Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Granule Morphology
2.3. In Vitro Digestibility of Native and Autoclaved Samples
2.4. Physicochemical Parameters
Color Attributes
2.5. Thermal Properties
2.6. Fourier Transform Infrared (FTIR) Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Preparation of Autoclaved Powders
3.3. Physicochemical Properties of Malanga Flour, Corn Starch and Their Respective Resistant Starches
3.3.1. Chemical Composition
3.3.2. Apparent Amylose Content
3.3.3. Color Attributes
3.4. Thermal Properties
3.5. Granule Morphology
3.6. In Vitro Digestibility of Native and Autoclaved Samples
3.6.1. Total Starch
3.6.2. Available Starch
3.6.3. Resistant Starch
3.6.4. Retrograded Resistant Starch
3.7. The Molar Mass of Amylose
3.8. Fourier Transform Infrared (FTIR) Spectroscopy
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Graf, B.L.; Zhang, L.; Corradini, M.G.; Kuhn, P.; Newman, S.S.; Salbaum, J.M.; Raskin, I. Physicochemical differences between malanga (Xanthosoma sagittifolium) and potato (Solanum tuberosum) tubers are associated with differential effects on the gut microbiome. J. Funct. Foods. 2018, 45, 268–276. [Google Scholar] [CrossRef]
- Hoyos-Leyva, J.D.; Bello-Perez, L.A.; Yee-Madeira, H.; Rodriguez-Garcia, M.E.; Aguirre-Cruz, A. Characterization of the flour and starch of aroid cultivars grown in Mexico. Starch-Stärke 2017, 69, 1600370. [Google Scholar] [CrossRef]
- Falade, K.O.; Okafor, C.A. Physical, functional, and pasting properties of flours from corms of two cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. J. Food Sci. Technol. 2015, 52, 3440–3448. [Google Scholar] [CrossRef] [Green Version]
- Himeda, M.; Njintang, Y.N.; Gaiani, C.; Nguimbou, R.M.; Scher, J.; Facho, B.; Mbofung, C.M.F. Physicochemical and thermal properties of taro (Colocasia esculenta sp.) powders as affected by state of maturity and drying method. J. Food Sci. Technol. 2012, 51, 1857–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boakye, A.A.; Wireko-Manu, F.D.; Oduro, I.; Ellis, W.O.; Gudjónsdottir, M.; Chronakis, I.S. Utilizing cocoyam (Xanthosoma sagittifolium) for food and nutrition security: A review. Food Sci. Nutr. 2018, 6, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Boakye, A.A.; Gudjónsdottir, M.; Wireko-Manu, F.D.; Oduro, I.; Ellis, W.O.; Chronakis, I.S. Water–Starch Interactions of Red and White Cocoyam (Xanthosoma sagittifolium). Starch-Stärke 2018, 71, 1800128. [Google Scholar] [CrossRef]
- Markusse, D.; Marcel, N.R.; Aboubakar, X.; Nicolas, N.Y.; Joël, S.; Moses, M.F.C. Production, physicochemical and sensory characterization of cocoyam mixed flours and pastes (achu). J. Food Meas. Charact. 2018, 12, 1242–1252. [Google Scholar] [CrossRef]
- Srichuwong, S.; Sunarti, T.C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydr. Polym. 2005, 62, 25–34. [Google Scholar] [CrossRef]
- Nugent, A.P. Health properties of resistant starch. Nutr. Bull. 2005, 30, 27–54. [Google Scholar] [CrossRef]
- Dundar, A.N.; Gocmen, D. Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydr. Polym. 2013, 97, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Reddy, C.K.; Haripriya, S.; Mohamed, A.N.; Suriya, M. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch. Food. Chem. 2014, 155, 38–44. [Google Scholar] [CrossRef]
