Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems
Abstract
:1. Introduction
2. Natural Sources
2.1. Extraction, Isolation, and Identification
2.2. Qualitative and Quantitative Analysis
3. Production
3.1. Chemical Synthesis
3.2. Biotransformation
3.2.1. Enzymatic Deglycosylation
3.2.2. Plant Cultures
4. Biological and Pharmacological Activities
4.1. Inhibition of Tyrosinase Melanogenesis and Browning
4.2. Antioxidant and Anti-Inflammatory Activities
4.3. Neuroprotective Activity
4.3.1. Ischemia and Stroke
4.3.2. Alzheimer’s Disease (AD)
4.3.3. Parkinson’s Disease (PD)
4.3.4. Other Models of Neuroprotective Activity
4.4. Hepatoprotective Activity
4.5. Anticancer Activity
4.6. Metabolic Disorders
4.6.1. Glucose Metabolism
4.6.2. Lipid Metabolism
4.7. Antimicrobial Activity
4.7.1. Antiviral Activity
4.7.2. Antibacterial Activity
4.7.3. Antifungal Activity
4.8. Other Activities
4.9. Comparative Activities of Oxyresveratrol (1) and Resveratrol (2)
5. Pharmacokinetic Profile
6. Delivery Systems
7. Conclusions
Funding
Conflicts of Interest
References
- Xu, L.; Liu, C.; Xiang, W.; Chen, H.; Qin, X.; Huang, X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 2014, 10, 44–54. [Google Scholar] [CrossRef]
- Lim, Y.-H.; Kim, K.-H.; Kim, J.-K. Source, biosynthesis, biological activities and pharmacokinetics of oxyresveratrol. Korean J. Food Sci. Tech. 2015, 47, 545–555. [Google Scholar] [CrossRef]
- Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 2010, 36, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhi, S.; Liu, C.; Xu, F.; Zhao, A.; Wang, X.; Ren, Y.; Li, Z.; Yu, M. Characterization of stilbene synthase genes in mulberry (Morus atropurpurea) and metabolic engineering for the production of resveratrol in Escherichia coli. J. Agric. Food Chem. 2017, 65, 1659–1668. [Google Scholar] [CrossRef]
- Maneechai, S.; De-Eknamkul, W.; Umehara, K.; Noguchi, H.; Likhitwitayawuid, K. Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry 2012, 81, 42–49. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Suga, K.; Kasai, R.; Yamasaki, K.; Kamel, M.S.; Mohamed, M.H. Stilbene and 2-arylbenzofuran glucosides from the rhizomes of Schoenocaulon officinale. Chem. Pharm. Bull. 2002, 50, 863–865. [Google Scholar] [CrossRef] [Green Version]
- Awaad, A.S. Phenolic glycosides of Juncus acutus. Chem. Nat. Compd. 2006, 42, 152–155. [Google Scholar] [CrossRef]
- Dai, L.-M.; Tang, J.; Li, H.-L.; Shen, Y.-H.; Peng, C.-Y.; Zhang, W.-D. A new stilbene glycoside from the n-butanol fraction of Veratrum dahuricum. Chem. Nat. Compd. 2009, 45, 325–329. [Google Scholar] [CrossRef]
- Yang, Z.-G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 2011, 16, 6010–6022. [Google Scholar]
- Aydin, T.; Cakir, A.; Kazaz, C.; Bayrak, N.; Bayir, Y.; Taşkesenligil, Y. Insecticidal metabolites from the rhizomes of Veratrum album against adults of colorado potato beetle, Leptinotarsa decemlineata. Chem. Biodivers. 2014, 11, 1192–1204. [Google Scholar] [CrossRef]
- Hanawa, F.; Tahara, S.; Mizutani, J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 1992, 31, 3005–3007. [Google Scholar] [CrossRef]
- Choi, S.W.; Jang, Y.J.; Lee, Y.J.; Leem, H.H.; Kim, E.O. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev. Nutr. Food Sci. 2013, 18, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, E.H.; Achmad, S.A.; Aimi, N.; Indrayanto, G.; Kitajima, M.; Makmur, L.; Surya, M.D.; Syah, Y.M.; Takayama, H. Regioselective glucosylation of oxyresveratrol by cell suspension cultures of Solanum mammosum. J. Chem. Res. 2004, 10, 706–707. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Cheng, K.-W.; Zhu, Q.; Wang, X.-C.; Lin, Z.-X.; Wang, M. Tyrosinase inhibitory constituents from the roots of Morus nigra: A structure-activity relationship study. J. Agric. Food Chem. 2010, 58, 5368–5373. [Google Scholar] [CrossRef]
- Qiu, F.; Komatsu, K.; Kawasaki, K.; Saito, K.; Yao, X.; Kano, Y. A novel stilbene glucoside, oxyresveratrol 3′-O-β-glucopyranoside, from the root bark of Morus alba. Planta Med. 1996, 62, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jin, J.; Shi, L. Protective function of cis-mulberroside A and oxyresveratrol from Ramulus mori against ethanol-induced hepatic damage. Environ. Toxicol. Pharmacol. 2008, 26, 325–330. [Google Scholar] [CrossRef]
