HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of HTO/CA
2.1.1. XRD
2.1.2. SEM-EDS
2.1.3. BET
2.1.4. FTIR
2.1.5. Water Contact Angle Measurement
2.2. Effect of HTO Loading on the Li+ Adsorption Capacity
2.3. Li+ Adsorption/Desorption Performance of HTO/CA
2.4. Li+ Adsorption Isotherm on HTO/CA
2.5. Selectivity Performance
2.6. Cyclic Adsorption/Desorption Performance
2.7. Performance in Seawater
3. Materials and Methods
3.1. Materials
3.2. Preparation of the HTO Powder
3.3. Preparation of HTO/CA
3.4. Characterization of the HTO/CA
3.5. Li+ Adsorption Performance Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. iScience 2021, 24, 102332. [Google Scholar] [CrossRef] [PubMed]
- Chitre, A.; Freake, D.; Lander, L.; Edge, J.; Titirici, M.M. Towards a more sustainable lithium-ion battery future: Recycling LIBs from electric vehicles. Batter. Supercaps 2020, 3, 1124–1125. [Google Scholar] [CrossRef]
- Liu, C.; Tao, B.; Wang, Z.; Wang, D.; Guo, R.; Chen, L. Preparation and characterization of lithium ion sieves embedded in a hydroxyethyl cellulose cryogel for the continuous recovery of lithium from brine and seawater. Chem. Eng. Sci. 2021, 22, 115984. [Google Scholar] [CrossRef]
- Roobavannan, S.; Vigneswaran, S.; Naidu, G. Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of water and lithium from seawater. Chem. Eng. J. 2020, 396, 125386. [Google Scholar] [CrossRef]
- Yu, C.; Lu, J.; Dai, J.; Dong, Z.; Lin, X.; Xing, W.; Wu, Y.; Ma, Z. Bio-inspired fabrication of Ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. J. Colloid Interface Sci. 2020, 572, 340–353. [Google Scholar] [CrossRef]
- Ryu, T.; Rengaraj, A.; Haldorai, Y.; Shin, J.; Choe, S.R.; Lee, G.-W.; Hwang, S.-K.; Han, Y.-K.; Kim, B.-G.; Huh, Y.S.; et al. Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater. Solid State Ion. 2017, 308, 77–83. [Google Scholar] [CrossRef]
- Tang, L.; Huang, S.; Wang, Y.; Liang, D.; Li, Y.; Li, J.; Wang, Y.; Xie, Y.; Wang, W. Highly Efficient, Stable, and Recyclable Hydrogen manganese oxide/cellulose film for the extraction of lithium from seawater. ACS Appl. Mater. Interfaces 2020, 12, 9775–9781. [Google Scholar] [CrossRef]
- Ryu, T.; Haldorai, Y.; Rengaraj, A.; Shin, J.; Hong, H.-J.; Lee, G.-W.; Han, Y.-K.; Huh, Y.S.; Chung, K.-S. Recovery of lithium ions from seawater using a continuous flow adsorption column packed with cranulated chitosan lithium manganese oxide. Ind. Eng. Chem. Res. 2016, 55, 7218–7225. [Google Scholar] [CrossRef]
- Wu, J.; Ren, X.; Wei, Q. Research progress on separation and extraction of lithium from salt-lake brine. Inorg. Chem. Ind. 2020, 52, 1–6. [Google Scholar]
- Zhang, H.; Ding, H.; Xu, Z. Present situation and progress of lithium extraction from salt lake brine and seawater bymembrane technology. Technol. Water Treat. 2017, 43, 1–7. [Google Scholar]
- Weng, D.; Duan, H.; Hou, Y.; Huo, J.; Chen, L.; Zhang, F.; Wang, J. Introduction of manganese based lithium-ion sieve-a review. Prog. Nat. Sci. 2020, 30, 139–152. [Google Scholar] [CrossRef]
- Wang, L.; Meng, C.G.; Ma, W. Study on Li+ uptake by lithium ion-sieve via the pH technique. Colloids Surf. A-Physicochem. Eng. Asp. 2009, 334, 3–39. [Google Scholar] [CrossRef]
- Bai, C.; Guo, M.; Zhang, H.; Wu, Z.; Li, Q. The research progress of extracting lithium from brine by lithium ion sieve. Chem. Ind. Eng. Prog. 2017, 36, 802–809. [Google Scholar]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Kim, H.; Lee, S.-P.; Chung, W.-J. Development of high capacity Li+ adsorbents from H2TiO3/polymer nanofiber composites: Systematic polymer screening, characterization and evaluation. J. Ind. Eng. Chem. 2019, 70, 124–135. [Google Scholar] [CrossRef]
- Wei, S.; Wei, Y.; Chen, T.; Liu, C.; Tang, Y. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chem. Eng. J. 2020, 379, 122407. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Chao, Y.; Chen, W.; Luo, J.; Xiong, J.; Zhu, F.; Chu, X.; Li, H.; Zhu, W. Amorphous TiO2-derived large-Capacity lithium ion sieve for lithium recovery. Chem. Eng. Technol. 2020, 43, 1784–1791. [Google Scholar] [CrossRef]
- Li, X.; Chao, Y.; Chen, L.; Chen, W.; Luo, J.; Wang, C.; Wu, P.; Li, H.; Zhu, W. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 2020, 392, 123731. [Google Scholar] [CrossRef]
