Structural Characterization and Assessment of Anti-Inflammatory and Anti-Tyrosinase Activities of Polyphenols from Melastoma normale
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Anti-Inflammatory Activity Assays
2.3. Tyrosinase Inhibitory Activity Assays
3. Experimental
3.1. Materials
3.2. General Experimental Procedures
3.3. Extraction and Separation
3.4. Spectroscopic Data
3.5. Acid Hydrolysis of 2–4
3.6. Anti-Inflammatory Activity
3.6.1. NO Production by LPS-Stimulated RAW 264.7 Cells
3.6.2. Cell Viability
3.7. Anti-Tyrosinase Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Alexander, A.; Maurya, J.; Swarna, S. Various aspects of inflammation and the herbal drugs that are used for the treatment of inflammation: An overview. J. Pharm. Res. 2011, 6, 1598–1600. [Google Scholar]
- Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Simultaneous determination of six isoflavones from puerariae lobatae radix by cpe-hplc and effect of puerarin on tyrosinase activity. Molecules 2020, 25, 344. [Google Scholar] [CrossRef] [Green Version]
- Mariana, L.D.F.; Freitas, M.D.M.; Maria, C.S.C.; Mariela, M.A.E.S. Effect of glucocorticoids on glyceroneogenesis in adipose tissue: A systematic review. Biochimie 2020, 168, 210–219. [Google Scholar]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V. Final report of the safety assessment of kojic acid as used in cosmetics. Int. J. Toxicol. 2010, 29, 187–213. [Google Scholar] [CrossRef]
- Zou, Z.; Shou, X.Y.; Min, J.G.; Zhou, Y.L.; Liu, H.G.; Zou, J.M. Determination of gallic acid and ellagic acid in Zhuang Medicine radix and rhizome of Melastomus normale by HPLC. Chin. Trad. Herb. Drugs 2012, 43, 2206–2208. [Google Scholar]
- Illesca, P.; Valenzuela, R.; Espinosa, A.; Echeverría, F.; Soto-Alarcon, S.; Ortiz, M.; Videla, L.A. Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed. Pharmacother. 2019, 109, 2472–2481. [Google Scholar] [CrossRef]
- Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-alpha and Nrf2 activation, and NF-kappaB down-regulation. Food Funct. 2017, 8, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of the Flora of China of Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae, 1st ed.; Science Press: Beijing, China, 1984; Volume 53, pp. 154–155. [Google Scholar]
- Yoshida, T.; Arioka, H.; Fujita, T.; Chen, X.M.; Okuda, T. Monomeric and dimeric hydrolysable tannins from two melastomataceous species. Phytochemistry 1994, 37, 863–866. [Google Scholar] [CrossRef]
- Zou, J.M.; Zhong, X.Q.; Lu, G.R. Selection and Compilation of Characteristic Chinese Herbal Medicine Resources in Guangxi, 1st ed.; Science Press: Beijing, China, 2011; pp. 273–274. [Google Scholar]
- Tang, T.X.; Zheng, H.; Liu, Y.; Qiu, X.H. Determination of water extracts of Melastoma candidum and Melastoma normale by HPLC-DAD-ESI-MS/MS. Strait Pharm. J. 2016, 28, 46–48. [Google Scholar]