- Jung, J.-W.; Park, J.-H.; Seo, K.-H.; Baek, Y.-S.; Oh, E.-J.; Lee, D.-Y.; Lim, D.-W.; Han, D.; Baek, N.-I. Isolation and identification of phenolic compounds from the root bark of Morus alba L. J. Appl. Biol. Chem. 2015, 58, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Nassra, M.; Krisa, S.; Papastamoulis, Y.; Kapche, G.D.; Bisson, J.; André, C.; Konsman, J.-P.; Schmitter, J.-M.; Mérillon, J.-M.; Waffo-Téguo, P. Inhibitory activity of plant stilbenoids against nitric oxide production by lipopolysaccharide-activated microglia. Planta Med. 2013, 79, 966–970. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, Y.; Hirasawa, Y.; Kaneda, T.; Hadi, A.H.A.; Morita, H. Cuspidans A and B, two new stilbenoids from the bark of Gnetum cuspidatum. Chem. Pharm. Bull. 2012, 60, 790–792. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, Y.; Akao, Y.; Hirasawa, Y.; Awang, K.; Hadi, A.H.A.; Sato, S.; Aoyama, C.; Takeo, J.; Shiro, M.; Morita, H. Gneyulins A and B, stilbene trimers, and noidesols A and B, dihydroflavonol-C-glucosides, from the bark of Gnetum gnemonoides. J. Nat. Prod. 2010, 73, 763–767. [Google Scholar] [CrossRef]
- Huang, K.-S.; Wang, Y.-H.; Li, R.-L.; Lin, M. Five new stilbene dimers from the lianas of Gnetum hainanense. J. Nat. Prod. 2000, 63, 86–89. [Google Scholar] [CrossRef]
- Huang, K.-S.; Li, R.-L.; Wang, Y.-H.; Lin, M. Three new stilbene trimers from the lianas of Gnetum hainanense. Planta Med. 2001, 67, 61–64. [Google Scholar] [CrossRef]
- Li, X.-M.; Lin, M.; Wang, Y.-H.; Liu, X. Four new stilbenoids from the lianas of Gnetum montanum f. megalocarpum. Planta Med. 2004, 70, 160–165. [Google Scholar]
- Li, X.-M.; Lin, M.; Wang, Y.-H. Stilbenoids from the lianas of Gnetum pendulum. J. Asian Nat. Prod. Res. 2003, 5, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Wang, Y.H.; Lin, M. Gnetupendin C, a New Stilbene Dimer from the Lianas of Gnetum pendulum. Chin. Chem. Lett. 2001, 12, 611–612. [Google Scholar]
- Shen, C.-C.; Cheng, J.-J.; Lay, H.-L.; Wu, S.-Y.; Ni, C.-L.; Teng, C.-M.; Chen, C.-C. Cytotoxic apigenin derivatives from Chrysopogon aciculatis. J. Nat. Prod. 2012, 75, 198–201. [Google Scholar] [CrossRef]
- Ban, J.Y.; Jeon, S.Y.; Ngyen, T.T.H.; Bae, K.H.; Song, K.S.; Seong, Y.H. Neuroprotective effect of oxyresveratrol from Smilacis Chinae rhizome on amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 2006, 29, 2419–2424. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.-Y.; Kwon, S.-H.; Seong, Y.-H.; Bae, K.; Hur, J.-M.; Lee, Y.-Y.; Suh, D.-Y.; Song, K.-S. β-secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine 2007, 14, 403–408. [Google Scholar] [CrossRef]
- Shao, B.; Guo, H.; Cui, Y.; Liu, A.; Yu, H.; Guo, H.; Xu, M.; Guo, D. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2007, 44, 737–742. [Google Scholar] [CrossRef]
- Huang, H.-L.; Guo, D.-A.; Li, P. Determination of stilbenoids in Smilax china L. by HPLC. Chin. J. New Drugs 2008, 24, 2122–2124. [Google Scholar]
- Ban, J.Y.; Cho, S.O.; Choi, S.-H.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.-S.; Seong, Y.H. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci. 2008, 106, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Shao, B.; Guo, H.-Z.; Guo, D.-A. Flavonoids and stilbenes from Smilax china. Chin. Tradit. Herb. Drugs 2009, 40, 1700–1703. [Google Scholar]
- Chen, L.; Yin, H.; Lan, Z.; Ma, S.; Zhang, C.; Yang, Z.; Li, P.A.; Lin, B. Anti-hyperuricemic and nephroprotective effects of Smilax china L. J. Ethnopharmacol. 2011, 135, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Lim, J.-H.; Kim, S.-H.; Kim, D.-S. Dioscin: A synergistic tyrosinase inhibitor from the roots of Smilax china. Food Chem. 2012, 134, 1146–1148. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Suh, J.-W.; Yang, S.-H.; Kim, B.-R.; Park, T.-S.; Shim, S.-M. Smilax china root extract detoxifies nicotine by reducing reactive oxygen species and inducing CYP2A6. J. Food Sci. 2014, 79, H2132–H2139. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-R.; Yang, S.-H.; Sub, J.-W.; Shim, S.-M. Fermentation of Smilax china root by Aspergillus usami and Saccharomyces cerevisiae promoted concentration of resveratrol and oxyresveratrol and the free-radical scavenging activity. J. Sci. Food Agric. 2014, 94, 1822–1826. [Google Scholar] [CrossRef]
- Wang, W.-X.; Qian, J.-Y.; Wang, X.-J.; Jiang, A.-P.; Jia, A.-Q. Anti-HIV-1 activities of extracts and phenolics from Smilax china L. Pakistan J. Pharm. Sci. 2014, 27, 147–151. [Google Scholar]
- Liu, L.-S.; Huang, H.-L.; Liu, R.-H.; Ren, G.; Shao, F.; Ye, Y.-H.; Lin, T. A new lyoniresinol derivative from Smilax microphylla. Nat. Prod. Comm. 2013, 8, 113–114. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Guo, J.-G.; Liu, J. Two new chemical constituents of Veratrum dahuricum (Turcz.) Loes. f. Helv. Chim. Acta 2013, 96, 345–349. [Google Scholar] [CrossRef]
- Tabanca, N.; Ali, Z.; Bernier, U.R.; Epsky, N.; Nalbantsoy, A.; Khan, I.A.; Ali, A. Bioassay-guided isolation and identification of Aedes aegypti larvicidal and biting deterrent compounds from Veratrum lobelianum. Open Chem. 2018, 16, 324–332. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Liu, J.; Liu, X.; Ruan, W.; Lu, J.; Liu, Y.; Lawson, T.; Shimoni, O.; Lovejoy, D.B.; et al. Stilbenes from Veratrum maackii Regel protect against ethanol-induced DNA damage in mouse cerebellum and cerebral cortex. ACS Chem. Neurosci. 2018, 9, 1616–1624. [Google Scholar] [CrossRef]
