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Abstract: The present paper reports the determination of the activation energies and the optimum
temperatures of starch hydrolysis by porcine pancreas α-amylase. The parameters were estimated
based on the literature data on the activity curves versus temperature for starch hydrolysis by α-
amylase from porcine pancreas. It was assumed that both the hydrolysis reaction process and the
deactivation process of α-amylase were first-order reactions by the enzyme concentration. A mathe-
matical model describing the effect of temperature on porcine pancreas α-amylase activity was used.
The determine deactivation energies Ea were from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol, the
obtained optimum temperatures Topt were in the range from 311.06 ± 1.10 K to 326.52 ± 1.75 K. In
turn, the values of deactivation energies Ed has been noted in the range from 123.57 ± 14.17 kJ/mol
to 209.37 ± 5.17 kJ/mol. The present study is related to the starch hydrolysis by α-amylase. In
the industry, the obtained results the values Ea, Ed, Topt can be used to design and optimize starch
hydrolysis by α-amylase porcine pancreas. The obtained results might also find application in re-
search on the pharmaceutical preparations used to treat pancreatic insufficiency or prognosis of
pancreatic cancer.

Keywords: porcine pancreas α-amylase; activation energy; deactivation energy; optimum temperature

1. Introduction

The starch molecules are glucose polymers linked together by α-1,4 and α-1,6 gluco-
sidic bonds. Starch is insoluble in water at room temperature [1,2]. These products are the
source of complex carbohydrates. They are synthesized naturally in a variety of plants.
Plants with a high starch content include corn, potato, rice, sorghum, wheat, cassava and
rhizome and bulbil of Chinese jam. Starchy substances are a major part of the human diet
for most people in the world, as well as many other animals [1,3].

The enzymes α-amylases (E.C. 3.2.1.1) catalyze the hydrolysis of α-1,4 glycosidic bonds
present in starch, glycogen and other related carbohydrates to low molecular weight prod-
ucts, such as glucose, maltose and maltotriose [4–8]. These enzymes are present in plants,
animals and microorganisms [9] and have extensive applications in medicine [10–14],
textiles [11], detergent [11], fermentation [11] and the food industry [4,11].

Amylases have potential application in various branches of industrial processes [7]
and have been used in baking [9,11], brewing [9,11] and saccharification of starch.

During the baking process, gelatinization of the starch granules occurs, which together
with the hydrolysis of the starch by α-amylase to cause its liquefaction [9]. In beer, brewing
is the process-mashing (malting) in which enzymatic degradation of starch into fermentable
sugars (maltose) occurs by inter alia α-amylase [9].

The saccharification of starch is an enzymatic hydrolysis of starch byα-amylase which
takes place in three stages. The first is gelling, which is aimed at dissolving the starch
granules. In turn, the second step consists of partial hydrolysis of the suspension, thus,
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it may lead to reduce its viscosity. The final stage of depolymerization is mainly the
formation of mono-, di- and tri-saccharides. This process is called saccharification, due to
the formation of saccharides [3].

The α-amylase which is extremely similar to human pancreatic α-amylase and is
often used in industry is the three-dimensional structure of porcine pancreatic (Sus scrofa).
Molecular cloning and primary structure analysis of porcine pancreatic α-amylase showed
the highest homology to the human pancreatic α-amylase sequence (87.1%) among all the
amylases known [15].

In addition to industrial use, α-amylase from porcine pancreas is used for example
in health food research [16–18], to assay resistant starch (RS), not broken down by human
enzymes in the small intestine [19] and is also used in medical diagnostics [12–14]. One of
the problems is effective diagnostic methods allowing for the prognosis of pancreatic cancer
of cancer, which is an exceptionally aggressive tumour with high mortality. Stotz et al. [12]
hypothesized that the level of α-amylase and lipase quantities in the peripheral blood
and the calculation of the lipase and α-amylase ratio at the time of localized pancreatic
cancer might represent a novel marker for individualized patient risk assessment pancreatic
cancer.

The study of α-amylase activity, important in the diagnosis of pancreatic cancer in
humans, is also used in the industrial hydrolysis of starch by α-amylase. The processes
involving α-amylase cannot be designed without knowing the kinetic parameters of the
process. Therefore, studies on the effect of temperature on α-amylase activity are required.
Hydrolysis with porcine pancreas α-amylase is usually carried out at temperatures higher
than 310 K [7,16,20–25], thus, a significant inactivation of the enzyme may occur. Therefore,
it is necessary to determine the activation energy Ea, the deactivation energy Ed and
the optimum temperature Topt for porcine pancreas α-amylase. The determination of
parameters Ea, Ed, Topt based on experimental data on the effect of temperature on the
activity of α-amylase from porcine pancreas has not been presented in previous studies.

