1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro AChE and BACE1 Inhibitory Activity
3. Materials and Methods
3.1. Synthesis
3.1.1. General Information
3.1.2. Synthesis of 3a–h from DCMT and Dipeptides
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Lys(Boc)-Ala-OMe)-1,3,5-Triazine (3a). General Procedure
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Asp(OtBu)-Ala-OMe)-1,3,5-Triazine (3b)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Trp(Boc)-Ala-OMe)-1,3,5-Triazine (3c)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Ser(Bn)-Ala-OMe)-1,3,5-Triazine (3d)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Aib-Ala-OMe)-1,3,5-Triazine (3e)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Arg(NO2)-Ala-OMe)-1,3,5-Triazine (3f)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-Trp-Ala-OMe)-1,3,5-Triazine (3g)
Synthesis of 2-Chloro-4-Methoxy-6-(NH-His(Ts)-Ala-OMe)-1,3,5-Triazine (3h)
3.1.3. Synthesis o2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(Dipeptidyl)-1,3,5-Triazines (4a–h)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Lys(Boc)-Ala -OMe)-1,3,5-Triazine (4a). General Procedure
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Asp(OtBu)- Ala-OMe)-1,3,5-Triazine (4b)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Trp(Boc)-Ala-OMe)-1,3,5-Triazine (4c)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6- (NH-Ser (Bn)-Ala -OMe) -1,3,5-Triazine (4d)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Aib-Ala-OMe) -1,3,5 -Triazine (4e)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Arg(NO2)-Ala- OMe) -1,3,5-Triazine (4f)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-Trp-Ala-OMe)- 1,3,5- Triazine (4g)
Synthesis of 2-[4-(2-Chloroethyl)Piperazin-1-yl]-4-Methoxy-6-(NH-His(Ts)-Ala-OMe)-1,3,5-Triazine (4h)
3.2. Biological Activity
3.2.1. In Vitro Inhibition Studies on AChE
3.2.2. In Vitro Inhibition Studies on β-Secretase (BACE1)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morphy, R.; Rankovic, Z. Designing multiple ligands-medicinal chemistry strategies and challenges. Curr. Pharm. Des. 2009, 15, 587–600. [Google Scholar] [CrossRef]
- Muller-Schiffmann, A.; Sticht, H.; Korth, C. Hybrid compounds: From simple combinations to nanomachines. Bio Drugs 2012, 26, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Rapposelli, S.; Balsamo, A. Multifunctional Drugs: New Chimeras in Medicinal Chemistry; Rapposelli, S., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 1–17. [Google Scholar]
- Plebanek, E.; Chevrier, F.; Roy, V.; Garenne, T.; Lecaille, F.; Warszycki, D.; Bojarski, A.J.; Lalmanach, G.; Agrofoglio, L.A. Straightforward synthesis of 2,4,6-trisubstituted 1,3,5-triazine compounds targeting cysteine cathepsins K and S. Eur. J. Med. Chem. 2016, 12, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Baladaniya, B.B.; Patel, P.K. Synthesis, Antibacterial and Antifungal Activities of s-Triazine Derivatives. Eur. J. Chem. 2009, 3, 673–680. [Google Scholar]
- Solankee, A.; Kapadia, K.; Ciric, A.; Sokovic, M.; Doytchinova, I.; Geronikaki, A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 510–518. [Google Scholar] [CrossRef]
- Zacharie, B.; Abbott, S.D.; Benvenu, J.F.; Cameron, A.D.; Cloutier, J.; Duceppe, J.S.; Ezzitouni, A.; Fortin, D.; Houde, K.; Lauzon, C.; et al. 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J. Med. Chem. 2010, 53, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M. Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents. Bioorg. Med. Chem. Lett. 2005, 15, 531–533. [Google Scholar] [CrossRef]
- Moon, H.S.; Jacobson, E.M.; Khersonsky, S.M.; Luzung, M.R.; Walsh, D.P.; Xiong, W.; Lee, J.W.; Parikh, P.B.; Lam, J.C.; Kang, T.W.; et al. A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebra fish embryo screening. J. Am. Chem. Soc. 2002, 124, 11608–11609. [Google Scholar] [CrossRef]