- Su, B.-N.; Cuendet, M.; Hawthorne, M.E.; Kardono, L.B.S.; Riswan, S.; Fong, H.H.S.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. J. Nat. Prod. 2002, 65, 163–169. [Google Scholar] [CrossRef]
- Suhartati, T.; Yandria; Suwandp, J.F.; Hadi, S. In vitro and in vivo antiplasmodial activity of oxyresveratrol and artonin E isolated from two Artocarpus plants in Indonesia. Orient. J. Chem. 2010, 26, 825–830. [Google Scholar]
- Shah, M.K.K.; Sirat, H.M.; Jamil, S. Cholinesterase inhibitors from heartwood of Artocarpus fulvicortex F. M. Jarret. J. Teknol. 2016, 78, 185–189. [Google Scholar]
- Hakim, E.H.; Ulinnuha, U.Z.; Syah, Y.M.; Ghisalberti, E.L. Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus gomezianus. Fitoterapia 2002, 73, 597–603. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K.; Chaiwiriya, S.; Sritularak, B.; Lipipun, V. Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem. Biodivers. 2006, 3, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-C.; Hsu, C.-L.; Yen, G.-C. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agric. Food Chem. 2008, 56, 4463–4468. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.-X.; Zhong, G.-Y.; Yao, P.-C.; Lin, Q.-H.; Yuan, W.-J.; Ren, G. Phenolic constituents from roots of Artocarpus heterophyllus. Zhong Cao Yao 2016, 47, 3959–3964. [Google Scholar]
- Li, J.; Lin, Z.; Tang, X.; Liu, G.; Chen, Y.; Zhai, X.; Huang, Q.; Cao, Y. Oxyresveratrol extracted from Artocarpus heterophyllus Lam. inhibits tyrosinase and age pigments in vitro and in vivo. Food Funct. 2020, 11, 6595–6607. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.; Nagarajan, A.; Majeed, M. Pharmacognostic evaluation of leaf and stem wood extracts of Artocarpus hirsutus Lam. Pharmacogn. J. 2017, 9, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Zhao, T.; Wang, M.; Lei, C.; Hou, A. Flavonoids from Artocarpus hypargyreus. Zhongguo Zhongyao Zazhi 2011, 36, 2975–2979. [Google Scholar]
- Likhitwitayawuid, K.; Sritularak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 2005, 19, 177–182. [Google Scholar] [CrossRef]
- Maneechai, S.; Likhitwitayawuid, K.; Sritularak, B.; Palanuvej, C.; Ruangrungsi, N.; Sirisa-ard, P. Quantitative analysis of oxyresveratrol content in Artocarpus lakoocha and ‘Puag-Haad’. Med. Princ. Pract. 2009, 18, 223–227. [Google Scholar] [CrossRef]
- Povichit, N.; Phrutivorapongkul, A.; Suttajit, M.; Leelapornpisid, P. Antiglycation and antioxidant activities of oxyresveratrol extracted from the heartwood of Artocarpus lakoocha Roxb. Maejo Int. J. Sci. Tech. 2010, 4, 454–461. [Google Scholar]
- Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—A green, efficient andversatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun. 2015, 72, 73–80. [Google Scholar] [CrossRef]
- Duangdee, N.; Chamboonchu, N.; Kongkiatpaiboon, S.; Prateeptongkum, S. Quantitative 1HNMR spectroscopy for the determination of oxyresveratrol in Artocarpus lacucha heartwood. Phytochem. Anal. 2019, 30, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Songoen, W.; Phanchai, W.; Brecker, L.; Wenisch, D.; Jakupec, M.A.; Pluempanupat, W.; Schinnerl, J. Highly aromatic flavan-3-ol derivatives from palaeotropical Artocarpus lacucha Buch.-Ham possess aadical scavenging and antiproliferative properties. Molecules 2021, 26, 1078. [Google Scholar] [CrossRef] [PubMed]
- Ti, H.; Wu, P.; Lin, L.; Wei, X. Stilbenes and flavonoids from Artocarpus nitidus subsp. lingnanensis. Fitoterapia 2011, 82, 662–665. [Google Scholar] [CrossRef]
- Yi, W.; Peng, J.; Ren, G.; Jiang, W.; Liang, J.; Yuan, W. Chemical constitutes from root of Artocarpus styracifolius. Zhong Yao Cai 2015, 38, 972–974. [Google Scholar] [PubMed]
- Aneklaphakij, C.; Bunsupa, S.; Sirichamorn, Y.; Bongcheewin, B.; Satitpatipan, V. Taxonomic notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) species complex in Thailand. Plants 2020, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.-J.; Lin, C.-C.; Lu, T.-M.; Li, J.-H.; Chen, I.-S.; Kuo, Y.-H.; Ko, H.-H. Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochemistry 2015, 117, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Royer, M.; Herbette, G.; Eparvier, V.; Beauchêne, J.; Thibaut, B.; Stien, D. Secondary metabolites of Bagassa guianensis Aubl. wood: A study of the chemotaxonomy of the Moraceae family. Phytochemistry 2010, 71, 1708–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.-P.; Zhu, Q.; Fan, C.-L.; Tan, H.-Y.; Wang, M. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis. Food Funct. 2011, 2, 259–264. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Q.; Li, B.; Liu, S.-J.; & Dong, J.-X. A new flavonoid from Cudrania cochinchinensis. Nat. Prod. Res. 2015, 29, 1217–1221. [Google Scholar] [CrossRef]