The purpose of the present work was to estimate parameters of the activation energies
Ea, the deactivation energies Ed and the optimum temperatures of starch hydrolysis by
pancreas α-amylase, whose obtained values can be used in works focused on prognosis
for a pancreatic tumour or in industrial purposes can be used to designed and optimized
starch hydrolysis by α-amylase porcine pancreas.

2. Results and Discussion

Based on experimental data on the change in the activity of α-amylase from the porcine
pancreas [7,16,20–22] vs. temperature, values of deactivation energies Ed, β parameters
and temperatures optimal Topt were determined from Equation (6). Figures 1–3 show
experimental data on α-amylase activity by hydrolysis of starch as a substrate, along with
activity curves plotted based on Equation (6) for the values of the specified parameters Ed,
Topt, β listed in Table 1.

The obtained parameters Topt, β, Ed for α-amylase from porcine pancreas are presented
in Table 1, according to the increasing value of the temperatures optimal Topt. Then, based
on the value of the deactivation energy Ed and the parameter β, the activation energy value
Ea was calculated based on Equation (8). The obtained Ea values are presented in Table 1.

Table 1. The values of kinetic parameters estimated for α-amylase porcine pancreas.

Figure t (min) Topt (K) Ed (kJ/mol) β Ea (kJ/mol) Ed/Ea Ref.

1a 3 311.06 ± 1.10 164.9 ± 19.14 1.46 ± 0.29 92.08 ± 23.07 1.79 [7]
1b 5 313.12 ± 0.55 209.37 ± 5.17 1.68 ± 0.12 128.80 ± 9.27 1.63 [20]
2a 60 318.17 ± 1.36 152.83 ± 11.06 0.83 ± 0.24 54.75 ± 17.02 2.79 [15]
2b 60 317.74 ± 1.04 164.06 ± 9.23 0.71 ± 0.16 51.41 ± 12.71 3.19 [15]
3a 15 321.24 ± 1.04 162.70 ± 19.21 0.76 ± 0.17 54.07 ± 15.88 3.01 [21]
3b 30 326.52 ± 1.75 123.57 ± 14.17 0.34 ± 0.10 19.82 ± 7.22 6.23 [22]
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In addition, Figures 1–3 present standard deviation errors for experimental points,
while the 95% confidence limits were marked for the obtained curves.
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Figure 1. The activity of α-amylase porcine pancreas by measurements: (a) Akhond et al. [7]; (b) Aksoy et al. [20]; (•)
experimental data, (solid line) Equation (6); (dotted line) 95% confidence band.
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Figure 2. The activity of α-amylase porcine pancreas by measurements Gopal et al. [15]: (a) isoform I; (b) isoform II; (•)
experimental data, (solid line) Equation (6); (dotted line) 95% confidence band.

Table 2 presents statistical data obtained during the determination of the parameters
of porcine pancreatic α-amylase. High values of regression coefficient R2 (above 0.93) and
standard errors of estimation RSS below 0.19 were obtained; while statistical variability of
Ed and Topt parameters in most of the analyzed cases p < 0.0001. F-Fisher test values were
from 44.93 to 170.77 with a low probability value [p ≤ 0.0031] which confirmed, that when
determining the parameters, it was appropriated to apply Equation (6).
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Figure 3. The activity of α-amylase porcine pancreas by measurements: (a) Louati et al. [21]; (b) Guoet al. [22]; (•)
experimental data, (solid line) Equation (6); (dotted line) 95% confidence band.

Table 2. The statistical data obtained by determining the kinetic parameters of α-amylase porcine
pancreas.

Figure R2 RSS
p

F P Ref.
Ed (kJ/mol) Topt (K) β

1a 0.9789 0.1370 0.0033 <0.0001 0.0151 69.56 0.0031 [7]
1b 0.9856 0.0080 <0.0001 <0.0001 <0.0001 170.77 <0.0001 [20]
2a 0.9374 0.1912 <0.0001 <0.0001 0.0132 44.93 0.0002 [15]
2b 0.9679 0.1592 <0.0001 <0.0001 0.0041 90.43 <0.0001 [15]
3a 0.9817 0.1034 0.0001 <0.0001 0.0044 160.97 <0.0001 [21]
3b 0.9751 0.1117 0.0010 <0.0001 0.0185 78.41 0.0006 [22]

This work aimed to identify the activation energy Ea, the deactivation energy Ed
and the optimum temperature Topt of starch hydrolysis by porcine pancreas α-amylase.
Knowing the obtained values can be used in works focused on prognosis for a pancreatic
tumour.

2.1. The Activation Energy Ea

The obtained values of the activation energy Ea of starch hydrolysis by α-amylase
from porcine pancreas were in the range from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol.

