Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications
Abstract
:1. Introduction
2. Biopesticides
3. Encapsulation Technologies
4. Biopesticide Encapsulation Based On Supercritical Fluid Technology
4.1. Rapid Expansion from Supercritical Solution (RESS)
4.2. Particle from Gas Saturated Solutions (PGSS)
4.3. Supercritical Solvent Impregnation (SSI)
4.4. Supercritical Assisted Atomization (SAA)
4.5. Supercritical Antisolvent Fractionation (SAF)
4.6. Supercritical Phase Inversion and Supercritical Drying
4.7. Supercritical Anti-Solvent Precipitation (SAS)
4.8. Challenges of Supercritical Fluid Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Styring, A.K.; Charles, M.; Fantone, F.; Hald, M.M.; McMahon, A.; Meadow, R.H.; Nicholls, G.K.; Patel, A.K.; Pitre, M.C.; Smith, A.; et al. Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. Nat. Plants 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. J. Hazard. Mater. 2020, 385, 121525. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A. Biopesticides: Present status and the future prospects. J. Biofertil. Biopestic. 2015, 6. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 1–19. [Google Scholar] [CrossRef]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef]
- Rad, H.B.; Sabet, J.K.; Varaminian, F. Study of solubility in supercritical fluids: Thermodynamic concepts and measurement methods—A review. Braz. J. Chem. Eng. 2019, 36, 1367–1392. [Google Scholar] [CrossRef]
- Montes, A.; Gordillo, M.D.; Pereyra, C.; de la Ossa, E.J.M. Particles formation using supercritical fluids. In Mass Transfer—Advanced Aspects; IntechOpen: London, UK, 2011; pp. 461–480. ISBN 978-953-307-636-2. [Google Scholar]
- Keven Silva, E.; Angela, A.; Meireles, M. Encapsulation of food compounds using supercritical technologies: Applications of supercritical carbon dioxide as an antisolvent. Food Public Health 2014, 4, 247–258. [Google Scholar] [CrossRef]
- Abbey, L.; Abbey, J.; Leke-aladekoba, A.; Iheshiulo, E.M.; Ijenyo, M. Biopesticides and Biofertilizers: Types, Production, Benefits, and Utilization. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 479–500. ISBN 9781119383956. [Google Scholar]
- Senthil-Nathan, S. A review of biopesticides and their mode of action against insect pests. In Environmental Sustainability: Role of Green Technologies; Springer: New Delhi, India, 2015; pp. 49–63. ISBN 9788132220565. [Google Scholar]
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q. Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. 2019, 67, 1–8. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Current status and recent developments in biopesticide use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef]
- Allan, G.G.; Miller, T.A. Long-Acting Pyrethrum/Pyrethroid Based Pesticides with Silicone Stabilizers. U.S. Patent 4,668,666, 26 May 1987. [Google Scholar]
- Markus, A.; Schuster, D.; Linder, C.; Strongin, P. US9101143B2—Formulations Containing Microencapsulated Essential Oils. U.S. Patent 9,101,143, 11 August 2015. [Google Scholar]
- Miresmailli, S.; Ojha, H.D.; Drury, J.W. US10058092B2—Apparatus and Method for Controlled Release of Botanical Fumigant Pesticides. U.S. Patent 10,058,092, 28 August 2018. [Google Scholar]
- Wright, J.E.; Chandler, L.D. US005413784A—Biopesticide Composition and Process for Controlling Insect Pests. U.S. Patent 5,413,784, 9 May 1995. [Google Scholar]
- Valent BioSciences. XenTari®. Available online: https://www.valentbiosciences.com/cropprotection/products/xentari/ (accessed on 12 February 2021).
- Valent BioSciences. DiPel®. Available online: https://www.valentbiosciences.com/cropprotection/products/dipel/ (accessed on 12 February 2021).
- Xi’an Neo Biotech Co, L. Bacillus Thuringiensis. Available online: http://www.neobio.site/chemicalfactory/Bacillus_Thuringiensis-44 (accessed on 2 March 2021).
- Arbico Organics. Milky Spore Powder—Safety Data Sheet. Available online: https://www.arbico-organics.com/product/milky-spore-powder-bacillus-popilliae-control-japanese-beetle/organic-lawn-care (accessed on 2 March 2021).