- Lin, C.-F.; Chen, Y.-J.; Huang, Y.-L.; Chiou, W.-F.; Chiu, J.-H.; Chen, C.-C. A new auronol from Cudrania cochinchinensis. J. Asian Nat. Prod. Res. 2012, 14, 704–707. [Google Scholar] [CrossRef]
- Shan, W.-G.; Shi, L.-L.; Ying, Y.-M.; Hou, X.-R.; Zhan, Z.J. A new prenylated stilbene derivative from the roots of Cudrania tricuspidate. J. Chem. Res. 2013, 285–286. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Tan, H.-Y.; Chen, J.; Wang, M. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure–activity relationship study. Fitoterapia 2013, 84, 242–247. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, Z.; Zhang, X.; Chen, F.; Wang, M. Oxyresveratrol and trans-dihydromorin from the twigs of Cudrania tricuspidata as hypopigmenting agents against melanogenesis. J. Funct. Foods 2015, 13, 375–383. [Google Scholar] [CrossRef]
- Li, C.-P.; Chang, X.-J.; Fang, L.; Yao, J.-B.; Wang, R.-W.; Zhan, Z.-J.; Ying, Y.-M.b.; Shan, W.-G. A new rumenic acid derivative from the roots of Cudrania tricuspidate. Chem. Nat. Compd. 2016, 52, 202–204. [Google Scholar] [CrossRef]
- Vongsak, B.; Jaisamut, S.; Gonsap, K.; Parmontree, P. Optimization of Maclura cochinchinensis extract as a cosmeceutical component for antioxidant and anti-tyrosinase activities. Key Eng. Mater. 2020, 859, 188–193. [Google Scholar] [CrossRef]
- Schultz, T.P.; Harms, W.B.; Nicholas, D.D. Durability of angiosperm heartwood: The importance of extractives. Holzforschung 1995, 49, 29–34. [Google Scholar] [CrossRef]
- Djapić, N.; Djarmati, Z.; Sneźana, F.; Jankov, R. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 2003, 68, 235–237. [Google Scholar] [CrossRef]
- Barnes, R.A.; Gerber, N.N. The antifungal agent from osage orange wood. J. Am. Chem. Soc. 1955, 77, 3259–3262. [Google Scholar] [CrossRef]
- Choi, S.-J. Changes in the secondary metabolites and bioactivity of mulberry leaves upon UV-C irradiation. Korean J. Food Preserv. 2018, 25, 595–604. [Google Scholar] [CrossRef]
- Oh, H.; Ko, E.-K.; Jun, J.-Y.; Oh, M.-H.; Park, S.-U.; Kang, K.-H.; Lee, H.-S.; Kim, Y.-C. Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin, and stilbene from Morus alba. Planta Med. 2002, 68, 932–934. [Google Scholar] [CrossRef]
- Jin, W.; Na, M.; An, R.; Lee, H.; Bae, K.; Kang, S.S. Antioxidant compounds from twig of Morus alba. Nat. Prod. Sci. 2002, 8, 129–132. [Google Scholar]
- Kang, T.L.; Kwang, S.L.; Ji, H.J.; Byoung, K.J.; Moon, Y.H.; Hyun, P.K. Inhibitory effects of Ramulus mori extracts on melanogenesis. J. Cosmet. Sci. 2003, 54, 133–142. [Google Scholar]
- Li, H.; Cheng, K.-W.; ChO, C.-H.; He, Z.; Wang, M. Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples. J. Agric. Food Chem. 2007, 55, 2604–2610. [Google Scholar] [CrossRef]
- Chao, J.; Yu, M.S.; Ho, Y.-S.; Wang, M.; Chang, R.C.-C. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Rad. Biol. Med. 2008, 45, 1019–1026. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, J.; Shi, L. Antioxidant properties of ethanolic extract from Ramulus mori (Sangzhi). Food Sci. Tech. Int. 2009, 15, 435–444. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Lv, G.; Shi, L.-G.; Pan, H.; Wu, Y.-Z.; Fan, L. Oxyresveratrol from Ramulus mori attenuates alloxan-induced liver damage in mice. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; Volume 5163163, pp. 1–4. [Google Scholar]
- Zhang, Z.; Shi, L. Detection of antioxidant active compounds in Mori Ramulus by HPLC-MS-DPPH. Zhongguo Zhongyao Zazhi 2012, 37, 800–802. [Google Scholar]
- Choi, S.W.; Lee, Y.J.; Ha, S.B.; Jeon, Y.H.; Lee, D.H. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) tree. J. Korean Soc. Food Sci. Nutr. 2015, 44, 823–831. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, G.; Chen, J.; Zheng, Z.-P. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules 2016, 21, 1130. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Jin, B.R.; Lee, Y.R.; Kim, Y.J.; Park, J.B.; Jeon, Y.H.; Choi, S.W.; Kwon, O. Postprandial hypoglycemic effects of mulberry twig and root bark in vivo and in vitro. J. Nutr. Health 2016, 49, 18–27. [Google Scholar] [CrossRef]
- Joung, D.-K.; Mun, S.-H.; Choi, S.-H.; Kang, O.-H.; Kim, S.-B.; Lee, Y.-S.; Zhou, T.; Kong, R.; Choi, J.-G.; Shin, D.-W.; et al. Antibacterial activity of oxyresveratrol against methicillin-resistant Staphylococcus aureus and its mechanism. Exp. Ther. Med. 2016, 12, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.-P.; Jia, Y.-N.; Peng, Y.-L.; Yu, Y.; Sun, S.-L.; Yue, M.-T.; Pan, M.-H.; Zeng, L.-S.; Xu, L. Oxyresveratrol, a stilbene compound from Morus alba L. twig extract active against Trichophyton rubrum. Phytother. Res. 2017, 31, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-H.; Choi, S.-W. Validation of an analytical method of oxyresveratrol for standardization of Mulberry (Morus alba L.) branch extract as a functional ingredient. Korean J. Food Sci. Techol. 2018, 50, 377–382. [Google Scholar]