In turn, in [23,24] determined values of Ea activation energy of the starch hydrolysis
were equal to 48.91 kJ/mol and 50.16 kJ/mol, respectively.

The analysis of the data presented in Table 2 allows concluding that there is a correla-
tion between the values of the activation energy Ea, deactivation energy Ed and parameter
β. Indeed, it has been reported that for most of the analyzed cases, with the simultaneous
increase in the values of parameter β and Ed increase, the values of Ea increase. The longer
the starch hydrolysis by α-amylase is carried out, the lower the value of the β parameter.
Determining the influence of the time of measurement α-amylase activity on the value β
parameter of will be the aim of further research.

According to the calculations for the measurement performed by Aksoy et al. [20], the
energy value Ea was six as high compared to the Ea values obtained by Guo et al. [22]. The
observed difference may be due to the different time at which the α-amylase activity is
determined. Indeed, the measurements time of hydrolysis starch time was equal to 5 min
and 30 min in the studies of Aksoy et al. [20] and Guo et al. [22], respectively.

Additionally, α-amylase from porcine pancreas used in to study by Guo et al. [22] was
from Shanghai Kaiyang Biological Technology Co (Shanghai, China). The highest Ea value
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was obtained for α-amylase from Merck AG (Darmstadt, Germany) for measurements
carried out by Aksoy et al. [20].

2.2. The Activation Energy of the Deactivation Process Ed

In the present study, the obtained values of the deactivation energy process were, in
the range from 123.57 ± 14.17 kJ/mol to 209.37 ± 5.17 kJ/mol (Table 2).

The lowest value Ed was obtained in the hydrolysis starch by α-amylase from porcine
pancreas from Biological Technology Co., Ltd. (Shanghai, China) for measurements Guo
et al. [22]. Simultaneously, the Ea value for this α-amylase was also the lowest. The lowest
Ed value was obtained for α-amylase from Merck AG (Germany) for measurements Aksoy
et al. [20]. In addition, the Ea value for this α-amylase was the highest.

The differences in the obtained activation energy value of the deactivation process Ed
can be caused by the use of α-amylase from a different company.

2.3. Optimum Temperature Topt

The determined values of the optimum temperature Topt of starch hydrolysis by α-
amylase from porcine pancreas were different by about fifteen degrees and are in the range
from 311.06 ± 1.10 K to 326.52 ± 1.75 K (Table 2). The highest Topt value was obtained
in the hydrolysis starch by α-amylase from porcine pancreas from Biological Technology
Co., Ltd. (Shanghai, China) for measurements Guo et al. [22]. The lowest value Topt was
obtained in the hydrolysis starch by α-amylase from porcine pancreas from Sigma-Aldrich
for measurements Akhond et al. [7]. Additionally, it should be noted that the measurement
was performed in the shortest time, i.e., 3 min.

In works [23,24], a Topt of starch hydrolysis by porcine pancreatic α-amylase were
presented and equals 313 K and 327 K, respectively.

3. Materials and Methods
3.1. The Effect of Temperature on α-Amylase Activity

The value of activation energy, Ea can be determined from the curve of the depen-
dence of the logarithm of the reaction rate (ln v) on the reciprocal of temperature (1/T), the
so-called Arrhenius dependence [23,26]. However, the determined values of Ea and Ed by
application of the traditional method is burdened with an error. Many researchers have
studied the kinetic parameters of α-amylase of other origins [24,26]; however, the parame-
ters Topt, Ea and Ed were not obtained simultaneously for α-amylase porcine pancreas.

When studying α-amylase activity during the hydrolysis of starch, it is assumed that
the change in substrate concentration S during reaction time t describes by the first-order
equations due to the concentration of the enzyme

dS
dt

= −kE, (1)

where k is the kinetic constant of the enzymatic reaction (1/min) and E is the concentration
of the active enzyme (M).

The change in α-amylase dimensionless activity a is also described by the first-order
kinetics [26,27] with the following equation

da
dt

− kda, (2)

where kd is the kinetic constant of the enzymatic reaction (1/min).
The solution of Equation (2) for the initial condition a (t = 0) = 1 is

a = exp(−kdt) = f (t), (3)
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Kinetic constants k and deactivation constant kd depend on temperature T and are
described by the Arrhenius equations as:

k(T) = A exp
(
− Ea

RT

)
, (4)

kd(T) = B exp
(
− Ed

RT

)
, (5)

where A,B are pre-exponential factors of the hydrolysis reaction rate or deactivation process
of α-amylase (1/min), Ea is the activation energy for the enzymatic reaction (kJ/mol) while
Ed is the activation energy of the deactivation process (kJ/mol), R is the gas constant 8.315
(J/(mol·K)) and T is the absolute temperature (K).

