Bovine Milk Triacylglycerol Regioisomer Ratio Shows Remarkable Inter-Breed and Inter-Cow Variation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Intensity and Pattern of Fragment Ions
2.2. Complexity of Milk TAG Isomer Profile
2.3. Repeatability
2.4. Inter-Breed Variation of Regioisomer Ratios
2.5. Inter-Cow Variation of Regioisomer Ratios
3. Materials and Methods
3.1. Milk Samples
3.2. TAG Standards
3.3. Lipid Extraction
3.4. LC-MS Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Pryce, J.; Rochfort, S. Comprehensive characterization of bovine milk lipids: Triglycerides. ACS Omega 2020, 5, 12573–12582. [Google Scholar] [CrossRef]
- Jensen, R.G. Lipids in human milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef]
- Gresti, J.; Bugaut, M.; Maniongui, C.; Bezard, J. Composition of molecular species of triacylglycerols in bovine milk fat. J. Dairy Sci. 1993, 76, 1850–1869. [Google Scholar] [CrossRef]
- Fontecha, J.; Goudjil, H.; Ríos, J.J.; Fraga, M.J.; Juárez, M. Identity of the major triacylglycerols in ovine milk fat. Int. Dairy J. 2005, 15, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- López-López, A.; Castellote-Bargalló, A.I.; Campoy-Folgoso, C.; Rivero-Urgël, M.; Tormo-Carnicé, R.; Infante-Pina, D.; López-Sabater, M.C. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Hum. Dev. 2001, 65, S83–S94. [Google Scholar] [CrossRef]
- Havlicekova, Z.; Jesenak, M.; Banovcin, P.; Kuchta, M. Beta-palmitate—A natural component of human milk in supplemental milk formulas. Nutr. J. 2016, 15, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.G.; Hagerty, M.M.; McMahon, K.E. Lipids of human milk and infant formulas: A review. Am. J. Chem. Nutr. 1978, 31, 990–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotoh, N.; Matsumoto, Y.; Nagai, T.; Mizobe, H.; Yoshinaga, K.; Kojima, K.; Kuroda, I.; Kitamura, Y.; Shimizu, T.; Ishida, H.; et al. Actual ratio of triacylglycerol positional isomers in milk and cheese. J. Oleo Sci. 2012, 61, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.Q.; Huang, J.H.; Jin, Q.Z.; Guo, Z.; Liu, Y.F.; Cheong, L.Z.; Xu, X.B.; Wang, X.G. Model for human milk fat substitute evaluation based on triacylglycerol composition profile. J. Agric. Food Chem. 2013, 61, 167–175. [Google Scholar] [CrossRef]
- Giuffrida, F.; Marmet, C.; Tavazzi, I.; Fontannaz, P.; Sauser, J.; Lee, L.; Destaillats, F. Quantification of 1,3-olein-2-palmitin (OPO) and palmitic acid in sn-2 position of triacylglycerols in human milk by liquid chromatography coupled with mass spectrometry. Molecules 2019, 24, 22. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Zhou, X.H.; Han, B.; Yu, Z.; Yi, H.X.; Jiang, S.L.; Li, Y.Y.; Pan, J.C.; Zhang, L.W. Regioisomeric and enantiomeric analysis of primary triglycerides in human milk by silver ion and chiral HPLC atmospheric pressure chemical ionization-MS. J. Dairy Sci. 2020, 103, 7761–7774. [Google Scholar] [CrossRef] [PubMed]
- Morera, S.; Castellote, A.I.; Jauregui, O.; Casals, I.; Lopez-Sabater, M.C. Triacylglycerol markers of mature human milk. Eur. J. Clin. Nutr. 2003, 57, 1621–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallio, H.; Nylund, M.; Bostrom, P.; Yang, B. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem. 2017, 233, 351–360. [Google Scholar] [CrossRef]
- Liu, Z.; Ezernieks, V.; Rochfort, S.; Cocks, B. Comparison of methylation methods for fatty acid analysis of milk fat. Food Chem. 2018, 261, 210–215. [Google Scholar] [CrossRef]
- Kalo, P.; Kemppinen, A.; Ollilainen, V.; Kuksis, A. Regiospecific determination of short-chain triacylglycerols in butterfat by normal-phase HPLC with on-line electrospray-tandem mass spectrometry. Lipids 2004, 39, 915–928. [Google Scholar] [CrossRef]
- Wanatabe, N.; Nagai, T.; Mizobe, H.; Yoshinaga, K.; Yoshida, A.; Kitamura, Y.; Shimizu, T.; Beppu, F.; Gotoh, N. Quantification of triacylglycerol positional isomers in rat milk. J. Oleo Sci. 2016, 65, 977–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyssotski, M.; Bloor, S.J.; Lagutin, K.; Wong, H.; Williams, D.B.G. Efficient separation and analysis of triacylglycerols: Quantitation of β-palmitate (OPO) in oils and infant formulas. J. Agric. Food Chem. 2015, 63, 5985–5992. [Google Scholar] [CrossRef]