- Marrone Bio Innovations. Grandevo®. Available online: https://marronebio.com/products/grandevo/ (accessed on 20 February 2021).
- Bayer Serenade®. Available online: https://www.agro.bayer.com.br/home/fungicida-serenade (accessed on 12 February 2021).
- Valent Actinovate® AG. Available online: https://www.valent.com/products/actinovate-ag (accessed on 2 March 2021).
- Bonide Neem Oil. Available online: https://www.arbico-organics.com/product/neem-oil-concentrate-insecticide-fungicide-miticide/neem-oil-insecticides (accessed on 2 February 2021).
- Stocken Timorex Gold. Available online: https://www.syngenta.com.au/product/crop-protection/timorex-gold (accessed on 2 March 2021).
- Monterey Take Down Garden Spray. Available online: https://www.montereylawngarden.com/product/take-down-garden-spray/ (accessed on 2 March 2021).
- Brandt Kaligreen. Available online: https://brandt.co/lines/kaligreen/ (accessed on 2 February 2021).
- Marrone Bio Innovations. Regalia. Available online: https://marronebio.com/products/regalia/ (accessed on 2 March 2021).
- Isman, M.B. Pesticides based on plant essential oils: Phytochemical and practical considerations. ACS Symp. Ser. 2016, 1218, 13–26. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Yang, F.; Wang, X.; Shen, H.; Cui, H.; Wu, D. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids Surf. B Biointerfaces 2016, 144, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, N.; Ohtsubo, T.; Fuji, M. Preparation of self-bursting microcapsules by interfacial polymerization. Adv. Powder Technol. 2012, 23, 724–730. [Google Scholar] [CrossRef]
- Gharieh, A.; Khoee, S.; Reza, A. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv. Colloid Interface Sci. 2019, 269, 152–186. [Google Scholar] [CrossRef]
- Couto, R.; Alvarez, V.; Temelli, F. Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO2. J. Supercrit. Fluids 2017, 120, 432–442. [Google Scholar] [CrossRef]
- Sonawane, S.H.; Bhanvase, B.A.; Sivakumar, M.; Potdar, S.B. Current Overview of Encapsulation. In Encapsulation of Active Molecules and Their Delivery System; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128193631. [Google Scholar]
- McClements, D.J. Recent developments in encapsulation and release of functional food ingredients: Delivery by design. Curr. Opin. Food Sci. 2018, 23, 80–84. [Google Scholar] [CrossRef]
- Bao, C.; Jiang, P.; Chai, J.; Jiang, Y.; Li, D.; Bao, W. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Res. Int. 2019, 120, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Slattery, M.; Harper, B.; Harper, S. Pesticide encapsulation at the nanoscale drives changes to the hydrophobic partitioning and toxicity of an active ingredient. Nanomaterials 2019, 9, 81. [Google Scholar] [CrossRef]
- Cocero, M.J.; Martín, Á.; Mattea, F.; Varona, S. Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. J. Supercrit. Fluids J. 2009, 47, 546–555. [Google Scholar] [CrossRef]
- Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. J. 2008, 363, 26–39. [Google Scholar] [CrossRef]
- Huang, B.; Chen, F.; Shen, Y.; Qian, K.; Wang, Y. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 2018, 8, 102. [Google Scholar] [CrossRef]
- Klettenhammer, S.; Ferrentino, G.; Morozova, K.; Scampicchio, M. Novel technologies based on supercritical fluids for the encapsulation of food grade bioactive compounds. Foods 2020, 9, 1395. [Google Scholar] [CrossRef]
- Chang, Y.; Mclandsborough, L.; McClements, D.J. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J. Agric. Food Chem. 2013, 61, 8906–8913. [Google Scholar] [CrossRef]
- El-Hoshoudy, A.N.M.B. Emulsion Polymerization Mechanism. In Recent Research in Polymerization; IntechOpen: London, UK, 2018; pp. 3–14. [Google Scholar]
- José, M.A. Emulsion polymerization: From fundamental mechanisms to process developments. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 1025–1041. [Google Scholar] [CrossRef]