- Ashwar, B.A.; Gani, A.; Shah, A.; Masoodi, F.A. Production of RS4 from rice by acetylation: Physicochemical, thermal, and structural characterization. Starch-Stärke 2016, 68, 1–10. [Google Scholar] [CrossRef]
- Fuentes-Zaragoza, E.; Riquelme-Navarrete, M.J.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Resistant starch as functional ingredient: A review. Food Research International. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Baixauli, R.; Salvador, A.; Martínez-Cervera, S.; Fiszman, S.M. Distinctive sensory features introduced by resistant starch in baked products. LWT-Food Sci. Technol. 2008, 41, 1927–1933. [Google Scholar] [CrossRef]
- Ashwar, B.A.; Gani, A.; Wani, I.A.; Shah, A.; Masoodi, F.A.; Saxena, D.C. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: In vitro digestibility, thermal and structural characterization. Food Hydrocoll. 2016, 56, 108–117. [Google Scholar] [CrossRef]
- Buksa, K. Extraction and characterization of rye grain starch and its susceptibility to resistant starch formation. Carbohydr. Polym. 2018, 194, 184–192. [Google Scholar] [CrossRef] [PubMed]
- García-Rosas, M.; Bello-Perez, L.A.; Yee-Madeira, H.; Ramos, G.; Flores-Morales, A.; Mora-Escobedo, R. Resistant starch content and structural changes in maize (Zea mays) tortillas during storage. Starch-Stärke 2009, 61, 414–421. [Google Scholar] [CrossRef]
- Mishra, S.; Monro, J.; Hedderley, D. Effect of processing on slowly digestible starch and resistant starch in potato. Starch-Stärke. 2008, 60, 500–507. [Google Scholar] [CrossRef]
- González-Soto, R.A.; Sánchez-Hernández, L.; Solorza-Feria, J.; Núñez-Santiago, C.; Flores-Huicochea, E.; Bello-Pérez, L.A. Resistant starch production from non-conventional starch sources by extrusión. Food Sci. Technol. Int. 2006, 12, 5–11. [Google Scholar] [CrossRef]
- Simsek, S.; El, S.N. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydr. Polym. 2012, 90, 1204–1209. [Google Scholar] [CrossRef]
- Li, T.; An, F.; Teng, H.; Huang, Q.; Zeng, F. Comparison of structural features and in vitro digestibility of purple yam (Dioscorea alata L.) resistant starches by autoclaving and multi-enzyme hydrolysis. Food Sci. Biotechnol. 2018, 27, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, M.M.; Reineke, K.; Gogou, E.; Taoukis, P.S.; Knorr, D. Impact of high pressure treatment on the available glucose content of various starch types: A case study on wheat, tapioca, potato, corn, waxy corn and resistant starch (RS3). Innov. Food Sci. Emerg. Technol. 2015, 30, 24–30. [Google Scholar] [CrossRef]
- Jane, J.; Shen, L.; Lim, S.; Kasemsuwan, T.; Nip, W.K. Physical and chemical studies of taro starches and flours. Cereal Chem. 1992, 69, 528–535. [Google Scholar]
- Pérez, E.; Schultz, F.S.; Pacheco de Delahaye, E. Characterization of some properties of starches isolated from Xanthosoma sagittifolium (tannia) and Colocasia esculenta (taro). Carbohydr. Polym. 2005, 60, 139–145. [Google Scholar] [CrossRef]
- Aboubakar, Y.N.; Njintang, J.; Scher, C.M.F.; Mbofung, J. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Food Eng. 2008, 86, 294–305. [Google Scholar] [CrossRef]
- Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; Monter-Miranda, J.G.; Aparicio-Saguilán, A.; Torruco-Uco, J.G.; Salgado-Delgado, R.; Bello-Pérez, L.A. Digestibilidad in vitro y propiedades térmicas, morfológicas y funcionales de harinas y almidones de avenas de diferentes variedades. Rev. Mex. Ing. Quim. 2015, 14, 81–97. [Google Scholar]