- Singla, P.; Luxami, V.; Paul, K. Triazine-benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem. 2015, 23, 1691–1700. [Google Scholar] [CrossRef]
- Federico, S.; Ciancetta, A.; Porta, N.; Redenti, S.; Pastorin, G.; Cacciari, B.; Klotz, K.N.; Moro, S.; Spalluto, G. 5,7-Disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. Eur. J. Med. Chem. 2016, 27, 529–541. [Google Scholar] [CrossRef]
- Pomarnacka, E.; Bedarski, P.; Grunert, R.; Reszka, P. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)-1,3,5-triazine derivatives. Acta Pol. Pharm. 2004, 61, 461–467. [Google Scholar]
- Raval, J.P.; Rai, A.R.; Patel, N.H.; Patel, H.V.; Patel, P.S. Synthesis and in vitro antimicrobial activity of N’-(4-(aryloamino)-6- (pirydyn-2-yloamino)-1,3,5,-triazyn-2-yl)benzo-hydrazide. Int. J. Chem. Tech. Res. 2003, 1, 616–620. [Google Scholar]
- Zacharie, B.; Abbott, S.D.; Duceppe, J.S.; Gagnon, L.; Grouix, B.; Geerts, L.; Gervais, L.; Sarra-Bournet, F.; Perron, V.; Wilb, N.; et al. Design and Synthesis of New 1,3,5-Trisubstituted Triazines for the Treatment of Cancer and Inflammation. ChemistryOpen 2018, 7, 737–749. [Google Scholar] [CrossRef]
- Kolesińska, B.; Drozdowska, D.; Kamiński, Z.J. The new analogues of nitrogen mustard with one, two or three 2-chloroethyloamino fragments. Reactions with nucleophiles. Acta Pol. Pharm. 2008, 65, 709–714. [Google Scholar]
- Kolesińska, B.; Barszcz, K.; Kamiński, Z.J.; Drozdowska, D.; Wietrzyk, J.; Świtalska, M. Synthesis and cytotoxicity studies of bifunctional hybrids of nitrogen mustards with potential enzymes inhibitors based on melamine framework. J. Enzyme Inhib. Med. Chem. 2012, 27, 619–627. [Google Scholar] [CrossRef]
- Fraczyk, J.; Kolesinska, B.; Swiontek, M.; Lipinski, W.; Drozdowska, D.; Kaminski, Z.J. Synthesis of Arylamino-1,3,5-triazines Functionalized with Alkylatin 2-chloroethylamine Fragments and Studies of their Cytotoxicity on the Breast Cancer MCF-7 Cell Line. Anticancer Agents Med Chem. 2016, 16, 1435–1444. [Google Scholar] [CrossRef]
- Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006, 41, 219–225. [Google Scholar] [CrossRef]
- Wróbel, A.; Kolesińska, B.; Frączyk, J.; Kamiński, Z.J.; Tankiewicz-Kwedło, A.; Hermanowicz, J.; Czarnomysy, R.; Maliszewski, D.; Drozdowska, D. Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest. New Drugs 2020, 4, 990–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ji, Y.; Youn, K.; Lim, G.; Lee, J.; Kim, D.H.; Jun, M. Baicalein as a potential inhibitor against BACE1 and AChE: Mechanistic comprehension through in vitro and computational approaches. Nutrients 2019, 11, 2694. [Google Scholar] [CrossRef] [Green Version]
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef] [Green Version]
- Congdon, E.E.; Wu, J.W.; Myeku, N.; Figueroa, Y.H.; Herman, M.; Marinec, P.S.; Gestwicki, J.E.; Dickey, C.A.; Yu, W.H.; Duff, K.E. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 2012, 4, 609–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, A.; James, M.J.; Lee, V.M.; Smith, A.B.; Trojanowski, J.Q.; Ballatore, C.; Brunden, K.R. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem. 2013, 288, 11024–11037. [Google Scholar] [CrossRef] [Green Version]
- García-Ayllón, M.S.; Small, D.H.; Avila, J.; Sáez-Valero, J. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: Cross-talk with P-tau and β-amyloid. Front. Mol. Neurosci. 2011, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Jun, M. Dual BACE1 and cholinesterase inhibitory effects of phlorotannins from Ecklonia cava-an in vitro and in silico study. Mar. Drugs 2019, 17, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, N.A.; Singh, S.B.; Kumbhar, A.S.; Ranade, D.S.; Walke, G.R.; Kulkarni, P.P.; Jani, V.; Sonavane, U.B.; Joshi, R.R.; Rapole, S. Acetylcholinesterase and Aβ aggregation inhibition by heterometallic ruthenium(II)-platinum(II) polypyridyl complexes. Inorg. Chem. 2018, 57, 7524–7535. [Google Scholar] [CrossRef]
- Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem. 2017, 136, 36–51. [Google Scholar] [CrossRef]
- Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; et al. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed. 2015, 54, 1578–1582. [Google Scholar] [CrossRef]
- Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem. 2019, 84, 363–371. [Google Scholar] [CrossRef]
- Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Nadri, H.; Edraki, N.; Miri, R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem. 2018, 77, 223–235. [Google Scholar] [CrossRef]
- Stanković, I.M.; Niu, S.; Hall, M.B.; Zarić, S.D. Role of aromatic amino acids in amyloid self-assembly. Int. J. Biol. Macromol. 2020, 156, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Bakou, M.; Hille, K.; Kracklauer, M.; Spanopoulou, A.; Frost, C.V.; Malideli, E.; Yan, L.-M.; Caporale, A.; Zacharias, M.; Kapurniotu, A. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly. J. Biol. Chem. 2017, 292, 14587–14602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraczyk, J.; Lipinski, W.; Chaberska, A.; Wasko, J.; Rozniakowski, K.; Kaminski, Z.J.; Bogun, M.; Draczynski, Z.; Menaszek, E.; Stodolak-Zych, E.; et al. Search for fibrous aggregates potentially useful in regenerative medicine formed under physiological conditions by self-assembling short peptides containing two identical aromatic amino acid residues. Molecules 2018, 23, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, W.; Wasko, J.; Walczak, M.; Fraczyk, J.; Kaminski, Z.J.; Galecki, K.; Draczynski, Z.; Krucinska, I.; Kaminska, M.; Kolesinska, B. Fibrous Aggregates of Short Peptides Containing Two Distinct Aromatic Amino Acid Residues. Chem. Biodivers. 2019, 16, 1900339. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Ow, S.Y.; Dunstan, D.E. A brief overview of amyloids and Alzheimer’s disease. Protein Sci. 2014, 23, 1315–1331. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/cs0010bul.pdf (accessed on 24 March 2021).
- Benek, O.; Korabecny, J.; Soukup, O. A Perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2020, 41, 434–445. [Google Scholar] [CrossRef]
Derivatives | Polar Surface Area | ALogP | Hydrogen Acceptor Count | Hydrogen Donor Count |
---|---|---|---|---|
4a | 160.14 | 3.3377 | 12 | 3 |
4b | 148.11 | 2.3588 | 12 | 2 |
4c | 153.04 | 5.2349 | 12 | 2 |
4d | 131.04 | 2.9248 | 11 | 2 |
4e | 121.81 | 2.1327 | 10 | 2 |
4f | 215.54 | 3.3592 | 13 | 5 |
4g | 137.6 | 3.6704 | 10 | 3 |
4h | 182.14 | 3.2279 | 13 | 2 |
A | 63.66 | 4.6282 | 8 | 1 |
Compounds | AChE IC50 (µM) a | BACE1 IC50 (µM) b |
---|---|---|
4a | 0.055 ± 0.001 | 11.09 ± 2.29 |
4b | 0.065 ± 0.002 | 33.82 ± 3.91 |
4c | 0.114 ± 0.012 | 18.09 ± 2.69 |
4d | 0.387 ± 0.054 | 58.09 ± 9.69 |
4e | 0.789 ± 0.031 | 51.03 ± 7.99 |
4f | 1.44 ± 0.029 | 52.04 ± 8.55 |
4g | 0.122 ± 0.014 | 28.09 ± 3.69 |
4h | 0.067 ± 0.003 | 14.25 ± 3.45 |
A | 0.051 ± 0.001 | 9.00 ± 0.22 |
donepezil | 0.046 ± 0.013 | -c |
tacrine | 0.274 ± 0.08 | -c |
quercetin d | - c | 4.89 ± 2.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliszewski, D.; Wróbel, A.; Kolesińska, B.; Frączyk, J.; Drozdowska, D. 1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors. Molecules 2021, 26, 3942. https://doi.org/10.3390/molecules26133942
Maliszewski D, Wróbel A, Kolesińska B, Frączyk J, Drozdowska D. 1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors. Molecules. 2021; 26(13):3942. https://doi.org/10.3390/molecules26133942
Chicago/Turabian StyleMaliszewski, Dawid, Agnieszka Wróbel, Beata Kolesińska, Justyna Frączyk, and Danuta Drozdowska. 2021. "1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors" Molecules 26, no. 13: 3942. https://doi.org/10.3390/molecules26133942
APA StyleMaliszewski, D., Wróbel, A., Kolesińska, B., Frączyk, J., & Drozdowska, D. (2021). 1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors. Molecules, 26(13), 3942. https://doi.org/10.3390/molecules26133942