- Marthi, R.; Asgar, H.; Gadikota, G.; Smith, Y.R. On the Structure and lithium adsorption mechanism of layered H2TiO3. Acs Appl. Mater. Interfaces 2021, 13, 8361–8369. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Wei, Z.; Hu, J.; Guo, Y.; Deng, T. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. Chem. Eng. J. 2021, 410, 128320. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, P.; Qi, P.; Gao, C. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane. Chem. Eng. J. 2014, 235, 340–348. [Google Scholar] [CrossRef]
- Xiao, J.-L.; Sun, S.-Y.; Song, X.; Li, P.; Yu, J.-G. Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve. Chem. Eng. J. 2015, 279, 659–666. [Google Scholar] [CrossRef]
- Xiao, G.-P.; Tong, K.-F.; Sun, S.-Y.; Yu, J.-G. Preparation of spherical PVC-MnO2 ion-sieve and its lithium adsorption property. Chin. J. Inorg. Chem. 2012, 28, 2385–2394. [Google Scholar]
- Hong, H.-J.; Park, I.-S.; Ryu, J.; Ryu, T.; Kim, B.-G.; Chung, K.-S. Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater. Chem. Eng. J. 2015, 271, 71–78. [Google Scholar] [CrossRef]
- Hong, H.-J.; Ryu, T.; Park, I.-S.; Kim, M.; Shin, J.; Kim, B.-G.; Chung, K.-S. Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem. Eng. J. 2018, 337, 455–461. [Google Scholar] [CrossRef]
- Li, H.-F.; Li, L.-J.; Peng, X.-W.; Ji, L.-M.; Li, W. Extraction kinetics of lithium from salt lake brine by N,N-bis(2-ethylhexyl) acetamide using Lewis Cell. Hydrometallurgy 2018, 178, 84–87. [Google Scholar] [CrossRef]
- Saif, H.M.; Huertas, R.M.; Pawlowski, S.; Crespo, J.G.; Velizarov, S. Development of highly selective composite polymeric membranes for Li+/Mg2+ separation. J. Membr. Sci. 2021, 620, 118891. [Google Scholar] [CrossRef]
- Wang, Q.; Du, X.; Gao, F.; Liu, F.; Liu, M.; Hao, X.; Tang, K.; Guan, G.; Abudula, A. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration. Sep. Purif. Technol. 2019, 226, 59–67. [Google Scholar] [CrossRef]
- Park, M.J.; Nisola, G.M.; Vivas, E.L.; Limjuco, L.A.; Lawagon, C.P.; Seo, J.G.; Kim, H.; Shon, H.K.; Chung, W.-J. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater. J. Membr. Sci. 2016, 510, 141–154. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Park, M.J.; Nisola, G.M.; Beltran, A.B.; Torrejos, R.E.C.; Seo, J.G.; Lee, S.-P.; Kim, H.; Chung, W.-J. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate. Chem. Eng. J. 2014, 254, 73–81. [Google Scholar] [CrossRef]
- Nisola, G.M.; Limjuco, L.A.; Vivas, E.L.; Lawagon, C.P.; Park, M.J.; Shon, H.K.; Mittal, N.; Nah, I.W.; Kim, H.; Chung, W.-J. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation. Chem. Eng. J. 2015, 280, 536–548. [Google Scholar] [CrossRef]
- Mo, L.; Pang, H.; Tan, Y.; Zhang, S.; Li, J. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chem. Eng. J. 2019, 378, 122157. [Google Scholar] [CrossRef]
- Zhu, L.; Zong, L.; Wu, X.; Li, M.; Wang, H.; You, J.; Li, C. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yuan, Y.; Yu, Q.; Yan, B.; Qian, Y.; Wen, J.; Ma, C.; Jiang, S.; Wang, X.; Wang, N. Bio-inspired antibacterial cellulose paper-poly(amidoxime) composite hydrogel for highly efficient uranium(VI) capture from seawater. Chem. Commun. 2020, 56, 3935–3938. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Jiao, Y.; Wei, S.; Zhang, L.; Wu, Y.; Li, J. Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chem. Eng. J. 2019, 359, 459–475. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.-X.; Yu, J.-Y. Kinetics of cellulose regrneration from cellulose-NaOH/thiourea/urea/H2O system. Cellul. Chem. Technol. 2011, 45, 593–604. [Google Scholar]
- Wan, C.; Li, J. Facile synthesis of well-dispersed superparamagnetic gamma-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr(VI) removal from contaminated water. ACS Sustain. Chem. Eng. 2015, 3, 2142–2152. [Google Scholar] [CrossRef]
- Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 2011, 83, 1766–1774. [Google Scholar] [CrossRef]
- Huang, K.L.; Wu, R.; Cao, Y.; Li, H.Q.; Wang, J.S. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chin. J. Chem. Eng. 2013, 21, 577–584. [Google Scholar] [CrossRef]
- Mai, N.L.; Ahn, K.; Koo, Y.M. Methods for recovery of ionic liquids-a review. Process Biochem. 2014, 49, 872–881. [Google Scholar] [CrossRef]
- Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A. Lithium recovery from salt lake brine by H2TiO3. Dalton Trans. 2014, 43, 8933–8939. [Google Scholar] [CrossRef]