- Nonaka, G.I.; Ishimaru, K.; Mihashn, K.; Iwase, Y.; Ageta, M.; Nishioka, T.; Nishioka, I. Tannins and related compounds. lxiii.: Isolation and characterization of mongolicains A and B, novel tannins from quercus and castanopsis species. Chem. Pharm. Bull. 1988, 36, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Huang, Y.Z.; Jian, L.U.; Liu, J.Q.; Huang, H.L.; Shu, J.C. Phenolic components from roots of Psidium guajava. Chin. J. Exp. Trad. Med. Formulae 2019, 25, 169–174. [Google Scholar]
- Min, B.S.; Tomiyama, M.; Ma, C.M.; Nakamura, N.; Hattori, M. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem. Pharm. Bull. 2001, 49, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.J.; Tsai, T.H.; Lin, L.C. Prenylflavonol, acylated flavonol glycosides and related compounds from Epimedium sagittatum. Phytochemistry 2007, 68, 2455–2464. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, H.Y.; Baba, M.; Okada, Y.; Okuyama, T.; Wu, L.J.; Zhan, L.B. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complem. Altern. Med. 2014, 14, 422. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.X.; Zhou, J.; Tan, N.H. The chemical constituents of Parakmeria yunnanensis. Acta Bot. Yunnanica 2001, 23, 352–356. [Google Scholar]
- Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takushi, A.; Takeda, Y. Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry 1997, 46, 943–946. [Google Scholar] [CrossRef]
- Samy, M.N.; Sugimoto, S.; Matsunami, K.; Otsuka, H.; Kamel, M.S. One new flavonoid xyloside and one new natural triterpene rhamnoside from the leaves of Syzygium grande. Phytochem. Lett. 2014, 10, 86–90. [Google Scholar] [CrossRef]
- He, R.J.; Wang, Y.F.; Li, D.P.; Huang, Y.L. Phenolic constituents from Melastoma normale. Guihaia 2020, 40, 641–647. [Google Scholar]
- Takashi, T.; Nobuko, U.; Hideo, S.; Gen-Ichiro, N.; Isao, K. Four new-C-glycosidic ellagitannins, castacrenins D-G, from japanese chestnut wood (Castanea crenata SIEB. et ZUCC.). Chem. Pharm. Bull. 1997, 45, 1751–1755. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Hatano, T.; Kuwajima, T.; Okuda, T. Oligomeric hydrolyzable tannins. Their 1H NMR spectra and partial degradation. Heterocycles 1992, 33, 463–482. [Google Scholar]
- Fujieda, M.; Tanaka, T.; Suwa, Y.; Koshimizu, S.; Kouno, I. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins. J. Agric. Food Chem. 2008, 56, 7305–7310. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Yoshida, T.; Hatano, T. Circular dichroism of hydrolysable tannins-I ellagitannins and gallotannins. Tetrahedron Lett. 1982, 23, 3937–3940. [Google Scholar] [CrossRef]
- Okuda, T.; Yoshida, T.; Hatano, T. New methods of analyzing tannins. J. Nat. Prod. 1989, 52, 1–31. [Google Scholar] [CrossRef]