- Nuñez-Santiago, M.C.; García-Suárez, F.J.; Gutiérrez-Meraz, F.; Sánchez-Rivera, M.M.; Bello-Pérez, L.A. Some intrinsic and extrinsic factors of acetylated starches: Morphological, physicochemical and structural characteristics. Rev. Mex. Ing. Quim. 2011, 10, 501–512. [Google Scholar]
- Rivas-González, M.; Zamudio-Flores, P.B.; Bello-Pérez, L.A. Efecto del grado de acetilación en las características morfológicas y fisicoquímicas del almidón de plátano. Rev. Mex. Ing. Quim. 2009, 8, 291–297. [Google Scholar]
- Pérez, E.E.; Gutierrez, M.E.; Pacheco de Delahaya, E.; Tovar, J.; Lares, M. Production and characterization of Xanthosoma sagittifolium and Colocasia esculenta flours. J. Food Sci. 2007, 72, S367–S372. [Google Scholar] [CrossRef]
- Whistler, R.L.; BeMiller, J.N. Carbohydrate Chemistry for Food Scientists; Eagan Press: St. Paul, MN, USA, 1997. [Google Scholar]
- Tirado-Gallegos, J.M.; Zamudio-Flores, P.B.; Ornelas-Paz, J.J.; Rios-Velasco, C.; Acosta-Muñiz, C.H.; Gutiérrez-Meraz, F.; Islas-Hernández, J.J.; Salgado-Delgado, R. Effect of the method of isolation and the degree of ripeness on the physicochemical, structural and rheological properties of apple starch. Rev. Mex. Ing. Quim. 2016, 15, 391–408. [Google Scholar] [CrossRef]
- Bustillos-Rodríguez, J.C.; Ordóñez-García, M.; Tirado-Galllegos, J.M.; Zamudio-Flores, P.B.; Ornelas-Paz, J.D.J.; Acosta-Muñiz, C.H.; Gallegos-Morales, G.; Sepúlveda-Ahumada, D.R.; Salas-Marina, M.A.; Berlanga-Reyes, D.I.; et al. Physicochemical, thermal and rheological properties of native and oxidized starch from corn landraces and hybrids. Food Biophys. 2019, 14, 182–192. [Google Scholar] [CrossRef]
- Rincón-Londoño, N.; Vega-Rojas, L.J.; Contreras-Padilla, M.; Acosta-Osorio, A.; Rodríguez-García, M.E. Analysis of the pasting profile in corn starch: Structural, morphological, and thermal transformations. Part I. Int. J. Biol. Macromol. 2016, 91, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Kaur, M.; Singh, N.; Lim, S.T. A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Sci. Technol. 2008, 41, 1000–1010. [Google Scholar] [CrossRef]
- Lauzon, R.D.; Shiraishi, K.; Yamazaki, M.; Sawayama, S.; Sugiyama, N.; Kawabata, A. Physicochemical properties of cocoyam starch. Food Hydrocoll. 1995, 9, 77–81. [Google Scholar] [CrossRef]
- Sefa-Dedeh, S.; Sackey, E.K.A. Starch structure and some properties of cocoyam (Xanthosoma saggitifolium and Colocasia esculenta) starch and raphides. Food Chem. 2002, 79, 435–444. [Google Scholar] [CrossRef]
- Lertwanawatana, P.; Frazier, R.A.; Niranjan, K. High pressure intensification of cassava resistant starch (RS3) yields. Food Chem. 2015, 181, 85–93. [Google Scholar] [CrossRef]
- Shah, A.; Masoodi, F.A.; Gani, A.; Ashwar, B.A. In-vitro digestibility, rheology, structure, and functionalityt of RS3 from oat starch. Food Chem. 2016, 212, 749–758. [Google Scholar] [CrossRef]
- Hung, P.V.; Chau, H.T.; Phi, N.T.L. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents. Food Chem. 2016, 191, 74–80. [Google Scholar] [CrossRef]
- Toutouji, M.R.; Farahnaky, A.; Santhakumar, A.B.; Oli, P.; Butardo, J.V.M.; Blanchard, X.J.V.M. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends Food Sci. Technol. 2019, 88, 10–22. [Google Scholar] [CrossRef]
- Woolnough, J.W.; Monro, J.A.; Brennan, C.S.; Bird, A.R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardisation. Int. J. Food Sci. Technol. 2008, 43, 2245–2256. [Google Scholar] [CrossRef]