- Raza, Z.A.; Khalil, S.; Ayub, A.; Banat, I.M. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr. Res. 2020, 492, 108004. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Pereira, A.E.S.; De Morais Ribeiro, L.N.; Fernandes, F.O.; Gonçalves, K.C.; Polanczyk, R.A.; Pasquoto-Stigliani, T.; Lima, R.; et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Feng, J.; Wang, R.; Chen, Z.; Zhang, S.; Yuan, S.; Cao, H.; Jafari, S.M.; Yang, W. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf. A Physicochem. Eng. Asp. 2020, 596, 124746. [Google Scholar] [CrossRef]
- Wahba, T.F. Antifeedant activity of three essential oils and their nanoemulsions against antifeedant activity of three essential oils and their nanoemulsions against the rice weevil Sitophilus oryzae (L.). Egypt. Sci. J. Pestic. 2020, 2, 19–31. [Google Scholar]
- Pan, Z.; Cui, B.; Zeng, Z.; Feng, L.; Liu, G.; Cui, H.; Pan, H. Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method. J. Nanomater. 2015, 2015. [Google Scholar] [CrossRef]
- Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57, 10156–10162. [Google Scholar] [CrossRef]
- Nguon, O.; Lagugné-labarthet, F.; Brandys, F.A.; Li, J.; Gillies, E.R. Microencapsulation by in situ polymerization of amino resins. Polym. Rev. 2018, 58, 326–375. [Google Scholar] [CrossRef]
- Bagle, A.V.; Jadhav, R.S.; Gite, V.V.; Hundiwale, D.G.; Mahulikar, P.P. Controlled release study of phenol formaldehyde microcapsules containing neem oil as an insecticide. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 421–425. [Google Scholar] [CrossRef]
- Hedaoo, R.K.; Gite, V.V. Renewable resource-based polymeric microencapsulation of natural pesticide and its release study: An alternative green approach. RSC Adv. 2014, 18637–18644. [Google Scholar] [CrossRef]
- Wang, B.; Akanbi, T.O.; Agyei, D.; Holland, B.J.; Barrow, C.J. Encapsulation and delivery tool for hydrophobic biofunctional compounds. In Role of Materials Science in Food Bioengineering; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 236–261. ISBN 9780128114483. [Google Scholar]
- Eghbal, N.; Choudhary, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT Food Sci. Technol. 2018, 90, 254–264. [Google Scholar] [CrossRef]
- Petrusic, S.; Koncar, V. Controlled Release of Active Agents from Microcapsules Embedded in Textile Structures; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081005835. [Google Scholar]
- Qiu, H.L.; Fox, E.G.P.; Qin, C.S.; Zhao, D.Y.; Yang, H.; Xu, J.Z. Microcapsuled entomopathogenic fungus against fire ants, Solenopsis invicta. Biol. Control 2019, 134, 141–149. [Google Scholar] [CrossRef]
- Chandralekha, A.; Tavanandi, A.H.; Amrutha, N.; Hebbar, H.U. Encapsulation of yeast (Saccharomyces cerevisiae) by spray drying for extension of shelf life. Dry. Technol. 2016, 34, 1307–1318. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015. [Google Scholar] [CrossRef]
- Pérez-Landa, I.D.; Bonilla-Landa, I.; Monribot-Villanueva, J.L.; Ramírez-Vázquez, M.; Lasa, R.; Ramos-Torres, W.; Olivares-Romero, J.L.; Barrera-Méndez, F. Photoprotection and release study of spinosad biopolymeric microparticles obtained by spray drying. Powder Technol. 2021, 377, 514–522. [Google Scholar] [CrossRef]
- Sittipummongkol, K.; Chuysinuan, P.; Techasakul, S.; Pisitsak, P.; Pechyen, C. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polym. Bull. 2018, 76, 3803–3817. [Google Scholar] [CrossRef]
- Muñoz-Celaya, A.L.; Ortiz-García, M.; Vernon-Carter, E.J.; Jauregui-Rincón, J.; Galindo, E.; Serrano-Carreón, L. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr. Polym. 2012, 88, 1141–1148. [Google Scholar] [CrossRef]
- Dewettinck, K.; Huyghebaert, A. Fluidized bed coating in food technology. Trends Food Sci. Technol. 1999, 10, 163–168. [Google Scholar] [CrossRef]