- Limjuco, L.A.; Nisola, G.M.; Lawagon, C.P.; Lee, S.-P.; Seo, J.G.; Kim, H.; Chung, W.-J. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 504, 267–279. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, D.; Yao, Q.; Zhou, J. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance. Appl. Surf. Sci. 2016, 368, 82–87. [Google Scholar] [CrossRef]
- Budtova, T. Cellulose II aerogels: A review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergstrom, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xiong, Y.; Fan, B.; Yao, Q.; Wang, H.; Jin, C.; Sun, Q. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci. Rep. 2016, 6, 32383. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, L.; Chen, L.; Duan, G.; Mei, C.; Huang, C.; Han, J.; Jiang, S. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 2019, 26, 6653–6667. [Google Scholar] [CrossRef]
- Poaty, B.; Vardanyan, V.; Wilczak, L.; Chauve, G.; Riedl, B. Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog. Org. Coat. 2014, 77, 813–820. [Google Scholar] [CrossRef]
- Han, Y.; Kim, H.; Park, J. Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chem. Eng. J. 2012, 210, 482–489. [Google Scholar] [CrossRef]
- Shi, X.-C.; Zhang, Z.-B.; Zhou, D.-F.; Zhang, L.-F.; Chen, B.-Z.; Yu, L.-L. Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans. Nonferrous Met. Soc. China 2013, 23, 253–259. [Google Scholar] [CrossRef]
- Ju, P.; Liu, Q.; Zhang, H.; Chen, R.; Liu, J.; Yu, J.; Liu, P.; Zhang, M.; Wang, J. Hyperbranched topological swollen-layer constructs of multi-active sites polyacrylonitrile (PAN) adsorbent for uranium(VI) extraction from seawater. Chem. Eng. J. 2019, 374, 1204–1213. [Google Scholar] [CrossRef]
- Xiao, G.; Tong, K.; Zhou, L.; Xiao, J.; Sun, S.; Li, P.; Yu, J. Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve. Ind. Eng. Chem. Res. 2012, 51, 10921–10929. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, K.; Luo, J.; Luo, S.; Crittenden, J. Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 ion cages. Environ. Sci. Technol. 2016, 50, 13002–13012. [Google Scholar] [CrossRef]
- Hong, H.-J.; Park, I.-S.; Ryu, T.; Ryu, J.; Kim, B.-G.; Chung, K.-S. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chem. Eng. J. 2013, 234, 16–22. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Q.; Zhang, H.; Lu, Z.; Liu, J.; Chen, R.; Li, R.; Li, Z.; Liu, P.; Wang, J. Efficient removal of uranium(VI) from simulated seawater using amidoximated polyacrylonitrile/FeOOH composites. Dalton Trans. 2017, 46, 15746–15756. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, H.; Gao, R.; Xiao, S.; Zhang, M.; Yin, Y.; Wang, S.; Li, J.; Yang, D. Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl. Mater. Interfaces 2016, 8, 29179–29185. [Google Scholar] [CrossRef] [PubMed]
- Agblevor, F.A.; Ibrahim, M.M.; El-Zawawy, W.K. Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 2007, 14, 247–256. [Google Scholar] [CrossRef]
- Dogan, M.; Ozdemir, Y.; Alkan, M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dye. Pigment. 2007, 75, 701–713. [Google Scholar] [CrossRef]
- Yang, P.; Chen, R.; Liu, Q.; Zhang, H.; Liu, J.; Yu, J.; Liu, P.; Bai, X.; Wang, J. The efficient immobilization of uranium(vi) by modified dendritic fibrous nanosilica (DFNS) using mussel bioglue. Inorg. Chem. Front. 2019, 6, 746–755. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, H.; Huang, S.; Ba, Z.; Wang, W.; Yu, F.; Liang, D.; Xie, Y.; Wang, Y.; Wang, Y. HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater. Molecules 2021, 26, 4054. https://doi.org/10.3390/molecules26134054
Qian H, Huang S, Ba Z, Wang W, Yu F, Liang D, Xie Y, Wang Y, Wang Y. HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater. Molecules. 2021; 26(13):4054. https://doi.org/10.3390/molecules26134054
Chicago/Turabian StyleQian, Hongbo, Shaodong Huang, Zhichen Ba, Wenxuan Wang, Feihan Yu, Daxin Liang, Yanjun Xie, Yonggui Wang, and Yan Wang. 2021. "HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater" Molecules 26, no. 13: 4054. https://doi.org/10.3390/molecules26134054
APA StyleQian, H., Huang, S., Ba, Z., Wang, W., Yu, F., Liang, D., Xie, Y., Wang, Y., & Wang, Y. (2021). HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater. Molecules, 26(13), 4054. https://doi.org/10.3390/molecules26134054