- Dupuis, J.H.; Liu, Q.; Yada, R.Y. Methodologies for increasing the resistant starch content of food starches: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1219–1234. [Google Scholar] [CrossRef]
- Hasjim, J.; Ai, Y.; Jane, J. Novel applications of amylose-lipid complex as resistant starch type 5. In Resistant Starch Sources, Applications and Health Benefits; Shi, Y.C., Maningat, C.C., Eds.; John Wiley and Sons, Ltd.: Chichester, UK, 2013; pp. 79–94. [Google Scholar]
- Martínez-Alvarenga, M.S.; Martínez-Rodríguez, E.Y.; García-Amezquita, L.E.; Olivas, G.I.; Zamudio-Flores, P.B.; Acosta-Muñiz, C.H.; Sepúlveda, D.R. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate–Maltodextrin conjugates. Food Hydrocoll. 2014, 38, 110–118. [Google Scholar] [CrossRef]
- Berry, C.S. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J. Cereal Sci. 1986, 4, 301–314. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Patiño-Rodríguez, O.; Agama-Acevedo, E.; Pacheco-Vargas, G.; Alvarez-Ramirez, J.; Bello-Pérez, L.A. Physicochemical, microstructural and digestibility analysis of gluten-free spaghetti of whole unripe plantain flour. Food Chem. 2019, 298, 125085. [Google Scholar] [CrossRef]
- AACC. American Association of Cereals Chemists; Approved Methods of the AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Espinosa-Solis, V.; Jane, J.L.; Bello-Pérez, L.A. Physicochemical characteristics of starches from unripe fruits of mango and banana. Starch-Stärke. 2009, 61, 291–299. [Google Scholar] [CrossRef]
- Takeda, Y.; Hizukuri, S. Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 1987, 168, 79–88. [Google Scholar] [CrossRef]
- Flores-Peña, F.F.; Lozano-Quezada, F.Y.; Ramos-Martínez, A.; Salgado-Delgado, R.; Guerrero-Prieto, V.M.; Ramírez-Mancinas, S.; Bello-Pérez, L.A.; Zamudio-Flores, P.B. Caracterización fisicoquímica, reológica y funcional de harina de avena (Avena sativa L. cv Bachíniva) cultivada en la región de Cuauhtémoc, Chihuahua. Tecnociencia-Chihuah. 2014, 3, 152–162. [Google Scholar]
- Paredes-López, O.; Bello-Pérez, L.A.; López, M.G. Amylopectin: Structural, gelatinisation and retrogradation studies. Food Chem. 1994, 50, 411–417. [Google Scholar] [CrossRef]
- Goñi, I.; García-Díaz, L.; Mañas, E.; Saura-Calixto, F. Analysis of resistant starch: A method for foods and food products. Food Chem. 1996, 56, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Holm, J.; Hagander, B.; Björck, I.; Eliasson, A.C.; Lundquist, I. The effect of various thermal processes on the glycemic response to whole-grain wheat products in humans and rats. J. Nutr. 1989, 11, 1631–1638. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goru, I.; Bravo, L.; Manas, E. Resistant-starch in foods: Modified method for dietary fiber residues. Food Sci. 1993, 58, 642–643. [Google Scholar] [CrossRef]
- Torruco-Uco, J.G.; Chávez-Murillo, C.E.; Hernández-Centeno, F.; Salgado-Delgado, R.; Tirado-Gallegos, J.M.; Zamudio-Flores, P.B. Use of High-Performance Size-Exclusion Chromatography for Characterization of Amylose Isolated from Diverse Botanical Sources. Int. J. Food Prop. 2016, 19, 1362–1369. [Google Scholar] [CrossRef]