- Chua, K.J.; Chour, S.K. New hybrid drying technologies. In Emerging Technologies for Food Processing; Sun, D.-W., Ed.; Academic Press: Dublin, Ireland, 2005; pp. 535–551. ISBN 0126767572. [Google Scholar]
- Stephan, D.; Bernhardt, T.; Buranjadze, M.; Seib, C.; Schäfer, J.; Maguire, N.; Pelz, J. Development of a fluid-bed coating process for soil-granule-based formulations of Metarhizium brunneum, Cordyceps fumosorosea or Beauveria bassiana. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef]
- Fan, W.; Yan, W.; Xu, Z.; Ni, H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces 2012, 90, 21–27. [Google Scholar] [CrossRef]
- Kunjachan, S.; Jose, S. Understanding the mechanism of ionic gelation for the synthesis of chitosan nanoparticles using qualitative techniques. Asian J. Pharm. 2010, 4, 148–153. [Google Scholar] [CrossRef]
- Jaffuel, G.; Sbaiti, I.; Turlings, T.C.J. Encapsulated entomopathogenic nematodes can protect maize plants from diabrotica balteata larvae. Insects 2020, 11, 27. [Google Scholar] [CrossRef]
- Prabakaran, G.; Hoti, S.L. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control. Curr. Microbiol. 2008, 57, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Bertucco, A.; Vetter, G. High Pressure Process Technology: Fundamentals and Applications; Sie, S.T., Ed.; Industrial Chemistry Library: Delft, The Netherlands, 2001; Volume 9, ISBN 0444504982. [Google Scholar]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Mirsadeghi, S.; Pourmortazavi, S.M. Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. 2020, 1–20. [Google Scholar] [CrossRef]
- Martín, L.; Marqués, J.L.; González-Coloma, A.; Mainar, A.M.; Palavra, A.M.F.; Urieta, J.S. Supercritical methodologies applied to the production of biopesticides: A review. Phytochem. Rev. 2012, 11, 413–431. [Google Scholar] [CrossRef]
- Chakravarty, P.; Famili, A.; Nagapudi, K.; Al-Sayah, M.A. Using Supercritical Fluid Technology as a Green Alternative during the Preparation of Drug Delivery Systems. Pharmaceutics 2019, 11, 629. [Google Scholar] [CrossRef]
- Tabernero, A.; Martín del Valle, E.M.; Galán, M.A. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem. Eng. Process. Process Intensif. 2012, 60, 9–25. [Google Scholar] [CrossRef]
- Kanakubo, M.; Aizawa, T.; Kawakami, T.; Sato, O.; Ikushima, Y.; Hatakeda, K.; Saito, N. Studies on solute-solvent interactions in gaseous and supercritical carbon dioxide by high-pressure H NMR spectroscopy. J. Phys. Chem. B 2000, 104, 2749–2758. [Google Scholar] [CrossRef]
- Santos, D.T.; Meireles, M.A.A. Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J. Food Process Eng. 2013, 36, 36–49. [Google Scholar] [CrossRef]
- Reverchon, E. Supercritical-assisted atomization to produce micro-and/or nanoparticles of controlled size and distribution. Ind. Eng. Chem. Res. 2002, 41, 2405–2411. [Google Scholar] [CrossRef]
- Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 2018, 138, 247–258. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, B.; Zheng, Z.; You, X.; Pu, Y.; Li, Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem. Eng. Res. Des. 2010, 88, 1102–1107. [Google Scholar] [CrossRef]
- Chu, S.S.; Jiang, G.H.; Liu, Z.L. Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Manag. Sci. 2011, 67, 1253–1257. [Google Scholar] [CrossRef]
- Pemsel, M.; Schwab, S.; Scheurer, A.; Freitag, D.; Schatz, R.; Schlücker, E. Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J. Supercrit. Fluids 2010, 53, 174–178. [Google Scholar] [CrossRef]
- Varona, S.; Kareth, S.; Cocero, M.J. Encapsulation of essentials oils using biopolymers for their use in ecological agriculture. In Proceedings of the 9th International Symposium on Supercritical Fluids, Arcachon, France, 18–20 May 2009; p. 6. [Google Scholar]
- Herrera, J.M.; Gañán, N.A.; Goñi, M.L.; Zygadlo, J.A.; Martini, R.E. Active LDPE films loaded with biopesticides by supercritical CO2-assisted impregnation for stored grain protection. Food Packag. Shelf Life 2018, 18, 80–86. [Google Scholar] [CrossRef]