- Kim, J.-H.; Kim, K.-H.; Lee, M.-Y.; Lim, Y.-H.; Kim, J.-K. Accumulation of oxyresveratrol in Ramulus mori upon postharvest storage. Korean J. Food Sci. Technol. 2018, 50, 98–104. [Google Scholar]
- Hwang, S.; Kim, J.-K.; Kim, I.-H.; Lim, Y.-H. Inhibitory effect of ethanolic extract of Ramulus mori on adipogenic differentiation of 3T3-L1 cells and their antioxidant activity. Food Biochem. 2018, 42, e12469. [Google Scholar] [CrossRef]
- Iswandana, R.; Olisia, S.; Adriyani, M.; Jufri, M.A.; Munim, A. Application of Tween 80 and Tween 20 for microwave-assisted extraction of oxyresveratrol from mulberry (Morus alba L.) twigs. J. Appl. Pharm. Sci. 2020, 10, 93–100. [Google Scholar]
- Zhou, J.; Li, S.; Wang, W.; Guo, X.; Lu, X.; Yan, X.; Huang, D.; Wei, B.; Cao, L. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci. World J. 2013, 2013, 380692. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Tien, Y.-J.; Chen, C.-H.; Beltran, F.N.; Amor, E.C.; Wang, R.-J.; Wu, D.-J.; Mettling, C.; Lin, Y.-L.; Yang, W.-C. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Compl. Alternative Med. 2013, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, P.; Roychowdhury, S.; Engelmann, M.; Wolf, G.; Horn, T.F.W. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 2003, 9, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-W.; Wang, C.-P.; Wang, X.; Zhang, Y.-L.; Liu, L.; Wang, R.-W.; Ye, J.-F.; Hu, L.-S.; Kong, L.-D. Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice. J. Ethnopharmacol. 2012, 143, 896–904. [Google Scholar] [CrossRef]
- Ahn, E.; Lee, J.; Jeon, Y.-H.; Choi, S.-W.; Kim, E. Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci. Biotechnol. 2017, 26, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.-L.; Aligiannis, N.; Ferreira, I.C.F.R. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from Morus alba wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef] [Green Version]
- Ayinampudi, S.R.; Wang, Y.-H.; Avula, B.; Smillie, T.J.; Khan, I.A. Quantitative analysis of oxyresveratrol in different plant parts of Morus species and related genera by HPTLC and HPLC. J. Planar Chromat. 2011, 24, 125–129. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.-X.; Yan, X.-P.; Ji, M.; Guo, X.-Y.; Huang, D.; Zheng, Q.-Y. Comparative and correlational studies on contents of stilbenes in different portions of mulberry. Zhongguo Zhongyao Zazhi 2013, 38, 3261–3264. [Google Scholar]
- Liu, G.; Du, J.; Liu, F.; Xu, H.; Chen, H.; Tang, J.; Hua, Y.-L.; Liu, G.-R.; Cao, Y. The separation of oxyresveratrol from mulberry root and its effect on steady state embedding and inhibition of tyrosinase activity. Mod. Food Sci. Technol. 2015, 31, 217–221. [Google Scholar]
- Alishlah, T.; Mun’Im, A.; Jufri, M. Optimization of imidazolium-based ionic liquid-microwave assisted extraction for oxyresveratrol. J. Young Pharm. 2018, 10, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Fadhila, M.; Mun’im, A.; Jufri, M. Ionic liquid-based microwave-assisted extraction (Il-MAE) of oxyresveratrol from Morus alba roots. J. Appl. Pharm. Sci. 2018, 8, 008–013. [Google Scholar]
- Nugraha, M.W.; Iswandana, R.; Jufri, M. Preparation, characterization, and formulation of solid lipid nanoparticles lotion from mulberry roots (Morus alba L.). Int. J. App. Pharm. 2020, 12, 182–186. [Google Scholar] [CrossRef]
- Kim, J.-H.; Doh, E.-J.; Lee, G. Quantitative comparison of the marker compounds in different medicinal parts of Morus alba L. using high-performance liquid chromatography-diode array detector with chemometric analysis. Molecules 2020, 25, 5592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.-T.; Wei, H.; Chen, L.-M.; Wang, Z.-M.; Zhang, Q.-W.; Zhao, Z.-B.; Yan, L.-H. HPLC Fingerprints of different medicinal parts of Morus alba L. Chin. Pharm. J. 2017, 52, 560–566. [Google Scholar]
- Chung, K.; Kim, B.; Lee, M.; Kim, Y.; Chung, H.; Park, J.; Moon, J. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 2003, 55, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.Y.; Han, Y.N.; Han, B.H. Monoamine oxidase-A inhibitors from medicinal plants. Arch. Pharm. Res. 1988, 11, 230–239. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.-J.; Buchell, P.; Zhang, P.-F.; Wei, D.-Z.; Lu, Y.-H. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agric. Food Chem. 2009, 57, 9133–9140. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-P.; Tan, H.-Y.; Wang, M. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia 2012, 83, 1008–1013. [Google Scholar] [CrossRef]
