.08 | 0.81 | 9.7 × 10 | 7.4 × 10 | 1.0 × 10 | |
D-LJ-CBS | 20.73 | 0.84 | 8.8 × 10 | 5.9 × 10 | 7.6 × 10 | |
Exp. | – | – | – | – | – | |
D-ILJ- | – | – | – | – | – | |
DVR-ILJ-CBS- | 19.09 | 0.66 | 2.6 × 10 | 3.9 × 10 | 7.8 × 10 | |
Kr-Rn | D-ILJ-CBS- | 20.42 | 0.66 | 1.9 × 10 | 3.8 × 10 | 6.2 × 10 |
DVR-ILJ-CBS-FIT | 18.95 | 0.64 | 2.4 × 10 | 4.0 × 10 | 7.7 × 10 | |
D-ILJ-CBS-FIT | 20.25 | 0.65 | 1.7 × 10 | 3.8 × 10 | 6.1 × 10 | |
DVR-LJ-CBS | 18.25 | 0.67 | 6.8 × 10 | 4.3 × 10 | 5.2 × 10 | |
D-LJ-CBS | 19.62 | 0.69 | 6.3 × 10 | 4.2 × 10 | 4.7 × 10 | |
Exp. | – | – | – | – | – | |
D-ILJ- | – | – | – | – | – | |
DVR-ILJ-CBS- | 17.88 | 0.45 | 1.2 × 10 | 2.0 × 10 | 2.8 × 10 | |
Xe-Rn | D-ILJ-CBS- | 17.98 | 0.45 | 1.0 × 10 | 2.0 × 10 | 2.5 × 10 |
DVR-ILJ-CBS-FIT | 17.50 | 0.42 | 8.6 × 10 | 1.9 × 10 | 2.6 × 10 | |
D-ILJ-CBS-FIT | 17.81 | 0.43 | 8.7 × 10 | 2.0 × 10 | 2.4 × 10 | |
DVR-LJ-CBS | 17.12 | 0.46 | 3.4 × 10 | 2.1 × 10 | 1.9 × 10 | |
D-LJ-CBS | 18.06 | 0.47 | 3.2 × 10 | 2.1 × 10 | 1.7 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, R.M.; Machado de Macedo, L.G.; da Cunha, T.F.; Pirani, F.; Gargano, R. A Spectroscopic Validation of the Improved Lennard–Jones Model. Molecules 2021, 26, 3906. https://doi.org/10.3390/molecules26133906
de Oliveira RM, Machado de Macedo LG, da Cunha TF, Pirani F, Gargano R. A Spectroscopic Validation of the Improved Lennard–Jones Model. Molecules. 2021; 26(13):3906. https://doi.org/10.3390/molecules26133906
Chicago/Turabian Stylede Oliveira, Rhuiago Mendes, Luiz Guilherme Machado de Macedo, Thiago Ferreira da Cunha, Fernando Pirani, and Ricardo Gargano. 2021. "A Spectroscopic Validation of the Improved Lennard–Jones Model" Molecules 26, no. 13: 3906. https://doi.org/10.3390/molecules26133906
APA Stylede Oliveira, R. M., Machado de Macedo, L. G., da Cunha, T. F., Pirani, F., & Gargano, R. (2021). A Spectroscopic Validation of the Improved Lennard–Jones Model. Molecules, 26(13), 3906. https://doi.org/10.3390/molecules26133906