- Goñi, M.L.; Gañán, N.A.; Herrera, J.M.; Strumia, M.C.; Andreatta, A.E.; Martini, R.E. Supercritical CO2 impregnation of LDPE films with terpene ketones as biopesticides against corn weevil (Sitophilus zeamais). J. Supercrit. Fluids 2017, 122, 18–26. [Google Scholar] [CrossRef]
- Maya, C.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J. A comparative analysis on the impregnation efficiency of a natural insecticide into polypropylene films by means of batch against semi-continuous techniques using CO2 as solvent. J. Supercrit. Fluids 2021, 169, 105127. [Google Scholar] [CrossRef]
- Martin, L.; Liparoti, S.; Della Porta, G.; Adami, R.; Marqués, J.L.; Urieta, J.S.; Mainar, A.M.; Reverchon, E. Rotenone coprecipitation with biodegradable polymers by supercritical assisted atomization. J. Supercrit. Fluids 2013, 81, 48–54. [Google Scholar] [CrossRef]
- Martín, L.; González-Coloma, A.; Adami, R.; Scognamiglio, M.; Reverchon, E.; Della Porta, G.; Urieta, J.S.; Mainar, A.M. Supercritical antisolvent fractionation of ryanodol from Persea indica. J. Supercrit. Fluids 2011, 60, 16–20. [Google Scholar] [CrossRef]
- Baldino, L.; González-Garcinuño, Á.; Tabernero, A.; Cardea, S.; Del Valle, E.M.M.; Reverchon, E. Production of fungistatic porous structures of cellulose acetate loaded with quercetin, using supercritical CO2. J. Supercrit. Fluids 2021, 169. [Google Scholar] [CrossRef]
- Reverchon, E.; Adami, R. Nanomaterials and supercritical fluids. J. Supercrit. Fluids 2006, 37, 1–22. [Google Scholar] [CrossRef]
- Montes, A.; Merino, R.; De Los Santos, D.M.; Pereyra, C.; Martínez De La Ossa, E.J. Micronization of vanillin by rapid expansion of supercritical solutions process. J. CO2 Util. 2017, 21, 169–176. [Google Scholar] [CrossRef]
- Tokunaga, S.; Ono, K.; Ito, S.; Sharmin, T.; Kato, T.; Irie, K.; Mishima, K.; Satho, T.; Harada, T. Microencapsulation of drug with enteric polymer Eudragit L100 for controlled release using the particles from gas saturated solutions (PGSS) process. J. Supercrit. Fluids 2021, 167. [Google Scholar] [CrossRef]
- Goñi, M.L.; Gañán, N.A.; Strumia, M.C.; Martini, R.E. Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. J. Supercrit. Fluids 2016, 111, 28–35. [Google Scholar] [CrossRef]
- Wu, H.; Chen, H.; Lee, H. Controlled release of theophylline-chitosan composite particles prepared using supercritical assisted atomization. Braz. J. Chem. Eng. 2019, 36, 895–904. [Google Scholar] [CrossRef]
- Santo, I.E.; Campardelli, R.; Albuquerque, E.C.; de Melo, S.V.; Della Porta, G.; Reverchon, E. Liposomes preparation using a supercritical fluid assisted continuous process. Chem. Eng. J. 2014, 249, 153–159. [Google Scholar] [CrossRef]
- Adami, R.; Liparoti, S.; Reverchon, E. A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds. Chem. Eng. J. 2011, 173, 55–61. [Google Scholar] [CrossRef]
- Baldino, L.; Cardea, S.; Reverchon, E. Supercritical phase inversion: A powerful tool for generating cellulose acetate-AgNO3 antimicrobial membranes. Materials 2020, 13, 1560. [Google Scholar] [CrossRef]
- Baldino, L.; Cardea, S.; Reverchon, E. Antimicrobial membranes produced by supercritical assisted phase inversion. Chem. Eng. Trans. 2015, 43, 121–126. [Google Scholar] [CrossRef]
- Tabernero, A.; Cardea, S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mater. Sci. Eng. C 2020, 112, 110940. [Google Scholar] [CrossRef] [PubMed]
- Ulker, Z.; Erkey, C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release 2014, 177, 51–63. [Google Scholar] [CrossRef]
- Gurikov, P.; Raman, S.P.; Griffin, J.S.; Steiner, S.A.; Smirnova, I. 110th Anniversary: Solvent exchange in the processing of biopolymer aerogels: Current status and open questions. Ind. Eng. Chem. Res. 2019, 58, 18590–18600. [Google Scholar] [CrossRef]