- Ferlinahayatia; Syah, Y.M.; Juliawaty, L.D.; Achmad, S.A.; Hakim, E.H.; Takayama, H.; Said, I.M.; Latip, J. Phenolic constituents from the wood of Morus australis with cytotoxic activity. Z. Naturforsch. C 2008, 63, 35–39. [Google Scholar] [CrossRef]
- Kang, K.B.; Du Kim, S.; Kim, T.B.; Jeong, E.J.; Kim, Y.C.; Sung, J.H.; Sung, S.H. Tyrosinase inhibitory constituents of Morus bombycis cortex. Nat. Prod. Sci. 2011, 17, 198–201. [Google Scholar]
- Syah, Y.M.; Achmad, S.A.; Ghisalberti, E.L.; Hakim, E.H.; Iman, M.Z.N.; Makmur, L.; Mujahiddin, D. Andalasin A, a new stilbene dimer from Morus macroura. Fitoterapia 2000, 71, 630–635. [Google Scholar] [CrossRef]
- Syah, Y.M.; Achmad, S.A.; Ghisalberti, E.L.; Hakim, E.H.; Makmur, L.; Soekamto, N.H. A stilbene dimer, andalasin B, from the root trunk of Morus macroura. J. Chem Res. 2004, 5, 339–340. [Google Scholar] [CrossRef]
- Mazimba, O.; Majinda, R.R.T.; Motlhanka, D. Antioxidant and antibacterial constituents from Morus nigra. Afr. J. Pharm. Pharmacol. 2011, 5, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, J.; Liu, C.; Wu, C.; Wang, C.-H.; Huang, X.-Z. Response surface optimization of ultrasonic-assisted oxyresveratrol extraction from the bark of cultured black mulberry (Morus nigra L.). Sep. Sci. Technol. 2013, 48, 2779–2785. [Google Scholar] [CrossRef]
- Abbas, G.M.; Abdel Bar, F.M.; Baraka, H.N.; Gohar, A.A.; Lahloub, M.-F. A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L. Nat. Prod. Res. 2014, 28, 952–959. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, C.; Chen, R. Phenolic constituents from stem bark of Morus wittiorum and their antiinflammation and cytotoxicity. Zhongguo Zhongyao Zazhi 2010, 35, 2700–2703. [Google Scholar] [PubMed]
- Cui, X.-Q.; Chen, R.-Y. Study on components from stem bark of Morus yunnanensis. Zhong Cao Yao 2010, 41, 352–355. [Google Scholar]
- Siridechakorn, I.; Cheenpracha, S.; Ritthiwigrom, T.; Phakhodee, W.; Deachathai, S.; Machan, T.; Ruankeaw, N.; Laphookhieo, S. Isopimarane diterpenes and flavan derivatives from the twigs of Caesalpinia furfuracea. Phytochem. Lett. 2014, 7, 186–189. [Google Scholar] [CrossRef]
- Tewtrakul, S.; Subhadhirasakul, S.; Rattanasuwan, P.; Puripattanvong, J. HIV-1 protease inhibitory substances from Cassia garrettiana. Songklanakarin J. Sci. Technol. 2007, 29, 145–149. [Google Scholar]
- Wu, Y.; Hu, X.; Yang, G.-Z.; Mei, Z.-N.; Chen, Y. Two new flavanols from Glycosmis pentaphylla. J. Asian Nat. Prod. Res. 2012, 14, 738–742. [Google Scholar] [CrossRef]
- Tsuruga, T.; Chun, Y.-T.; Ebizuka, Y.; Sankawa, U. Biologically active constituents of Melaleuca leucadendron: Inhibitors of induced histamine release from rat mast cells. Chem. Pharm. Bull. 1991, 39, 3276–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Bolling, B.W. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC–MS. Food Chem. 2014, 148, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Tamai, A.; Asahara, K.; Miyamoto, K.; Miyamoto, A.; Nomura, M.; Kawata-Tominaga, T.; Yoshioka, Y. Anti-tyrosinase and anti-oxidative activities by Asana: The heartwood of Pterocarpus marsupium. Nat. Prod. Commun. 2019, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Basset, C.; Rodrigues, A.M.S.; Eparvier, V.; Silva, M.R.R.; Lopes, N.P.; Sabatier, D.; Fonty, E.; Espindol, L.S.; Stien, D. Secondary metabolites from Spirotropis longifolia (DC) Baill and their antifungal activity against human pathogenic fungi. Phytochemistry 2012, 74, 166–172. [Google Scholar] [CrossRef]
- Fu, Z.-Q.; Huang, Z.-H.; Lin, J.; He, W.-D.; Ji, M.-M.; Xu, W.; Fan, S.-M. Chemical constituents in root tuber of Tetrastigma hemsleyanum and their anti-oxidative activities. Zhong Cao Yao 2015, 46, 1583–1588. [Google Scholar]
- Rivière, C.; Pawlus, A.D.; Mérillon, J.-M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [Google Scholar] [CrossRef]
- Park, J.; Park, J.H.; Suh, H.-J.; Lee, I.C.; Koh, J.; Boo, Y.C. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch. Dermatol. Res. 2014, 306, 475–487. [Google Scholar] [CrossRef]
- Deng, H.; He, X.; Xu, Y.; Hu, X. Oxyresveratrol from Mulberry as a dihydrate. Acta Cryst. 2012, E68, o1318–o1319. [Google Scholar] [CrossRef] [Green Version]
- Kitisripanya, T.; Inyai, C.; Krittanai, S.; Likhitwitayawuid, K.; Sritularak, B.; Ploypradith, P.; Tanaka, H.; Morimoto, S.; Putalun, W. A monoclonal antibody-based immunoassay for the determination of oxyresveratrol from Artocarpus lacucha Buch.-Ham. J. Nat. Med. 2017, 71, 523–530. [Google Scholar] [CrossRef]
- Reimann, E. Natürliche polyhydroxystilbene. Die synthese vor oxyresveratrol, piceatannol und rhapontigenin. Tet. Lett. 1970, 47, 4051–4053. [Google Scholar] [CrossRef]
- Reimann, E. Natürliche stilbene, II. Synthese von polyhydroxystilbenen. Justus Liebigs Ann. Chem. 1971, 750, 109–127. [Google Scholar] [CrossRef]