- Tirado-Gallegos, J.M.; Zamudio-Flores, P.B.; Ornelas-Paz, J.d.J.; Rios-Velasco, C.; Olivas-Orozco, G.I.; Espino-Díaz, M.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J.; Aguilar-González, M.A.; Lardizábal-Gutiérrez, D.; et al. Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings 2018, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Fox, E.; Shotton, K.; Urlich, C. Sigma-Stat User’s Manual; Jandel Scientific: Sacramento, CA, USA, 1995. [Google Scholar]
- Walpole, E.R.; Myers, H.R.; Myers, L.S. Probabilidad y Estadística para Ingenieros, 6th ed.; Prentice-Hall: Hispanoamerica, Mexico, 1999; pp. 481–482. [Google Scholar]
Composition (%) | Sample 1 | |||
---|---|---|---|---|
MF | AMF | CS | ACS | |
Moisture | 15.65 ± 0.51 a | 9.38 ± 0.94 b | 14.36 ± 0.80 a | 7.13 ± 0.71 c |
Ash | 6.31 ± 1.07 a | 6.60 ± 0.94 a | 5.69 ± 1.20 a | 1.81 ± 0.64 b |
Protein 2 | 2.79 ± 0.95 a | 1.06 ± 0.27 b | 0.68 ± 0.05 c | 0.37 ± 0.03 d |
Fat | 1.08 ± 0.21 a | 0.72 ± 0.21 a | 0.11 ± 0.03 b | 0.10 ± 0.04 b |
Carbohydrate 3 | 74.17 ± 0.38 c | 82.24 ± 0.68 b | 79.16 ± 0.85 c | 90.59 ± 0.15 a |
Total dietary fiber 4 | 1.58 ± 0.13 a | 1.03 ± 0.19 b | 0.36 ± 0.08 c | 0.29 ± 0.05 d |
Yield | Nd | 89.3 ± 0.31 a | Nd | 89.5 ± 0.37 a |
Sample 1 | Mw × 103 (g/mol) 2 | Apparent Amylose (%) |
---|---|---|
MF | 93.12 ± 2.51 b | 28.36 ± 1.65 a |
AMF | 84.70 ± 1.80 c | 23.84 ± 1.18 b |
CS | 110.35 ± 8.60 a | 27.35 ± 0.98 a |
ACS | 85.10 ± 3.75 c | 22.18 ± 1.27 b |
Parameter | Sample 1 | |||
---|---|---|---|---|
MF | AMF | CS | ACS | |
L* | 91.50 ± 0.08 c | 78.12 ± 0.11 d | 100.02 ± 0.02 a | 97.90 ± 0.06 b |
C* | 4.49 ± 0.02 b | 14.26 ± 0.17 a | 4.91 ± 0.03 b | 2.79 ± 0.00 c |
°h | 38.58 ± 0.30 d | 64.98 ± 0.09 c | 106.52 ± 0.49 a | 100.24 ± 0.39 b |
Sample 1 | Thermal Variables 2 | |||
---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | |
MF | 75.14 ± 0.13 b | 84.56 ± 0.13 b | 92.03 ± 0.27 b | 12.49 ± 0.46 a |
AMF | 86.13 ± 0.80 a | 99.17 ± 0.81 a | 112.31 ± 1.18 a | 9.36 ± 0.61 b |
CS | 70.01 ± 0.23 c | 74.01 ± 0.02 c | 79.81 ± 0.06 c | 7.47 ± 0.14 c |
ACS | 85.36 ± 0.72 a | 98.14 ± 0.65 a | 110.11 ± 0.84 a | 8.11 ± 0.50 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Solis, V.; Zamudio-Flores, P.B.; Espino-Díaz, M.; Vela-Gutiérrez, G.; Rendón-Villalobos, J.R.; Hernández-González, M.; Hernández-Centeno, F.; López-De la Peña, H.Y.; Salgado-Delgado, R.; Ortega-Ortega, A. Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch. Molecules 2021, 26, 4006. https://doi.org/10.3390/molecules26134006
Espinosa-Solis V, Zamudio-Flores PB, Espino-Díaz M, Vela-Gutiérrez G, Rendón-Villalobos JR, Hernández-González M, Hernández-Centeno F, López-De la Peña HY, Salgado-Delgado R, Ortega-Ortega A. Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch. Molecules. 2021; 26(13):4006. https://doi.org/10.3390/molecules26134006
Chicago/Turabian StyleEspinosa-Solis, Vicente, Paul Baruk Zamudio-Flores, Miguel Espino-Díaz, Gilber Vela-Gutiérrez, J. Rodolfo Rendón-Villalobos, María Hernández-González, Francisco Hernández-Centeno, Hayde Yajaira López-De la Peña, René Salgado-Delgado, and Adalberto Ortega-Ortega. 2021. "Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch" Molecules 26, no. 13: 4006. https://doi.org/10.3390/molecules26134006
APA StyleEspinosa-Solis, V., Zamudio-Flores, P. B., Espino-Díaz, M., Vela-Gutiérrez, G., Rendón-Villalobos, J. R., Hernández-González, M., Hernández-Centeno, F., López-De la Peña, H. Y., Salgado-Delgado, R., & Ortega-Ortega, A. (2021). Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch. Molecules, 26(13), 4006. https://doi.org/10.3390/molecules26134006