- García-González, C.A.; Sosnik, A.; Kalmar, J.; Marco, I.; Erkey, C.; Conceiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Control. Release 2021, 332, 40–63. [Google Scholar] [CrossRef]
- Tkalec, G.; Pantić, M.; Novak, Z.; Knez, Ž. Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels. J. Mater. Sci. 2015, 50, 1–12. [Google Scholar] [CrossRef]
- Schwertfeger, F.; Zimmermann, A.; Frisch, G. US7674476B1—Use of Aerogels in Agriculture. U.S. Patent 7,674,476, 9 March 2010. [Google Scholar]
- Reverchon, E.; De Marco, I.; Torino, E. Nanoparticles production by supercritical antisolvent precipitation: A general interpretation. J. Supercrit. Fluids 2007, 43, 126–138. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem. Eng. J. 2011, 169, 358–370. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical antisolvent process for pharmaceutical applications: A review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Mezzomo, N.; Gomes, C.; Ferreira, S.R.S. Encapsulation of passion fruit seed oil by means of the supercritical antisolvent process. J. Supercrit. Fluids 2017, 129, 96–105. [Google Scholar] [CrossRef]
- Flaherty, R.J.; Nshime, B.; DeLaMarre, M.; DeJong, S.; Scott, P.; Lantz, A.W. Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere 2013, 91, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, A.; Martín Del Valle, E.M.; Galán, M.A. Experimental and theoretical analysis of the operating parameters for precipitating acetaminophen and tretinoin with solution enhanced dispersion by supercritical fluids. Ind. Eng. Chem. Res. 2013, 52, 8745–8754. [Google Scholar] [CrossRef]
- Reverchon, E.; Adami, R.; Caputo, G. Supercritical assisted atomization: Performance comparison between laboratory and pilot scale. J. Supercrit. Fluids 2006, 37, 298–306. [Google Scholar] [CrossRef]
- York, P.; Kompella, U.B.; Shekunov, B.Y. Supercritical Fluid Technology for Drug Product Development; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780203021378. [Google Scholar]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater. 2017, 6, 1–31. [Google Scholar] [CrossRef]
Active Ingredient | Target | Application | Product | Manufacturer | Reference | |
---|---|---|---|---|---|---|
Microbial Pesticides | ABTS-1857 strain of Bacillus thuringiensis aizawai (Bta) | Caterpillar pests on vegetables, fruits, nuts, row crops and turf. | Dry flowable and water-dispersible granule formulations | XenTari® | Valent BioSciences | [20] |
ABTS-351 strain of Bacillus thuringiensis kurstaki (Btk) | Caterpillar pests on vegetables, fruits, nuts, cotton, oil, palm and corn. | Water dispersible granule to be dispersed after mixing with water | DuPel® | Valent BioSciences | [21] | |
Bacillus thuringiensis BT | Pests of Orthoptera, Coleoptera, Diptera, Hymenoptera, and especially Lepidoptera. | Water-dispersible powder | Bactospeine | Xi’an NEO Biotech | [22] | |
Bacillus popilliae | Japanese beetle grubs. | Water-dispersible powder | Milky Spore Powder | St. Gabriel Organics | [23] | |
Chromobacterium subtsugae | Armyworms, aphids, Asian citrus psyllid, mites, spotted wing drosophila, thrips and whiteflies. | Water-dispersible powder | Grandevo® | Marrone Bio Innovations | [24] | |
Bacillus subtilis | White mold and citrus canker. | Aqueous solution | Serenade® | Bayer | [25] | |
WYEC 108 strain of Streptomyces lydicus | Soil-borne and foliar diseases across multipxle crops. | Water-dispersible powder | Actinovate® | Valent | [26] | |
Biochemical Pesticides | Neem oil extracted from Azadirachta indica | A wide variety of insects, such as beet armyworm, aphids, thrips, whiteflies, mites, fungus gnats, beetles, moth larvae and nematodes. | Concentrated aqueous solution | Neem Oil | Bonide | [27] |
Tea tree oil | Powdery mildew on capsicums, cucurbits, grapes and tomatoes | Emulsifiable Concentrate | Timorex® Gold | Stockon | [28] | |