- Mottram, H.R.; Woodbury, S.E.; Evershed, R.P. Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1240–1252. [Google Scholar] [CrossRef]
- Holčapek, M.; Dvořáková, H.; Lísa, M.; Girón, A.J.; Sandra, P.; Cvačka, J. Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry: Comparison of five different mass analyzers. J. Chromatogr. A 2010, 1217, 8186–8194. [Google Scholar] [CrossRef]
- Fauconnot, L.; Hau, J.; Aeschlimann, J.M.; Fay, L.B.; Dionisi, F. Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Evans, J.J. Determination of the relative amounts of positional isomers in complex mixtures of triglycerides using reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Lipids 2004, 39, 273–284. [Google Scholar] [CrossRef]
- Herrera, L.C.; Potvin, M.A.; Melanson, J.E. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts. Rapid Commun. Mass Spectrom. 2010, 24, 2745–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leveque, N.L.; Acheampong, A.; Heron, S.; Tchapla, A. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method. Anal. Chim. Acta 2012, 722, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.C.; Ramaley, L.; Potvin, M.A.; Melanson, J.E. A method for determining regioisomer abundances of polyunsaturated triacylglycerols in omega-3-enriched fish oils using reversed-phase liquid chromatography and triple-stage mass spectrometry. Food Chem. 2013, 139, 655–662. [Google Scholar] [CrossRef]
- Fabritius, M.; Linderborg, K.M.; Tarvainen, M.; Kalpio, M.; Zhang., Y.; Yang, B. Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas. Food Chem. 2020, 328, 126991. [Google Scholar] [CrossRef]
- Rezanka, T.; Padrova, K.; Sigler, K. Regioisomeric and enantiomeric analysis of triacylglycerols. Anal. Biochem. 2017, 524, 3–12. [Google Scholar] [CrossRef]
- Nagai, T.; Kinoshita, T.; Kasamatsu, E.; Yoshinaga, K.; Mizobe, H.; Yoshida, A.; Itabashi, Y.; Gotoh, N. Simultaneous quantification of mixed-acid triacylglycerol positional isomers and enantiomers in palm oil and lard by chiral high-performance liquid chromatography coupled with mass spectrometry. Symmetry 2020, 12, 1385. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Pryce, J.E.; Macleod, I.M.; Hayes, B.J.; Chamberlain, A.J.; Vander Jagt, C.; Reich, C.M.; Mason, B.A.; Rochfort, S.; et al. Fine-mapping sequence mutations with a major effect on oligosaccharide content in bovine milk. Sci. Rep. 2019, 9, 2137. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B. Optimization of a single-phase method for lipid extraction from milk. J. Chromatogr. A 2016, 1458, 145–149. [Google Scholar] [CrossRef]
Sample Types | OPO (%) | OSO (%) | ||||
---|---|---|---|---|---|---|
Mean | SD | RSD | Mean | SD | RSD | |
BM | 53.7 | 0.8 | 1.5 | 29.4 | 0.7 | 2.4 |
BM (10× diluted) | 52.1 | 0.6 | 1.2 | 27.9 | 0.5 | 1.8 |
HM | 87.6 | 0.9 | 1.0 | 40.3 | 0.6 | 1.5 |
HM (10× diluted) | 86.8 | 1.5 | 1.7 | 38.9 | 1.1 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Rochfort, S. Bovine Milk Triacylglycerol Regioisomer Ratio Shows Remarkable Inter-Breed and Inter-Cow Variation. Molecules 2021, 26, 3938. https://doi.org/10.3390/molecules26133938
Liu Z, Rochfort S. Bovine Milk Triacylglycerol Regioisomer Ratio Shows Remarkable Inter-Breed and Inter-Cow Variation. Molecules. 2021; 26(13):3938. https://doi.org/10.3390/molecules26133938
Chicago/Turabian StyleLiu, Zhiqian, and Simone Rochfort. 2021. "Bovine Milk Triacylglycerol Regioisomer Ratio Shows Remarkable Inter-Breed and Inter-Cow Variation" Molecules 26, no. 13: 3938. https://doi.org/10.3390/molecules26133938
APA StyleLiu, Z., & Rochfort, S. (2021). Bovine Milk Triacylglycerol Regioisomer Ratio Shows Remarkable Inter-Breed and Inter-Cow Variation. Molecules, 26(13), 3938. https://doi.org/10.3390/molecules26133938