- Rho, H.S.; Ghimeray, A.K.; Yoo, D.S.; Ahn, S.M.; Cho, J.Y. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules 2011, 16, 3338–3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, B.; Li, H.; Lu, H.C.; Qiu, F.; Xiong, L.; Xu, Y.H.; Wang, G.M.; Liu, X.L.; Wu, H.W. Quercetin, a flavonoid with anti-inflammatory activity, suppresses the development of abdominal aortic aneurysms in mice. Eur. J. Pharm. 2012, 690, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Kim, D.H.; Kim, M.H.; Oh, M.H.; Kim, S.R.; Park, K.J.; Lee, M.W. Flavonoid constituents in the leaves of Myrica rubra sieb. et zucc. with anti-inflammatory activity. Arch. Pharm. Res. 2013, 36, 1533–1540. [Google Scholar] [CrossRef]
- Cheng, H.L.; Zhang, L.J.; Liang, Y.H.; Hsu, Y.W.; Lee, I.J.; Liaw, C.C. Antiinflammatory and antioxidant flavonoids and phenols from Cardiospermum halicacabum. J. Trad. Comp. Med. 2013, 3, 33. [Google Scholar]
- Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int. 2017, 100, 226–233. [Google Scholar] [CrossRef]
- Kishore, N.; Twilley, D.; Analike, B.; Verma, P.; Singh, B.; Cardinali, G. Isolation of flavonoids and flavonoid glycosides from myrsine africana and their inhibitory activities against mushroom tyrosinase. J. Nat. Prod. 2018, 81, 49–56. [Google Scholar] [CrossRef]
Pos. | δC | δH | Pos. | δC | δH | Pos. | δC | δH |
---|---|---|---|---|---|---|---|---|
Glc-1 | 68.0 | 4.34 d (0.9) | HHDP-1 | 114.4 | HHDP-1″ | 116.6 | ||
2 | 80.6 | 5.11 d (0.9) | 2 | 125.0 | 2″ | 125.0 | ||
3 | 70.0 | 5.48 d (7.5) | 3 | 111.2 | 3″ | 108.6 | 6.83 s | |
4 | 70.5 | 5.48 d (7.5) | 4 | 146.4 | 4″ | 145.3 | ||
5 | 71.5 | 5.39 m | 5 | 136.4 | 5″ | 138.2 | ||
6a | 65.7 | 4.95 overlapped | 6 | 146.8 | 6″ | 146.5 | ||
6b | 3.95 dd (12.8, 2.5) | 7 | 167.6 | 7″ | 168.8 | |||
Cp-1 | 46.3 | 5.46 s | HHDP-1′ | 114.6 | HHDP-1‴ | 116.0 | ||
2 | 84.9 | 2′ | 125.0 | 2‴ | 126.5 | |||
3 | 202.9 | 3′ | 108.6 | 6.70 s | 3‴ | 108.0 | 6.60 s | |
4 | 143.8 | 4′ | 145.0 | 4‴ | 145.4 | |||
5 | 158.2 | 5′ | 138.0 | 5‴ | 138.0 | |||
6 | 163.3 | 6′ | 146.0 | 6‴ | 145.9 | |||
7 | 170.5 | 7′ | 168.9 | 7‴ | 170.1 | |||
OCH2 | 63.8 | 4.25 q (7.1) | OCH2 | 66.0 | 3.60 m; 3.52 m | |||
CH3 | 14.3 | 1.24 t (7.1) | CH3 | 15.5 | 1.16 t (7.0) |
2 | 3 | 4 | ||||
---|---|---|---|---|---|---|
Pos. | δC | δH | δC | δH | δC | δH |
Glc-1 | 92.6 | 6.15 d (8.5) | 92.6 | 6.13 d (8.5) | 92.6 | 6.13 d (8.5) |
2 | 75.9 | 5.12 dd (8.5, 9.7) | 75.9 | 5.12 m | 75.8 | 5.12 dd (8.5, 9.5) |
3 | 80.5 | 5.27 d (9.7) | 80.6 | 5.25 d (9.6) | 80.6 | 5.26 d (9.4) |
4 | 68.1 | 4.00 d (9.7) | 68.5 | 3.95 d (9.6) | 68.6 | 3.95 d (9.4) |
5 | 76.6 | 4.03 dd (5.8, 2.1) | 76.8 | 3.99 m | 76.8 | 4.00 dd (5.8, 2.1) |
6a | 64.1 | 4.64 d (11.9) | 64.2 | 4.69 d (11.0) | 64.3 | 4.73 d (12.0) |
6b | 4.53 dd (11.9, 3.7) | - | 4.45 m | - | 4.46 dd (12.0, 5.8) | |
galloyl-1 | 119.7 | - | 119.8 | - | 119.8 | - |
2 | 110.3 | 7.12 s | 110.5 | 7.10 s | 110.4 | 7.11 s |
3 | 151.5 | - | 146.6 | - | 146.6 | - |
4 | 141.3 | - | 140.7 | - | 140.7 | - |
5 | 151.5 | - | 146.6 | - | 146.6 | - |
6 | 110.3 | 7.12 s | 110.5 | 7.10 s | 110.4 | 7.11 s |
COO- | 166.2 | - | 166.2 | - | 166.1 | - |