Canola oil | A wide range of insects and eggs. | Emulsifiable Concentrate | Take Down Garden Spray | Monterey | [29] | |
Potassium bicarbonate | Larvae of over 40 crops | Water-soluble powder | Kaligreen® | Brandt | [30] | |
Extract from Reynoutria sachalinensis | Used for disease control, such as black spot, gray mold, crown rot and powdery mildew | Emulsifiable Concentrate | Regalia® | Marrone Bio Innovations | [31] |
Method | Description | Drawbacks | Particle Size | Materials | Active Component | Reference | |
---|---|---|---|---|---|---|---|
Chemical Processes | Emulsion Polymerization | An organic phase is emulsified in an aqueous phase. Polymerization starts with a water-soluble initiator. Fine oil droplets are spontaneously formed when the surfactant moves from the organic phase to the water phase, resulting in oil-in-water (o/w) emulsion [46,47,48]. When an aqueous phase is emulsified in the organic phase of very low polarity, it results in a water-in-oil (w/o) emulsion. This process is referred to as inverse emulsion polymerization [47]. To achieve greater colloidal stability, emulsifiers are added at concentrations equal to or above their critical micelle concentration [35]. | There is a relatively poor understanding of factors influencing the encapsulation process and there are limitations on the type of organic phases and surfactants used [46]. In addition, particles present low thermal stability [49]. | 55–1300 nm | Citrate buffer and medium-chain triglyceride | Carvacrol | [46,50] |
112–594 nm | Polyoxyethylene (20, 40, 60, and 80) and castor oil ether | D-limonene | [51] | ||||
Miniemulsion Polymerization | Fine monomer droplets are produced by the action of high shear (ultrasonic waves or high-speed homogenizer), so polymer particles are obtained via oil-soluble initiators, through droplet nucleation. However, some monomers have slight solubility in water and a co-stabilizer be also used, in addition to surfactants, to avoid coalescence (Ostwald ripening) [35]. | It is a technique still under improvement without complete knowledge of its mechanism. Additionally, it can present a wide particle size distribution [35]. | 53.25–247.6 nm | Polysorbate 80 (Tween® 80) | Melaleuca alternifolia (tea tree oil), Vitis vinifera (grapes seeds oil), and Punica granatum (pomegranate fruit peel oil) | [52] | |
Chemical Processes | Melt -Dispersion | The active component is melted in water at a temperature above the melting point and emulsified in a high-pressure homogenizer [53]. | Depending on the temperature set, it can volatilize core components [54]. | 240 nm | Poly-ethylene glycol (PEG) | Garlic essential oil | [54] |
In situ polymerization | Direct polymerization of a solution of monomers or oligomers is carried out on the core material surface. Deposition and precipitation are controlled by precipitants or changes in pH and temperature [7,55]. | There is little knowledge on precise control of the microencapsulation process, affecting the rational design and efficiency of the microcapsules [55] | 20–110 µm | Phenol and formaldehyde | Neem oil | [56] | |
30–600 µm | Phenol, formalin, poly(vinyl alcohol) (PVA), butanol and sodium lauryl sulfate, cardanol, xylene, and resorcinol. | Karanja oil | [57] | ||||
Complex coacervation | This technique relies upon a decrease in solubility of the coating polymer when a third component is added to the polymer solution. Two oppositely charged polymers form a wall around the active ingredient, due to the complexation of oppositely charged polyelectrolytes [44,58,59,60]. | This technique usually requires toxic reagents for the coacervate shell [60]. | 35–50 µm | Gelatin and gum Arabic | Metarhizium anisopliae | [61] | |