Equations (1)–(5) are the basis for the derived dependence of the change in the dimen-
sionless activity of the enzyme on the temperature measurement T as follows:

a(T) =
exp

(
(Topt−T)

RTTopt
· Ed β
(exp β−1)

){
1 − exp

[
−β exp

(
Ed(T−Topt)

RTTopt

)]}
1 − exp(−β)

, (6)

where Topt is the temperature at which α-amylase shows maximum activity (K) and dimen-
sionless parameter β determines the relationship

β = Bta exp
(
− Ed

RTopt

)
, (7)

where ta is the reaction time of starch hydrolysis by α-amylase from porcine pancreas (min).
The full analysis of the solution of Equation (6) was presented in an earlier publication

of Wojcik and Miłek [28].
It means that knowing the value of the activation energy of the deactivation reaction

Ed and the parameter β, the activation energy Ea is determined by the following equation

Ea = Ed −
Ed · β

exp β − 1
, (8)

Equations (6)–(8) were used to determine the kinetic parameters of inulin hydrolysis by
exo-inulinases Aspergillus niger [29], olive oil hydrolysis by porcine pancreas lipase [30,31],
p-nitrophenyl palmitate hydrolysis by lipases from Rhizopus oryzae 3562 and Enterobacter
aerogenes [32], hydrolysis of starch by α-amylase Bacillus licheniformis [33], inulin hydrolysis
by endo-inulinase A. niger [34] and inulin hydrolysis by inulinase K. marxianus [28].

Based on Equation (6), the parameters Ed, β and Topt were estimated by non-linear
regression according to the methods of least squares [25,27,35–37] determining the residual
sum of squared (RSS) from the equation:

RSS
(
Ed, β, Topt

)
=

n

∑
i=0

1
aexp2

(
aexp − acal

(
Ed, β, Ti, Topt

))2
= min, (9)

where aexp is α-amylase dimensionless activity determined experimentally and acal(Ed, β, T,
Topt) is α-amylase dimensionless activity calculated from Equation (6).

3.2. Assay of α-Amylase Activity

Literature data [7,16,20–22] for porcine pancreas α-amylase from various companies
have been analyzed.

Amylase activity was determined according to Miller [38]. The reaction mixture
consisted of starch, buffer and enzyme solution and incubated for different time (min) at
90 ◦C. The reaction was stopped by the addition of 3,5 dinitrosalicylate (DNS) reagent. The
quantity of reducing sugar was measured spectrophotometrically. The unit of amylase was
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defined as the amount of enzyme which produced 1 µmol of reducing sugar as glucose in
1 min underspecified condition.

Table 3 presents the conditions for measuring α-amylase activity during the hydrolysis
of starch with the various buffer pH, the various duration of measurement and the used
the initial concentration of starch [7,16,20–22].

Table 3. Conditions for measuring α-amylase porcine pancreas activity.

BufferpH t (min) λ (nm) Concentration
of Starch Source Inulinase Ref.

6.9 sodium
phosphate 3 540 0.5% Sigma-Aldrich (St. Louis,

MO, USA) [7]

6.9 phosphate 5 600 2% Merck AG (Germany) [20]

6.9 sodium
phosphate 60 540 1% Sigma Chemical Company [16]

7.0 MOPS 15 575 0.5% Sigma [21]

7.0 MES 30 520 -
Shanghai Kaiyang

BiologicalTechnology Co.,
Ltd. (Shanghai, China)

[22]

4. Conclusions

The following method of determining parameters was used: the optimum temper-
atures Topt, activation energies Ea and deactivation energies Ed of olive oil hydrolysis by
α-amylase from porcine pancreas reaction based on four curves of changes activity of
α-amylase from porcine pancreas depending on the temperature of hydrolysis. For the
optimum temperatures Topt, the difference between the obtained values is fifteen degrees.
The differences in the calculated values of the deactivation energy Ed are equal to about
110 kJ/mol, for the activation energy of the reaction Ea equal to about 85 kJ/mol. The
reason for the differences in the obtained values Ea, Ed, Topt is, above all, different origins of
α-amylase from porcine pancreas. The lowest values Ea and Ed, together with the highest
Topt was obtained for the enzyme derived from Shanghai Kaiyang Biological Technology
Co., Ltd. The highest values Ea and Ed, together with lower Topt obtained for an enzyme
derived from Merck AG (Germany). Additionally, it is essential to mention that the noted
differences in values of parameters can be caused by the various duration of the α-amylase
activity assay, different pH values of the hydrolyzed starch used to test the α-amylase
activity as well as different concentrations of the starch.

The obtained results the values Ea, Ed, Topt can be used to design and optimize starch
hydrolysis α-amylase by porcine pancreas in the food, pharmaceutical and industrial
industries, among others.
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