- Lee, S.K.; Nam, K.A.; Hoe, Y.H.; Min, H.-Y.; Kim, E.-Y.; Ko, H.; Song, S.; Lee, T.; Kim, S. Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch. Pharm. Res. 2003, 26, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-Y.; Xiao, C.-F.; Cai, Y.-C.; Chen, Y.; Wei, W.; Liu, X.-K.; Lu, Z.-L.; Zou, Y. Efficient synthesis of natural polyphenolic stilbenes: Resveratrol, piceatannol and oxyresveratrol. Chem. Pharm. Bull. 2010, 58, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Xiao, C.; Wei, W.; Chen, Y.; Lu, Z.; Zou, Y. Synthesis of oxyresveratrol. Chin. J. Org. Chem. 2010, 30, 1574–1579. [Google Scholar]
- Li, Z.; Kang, S.; Chen, L.; Wang, Y.; Li, J. Study on the synthesis of oxyresveratrol catalyzed by palladium. Chin. J. Org. Chem. 2016, 36, 1143–1147. [Google Scholar] [CrossRef] [Green Version]
- Maafi, M.; Al-Qarni, M.A. Φ-order spectrophotokinetic characterisation and quantification of trans-cis oxyresveratrol reactivity, photodegradation and actinometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 64–71. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, J.H.; Baek, S.H.; Seo, J.H.; Kho, Y.H.; Oh, T.K.; Lee, C.H. Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase. Biotechnol. Bioeng. 2004, 87, 849–854. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, M.; Cho, S.-G.; Kim, M.-K.; Kim, S.-W.; Lim, Y.-H. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biotechnol. 2010, 37, 631–637. [Google Scholar] [CrossRef]
- Park, K.-T.; Kim, J.-K.; Lim, Y.-H. Deglycosylation of stilbene glucoside compounds improves inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and squalene synthase activities. Food Sci. Biotechnol. 2014, 23, 647–651. [Google Scholar] [CrossRef]
- Kim, J.S.; You, H.J.; Kang, H.Y.; Ji, G.E. Enhancement of the tyrosinase inhibitory activity of Mori Cortex Radicis extract by biotransformation using Leuconostoc paramesenteroides PR. Biosci. Biotechnol. Biochem. 2012, 76, 1425–1430. [Google Scholar] [CrossRef] [Green Version]
- Aranda, C.; Ullrich, R.; Kiebist, J.; Scheibner, K.; del Río, J.C.; Hofrichter, M.; Martínez, A.T.; Gutiérrez, A. Selective synthesis of the resveratrol analogue 4,4′-dihydroxy-trans-stilbene and stilbenoids modification by fungal peroxygenases. Catal. Sci. Technol. 2018, 8, 2394–2401. [Google Scholar] [CrossRef] [Green Version]
- Komaikul, J.; Kitisripanya, T.; Inyai, C.; Likhitwitayawuid, K.; Sritularak, B.; Tanaka, H.; Putalun, W. Phytostilbenoid production in white mulberry (Morus alba L.) cell culture using bioreactors and simple deglycosylation by endogenous enzymatic hydrolysis. Vitr. Cell. Dev. Biol. Plant 2019, 55, 199–208. [Google Scholar] [CrossRef]
- Komaikul, J.; Kitisripanya, T.; Likhitwitayawuid, K.; Sritularak, B.; Tanaka, H.E.; Putalun, W. Improvement of stilbenoid production by 2-hydroxypropyl-β-cyclodextrin in white mulberry (Morus alba L.) callus cultures. Nat. Prod. Res. 2019, 33, 2762–2769. [Google Scholar] [CrossRef]
- Inyai, C.; Boonsnongcheep, P.; Komaikul, J.; Sritularak, B.; Tanaka, H.; Putalun, W. Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids. Bioprocess. Biosyst. Eng. 2019, 42, 131–141. [Google Scholar] [CrossRef]
- Inyai, C.; Yusakul, G.; Komaikul, J.; Kitisripanya, T.; Likhitwitayawuid, K.; Sritularak, B.; Putalun, W. Improvement of stilbene production by mulberry Morus alba root culture via precursor feeding and co-elicitation. Bioprocess Biosyst. Eng. 2021, 44, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Likhitwitayawuid, K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci. 2008, 94, 44–52. [Google Scholar]
- Shin, N.-H.; Ryu, S.Y.; Choi, E.J.; Kang, S.-H.; Chang, I.-M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Comm. 1998, 243, 801–803. [Google Scholar] [CrossRef]
- Kim, Y.M.; Yun, J.; Lee, C.-K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340–16344. [Google Scholar] [CrossRef] [Green Version]
- Likhitwitayawuid, K.; Sornsute, A.; Sritularak, B.; Ploypradith, P. Chemical transformations of oxyresveratrol (trans-2,4,3′,5′-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent. Bioorg. Med. Chem. Lett. 2006, 16, 5650–5653. [Google Scholar] [CrossRef]
- Ortiz-Ruiz, C.V.; Ballesta De Los Santos, M.; Berna, J.; Fenoll, J.; Garcia-Ruiz, P.A.; Tudela, J.; Garcia-Canovas, F. Kinetic characterization of oxyresveratrol as a tyrosinase substrate. IUBMB Life 2015, 67, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hao, M.-M.; Sun, Y.; Wang, L.-F.; Wang, H.; Zhang, Y.-J.; Li, H.-Y.; Zhuang, P.-W.; Yang, Z. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018, 23, 106. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.-J.; Li, Q.-Y.; Ma, J.; Yang, R.; Qu, L.-B. A comparative study on the effects of resveratrol and oxyresveratrol against tyrosinase activity and their inhibitory mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119405. [Google Scholar] [CrossRef]