Physical Processes | Spray Drying | The core material is homogenized with the carrier, usually an aqueous solution, and then set in a spray dryer Tiny droplets are formed and, by contact with the hot gas, water is evaporated, obtaining a powder or granular product [42,62]. | Highly cost equipment and expensive powder recovery process. High heat consumption and low thermal efficiency [63]. | 1.10–2.09 µm | Chitosan and sodium lignosulfonate | Spinosad | [64] |
28.84–52.88 µm | PVA, gum Arabic, and whey protein isolate/maltodextrin | Neem seed oil | [65] | ||||
15–20 µm | Maltodextrin, gum Arabic | Trichoderma harzianum | [66] | ||||
Physical Processes | Fluidized Bed Coating (FBC) | In this method, particles with different diameters are moved around in a fluidized bed and sprayed with a liquid. The solution, either aqueous or organic, evaporates and forms a coating layer around the active ingredient [67]. | FBC can be applied to a limited range of active ingredients since it degrades temperature-sensitive active compounds [49]. It presents difficulties in processing needle or platelet-shaped particles [68]. | - | Biomass | Metarhizium brunneum, Cordyceps fumosorosea and Beauveria bassiana | [69] |
Ionic Gelation | This technique is based on ionic interactions between charged groups of the polymer and charged groups of the crosslinking agent [70,71]. | It can result in nanoparticles and microparticles with a fragile particulate system, high dispersibility index, and few sites to modify the surface for functional moieties attachment [71]. | - | Alginate, CaCl2, and glycerol | H. bacteriophora | [72] | |
- | Alginate—multivalent counterions (calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride) | Bacillus thuringiensis var. israelensis | [73] |
Supercritical Technology | Active Ingredient | scCO2 role | Material | Solvent | Temperature (°C) | Pressure (MPa) | Particle Size | Reference |
---|---|---|---|---|---|---|---|---|
RESS | Atractylodes macrocephala essential oil | Solvent | Phosphatidylcholine and cholesterol | Ethanol | 65 | 30 | 173 nm | [83,84] |
PGSS | Cydia pomonella granulovirus (CpGV) | Solute | Palm oil-based fat, lecithin-based surfactant, and modified TiO2 as a UV protectant. | - | 65 | 10 | <85 µm | [85] |
Lavandin oil | Solute | OSA starch and PEG | - | 64–74 | 7.6–8.4 | 21–49 µm | [86] | |
SSI | 1-octen-3-ol | Solvent | Low-Density Polyethylene (LPDE) films | - | 45 | 7.5–14.5 | - | [87] |
Thymoquinone and R-(+)-pulegone | Solvent | LDPE films | - | 45 | 10–15 | - | [88] | |
Pyrethrins | Solvent | Polypropylene films | - | 35–55 | 10–40 | - | [89] | |
SAA | Rotenone | Cosolute | PEG, alginate, and Polyvinylpyrrolidone (PVP) | Acetone, water, and ethyl acetate | 40–85 | 8–11 | 0.6–1.5 µm | [90] |
SAF | Ryanodol | Antisolvent | - | Ethanol | 35 | 15 | 5 µm | [91] |
Supercritical Phase Inversion | Quercetin | Solvent | Cellulose acetate | Acetone | 45–50 | 10–20 | - | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Nascimento Junior, D.R.; Tabernero, A.; Cabral Albuquerque, E.C.d.M.; Vieira de Melo, S.A.B. Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications. Molecules 2021, 26, 4003. https://doi.org/10.3390/molecules26134003
do Nascimento Junior DR, Tabernero A, Cabral Albuquerque ECdM, Vieira de Melo SAB. Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications. Molecules. 2021; 26(13):4003. https://doi.org/10.3390/molecules26134003
Chicago/Turabian Styledo Nascimento Junior, Dário Rodrigues, Antonio Tabernero, Elaine Christine de Magalhães Cabral Albuquerque, and Silvio Alexandre Beisl Vieira de Melo. 2021. "Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications" Molecules 26, no. 13: 4003. https://doi.org/10.3390/molecules26134003
APA Styledo Nascimento Junior, D. R., Tabernero, A., Cabral Albuquerque, E. C. d. M., & Vieira de Melo, S. A. B. (2021). Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications. Molecules, 26(13), 4003. https://doi.org/10.3390/molecules26134003