galloyl/vanilloyl-1′ | 122.2 | - | 121.1 | - | 122.2 | - |
2′ | 110.4 | 7.11 s | 106.3 | 7.24 d (1.7) | 113.6 | 7.57d (1.8) |
3′ | 146.5 | - | 149.1 | - | 148.7 | - |
4′ | 140.7 | - | 140.7 | - | 152.8 | - |
5′ | 146.5 | - | 145.8 | - | 115.9 | 6.87 d (8.3) |
6′ | 110.4 | 7.11 s | 111.9 | 7.22 d (1.7) | 125.2 | 7.60 dd (8.3, 1.8) |
COO- | 167.7 | - | 168.0 | - | 167.9 | - |
HHDP-1 | 115.2 | - | 115.3 | - | 115.3 | - |
2 | 126.1 | - | 126.1 | - | 126.1 | - |
3 | 107.4 | 6.43 s | 107.5 | 6.43 s | 107.5 | 6.43 s |
4 | 145.7 | - | 144.9 | - | 144.9 | - |
5 | 137.3 | - | 137.4 | - | 137. 4 | - |
6 | 144.8 | - | 146.5 | - | 145.7 | - |
COO- | 170.2 | - | 170.2 | - | 170.2 | - |
HHDP-1′ | 115.3 | - | 115.4 | - | 115.4 | - |
2′ | 126.1 | - | 126.6 | - | 126.6 | - |
3′ | 107.9 | 6.72 s | 107.9 | 6.70 s | 107.9 | 6.71 s |
4′ | 144.7 | - | 144.8 | - | 144.8 | - |
5′ | 137.4 | - | 137.5 | - | 137.5 | - |
6′ | 145.7 | - | 146.1 | - | 145.8 | - |
COO- | 171.0 | - | 171.0 | - | 171.0 | - |
CH3O- | 60.8 | 3.87 s | 56.7 | 3.88 s | 56.4 | 3.90 s |
Compound | IC50 (μM) | Compound | IC50 (μM) |
---|---|---|---|
1 | 426.02 ± 11.31 | 8 | >2000.00 |
2 | 241.41 ± 6.23 | 9 | 421.23 ± 10.63 |
3 | 153.54 ± 3.63 | 10 | 76.83 ± 2.02 |
4 | 124.74 ± 3.12 | 11 | 98.24 ± 2.31 |
5 | 361.92 ± 8.81 | 12 | 904.93 ± 20.42 |
6 | 357.83 ± 9.22 | kojic acid | 100.52 ± 2.63 |
7 | 1899.34 ± 38.21 |
Reagent | T-Sample Tube | T0-Sample Background | C-DPPH Tube | C0-Solvent Background |
---|---|---|---|---|
sample | 20 µL | 20 µL | —— | —— |
pbs | —— | 10 µL | 20 µL | 30 µL |
tyrosinase | 10 µL | —— | 10 µL | —— |
L-DOPA | 40 µL | 40 µL | 40 µL | 40 µL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.-J.; Li, J.; Huang, Y.-L.; Wang, Y.-F.; Yang, B.-Y.; Liu, Z.-B.; Ge, L.; Yang, K.-D.; Li, D.-P. Structural Characterization and Assessment of Anti-Inflammatory and Anti-Tyrosinase Activities of Polyphenols from Melastoma normale. Molecules 2021, 26, 3913. https://doi.org/10.3390/molecules26133913
He R-J, Li J, Huang Y-L, Wang Y-F, Yang B-Y, Liu Z-B, Ge L, Yang K-D, Li D-P. Structural Characterization and Assessment of Anti-Inflammatory and Anti-Tyrosinase Activities of Polyphenols from Melastoma normale. Molecules. 2021; 26(13):3913. https://doi.org/10.3390/molecules26133913
Chicago/Turabian StyleHe, Rui-Jie, Jun Li, Yong-Lin Huang, Ya-Feng Wang, Bing-Yuan Yang, Zhang-Bin Liu, Li Ge, Ke-Di Yang, and Dian-Peng Li. 2021. "Structural Characterization and Assessment of Anti-Inflammatory and Anti-Tyrosinase Activities of Polyphenols from Melastoma normale" Molecules 26, no. 13: 3913. https://doi.org/10.3390/molecules26133913
APA StyleHe, R. -J., Li, J., Huang, Y. -L., Wang, Y. -F., Yang, B. -Y., Liu, Z. -B., Ge, L., Yang, K. -D., & Li, D. -P. (2021). Structural Characterization and Assessment of Anti-Inflammatory and Anti-Tyrosinase Activities of Polyphenols from Melastoma normale. Molecules, 26(13), 3913. https://doi.org/10.3390/molecules26133913