- Kim, J.-K.; Park, K.-T.; Lee, H.-S.; Kim, M.; Lim, Y.-H. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: Comparison with mulberroside A. J. Enzyme Inhib. Med. Chem. 2012, 27, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, X.-M.; Zhang, J.; Zhang, Y.-Q. An efficient preparation of mulberroside a from the branch bark of mulberry and its effect on the inhibition of tyrosinase activity. PLoS ONE 2014, 9, e109396. [Google Scholar] [CrossRef]
- Rodboon, T.; Puchadapirom, P.; Okada, S.; Suwannalert, P. Oxyresveratrol from Artocarpus lakoocha Roxb. inhibit melanogenesis in B16 melanoma cells through the role of cellular oxidants. Walailak J. Sci. Tech. 2016, 13, 261–270. [Google Scholar]
- Rodboon, T.; Palipoch, S.; Okada, S.; Charoenchon, N.; Nakornpakdee, Y.; Suwannalert, P. Oxyresveratrol inhibits cellular tyrosinase-related oxidative stress-induced melanogenesis in B16 melanoma cells. J. Appl. Pharm. Sci. 2020, 10, 8–13. [Google Scholar]
- Panichakul, T.; Rodboon, T.; Suwannalert, P.; Tripetch, C.; Rungruang, R.; Boohuad, N.; Youdee, P. Additive effect of a combination of Artocarpus lakoocha and Glycyrrhiza glabra extracts on tyrosinase inhibition in melanoma B16 cells. Pharmaceuticals 2020, 13, 310. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-T.; Kim, J.-K.; Hwang, D.; Yoo, Y.; Lim, Y.-H. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol. 2011, 49, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Tengamnuay, P.; Pengrungruangwong, K.; Pheansri, I.; Likhitwitayawuid, K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int. J. Cosmet. Sci. 2006, 28, 269–276. [Google Scholar] [CrossRef]
- Park, K.-T.; Kim, J.-K.; Lim, Y.-H. Evaluation on skin irritation and sensitization of oxyresveratrol and oxyresveratrol-3-O-glucoside produced by biotransformation of Morus alba extract. Korean J. Food Sci. Technol. 2012, 44, 251–256. [Google Scholar] [CrossRef]
- Chatsumpun, N.; Chuanasa, T.; Sritularak, B.; Lipipun, V.; Jongbunprasert, V.; Ruchirawat, S.; Ploypradith, P.; Likhitwitayawuid, K. Oxyresveratrol: Structural modification and evaluation of biological activities. Molecules 2016, 21, 489. [Google Scholar] [CrossRef] [Green Version]
- Chatsumpun, M.; Chuanasa, T.; Sritularak, B.; Likhitwitayawuid, K. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin. Nat. Prod. Comm. 2011, 6, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bonilla, P.; Gandía-Herrero, F.; Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques. Food Anal. Methods 2017, 10, 2994–3000. [Google Scholar] [CrossRef]
- Aftab, N.; Likhitwitayawuid, K.; Vieira, A. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol. Nat. Prod. Res. 2010, 24, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Kutil, Z.; Kvasnicova, M.; Temml, V.; Schuster, D.; Marsik, P.; Cusimamani, E.F.; Lou, J.-D.; Vanek, T.; Landa, P. Effect of dietary stilbenes on 5-lipoxygenase and cyclooxygenases activities in vitro. Int. J. Food Prop. 2015, 18, 1471–1477. [Google Scholar] [CrossRef]
- Tadtong, S.; Chatsumpun, N.; Sritularak, B.; Jongbunprasert, V.; Ploypradith, P.; Likhitwitayawuid, K. Effects of oxyresveratrol and its derivatives on cultured P19-derived neurons. Trop. J. Pharm. Res. 2016, 15, 2619. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, H.; Wang, L.; Tao, Y.; Du, G.; Guan, W.; Liu, J.; Brennan, C.; Ho, C.-T.; Li, S. Effects of selected resveratrol analogues on activation and polarization of lipopolysaccharide-stimulated BV-2 microglial cells. J. Agri. Food Chem. 2020, 68, 3750–3757. [Google Scholar] [CrossRef] [PubMed]
- Wongwat, T.; Srihaphon, K.; Pitaksutheepong, C.; Boonyo, W.; Pitaksuteepong, T. Suppression of inflammatory mediators and matrix metalloproteinase (MMP)-13 by Morus alba stem extract and oxyresveratrol in RAW 264.7 cells and C28/I2 human chondrocytes. J. Tradit. Complement. Med. 2020, 10, 132e140. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, D.H.; Hong, J.E.; Lee, J.-Y.; Kim, E.J. Oxyresveratrol suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages. Hum. Exp. Toxicol. 2015, 34, 808–818. [Google Scholar] [CrossRef]
- Hwang, D.; Jo, H.; Kim, J.-K.; Lim, Y.-H. Oxyresveratrol-containing Ramulus mori ethanol extract attenuates acute colitis by suppressing inflammation and increasing mucin secretion. J. Funct. Foods 2017, 35, 146–158. [Google Scholar] [CrossRef]
- Hur, J.; Kim, S.; Lee, P.; Lee, Y.M.; Choi, S.Y. The protective effects of oxyresveratrol imine derivative against hydrogen peroxide-induced cell death in PC12 cells. Free Rad. Res. 2013, 47, 212–218. [Google Scholar] [CrossRef]
- Phoolcharoen, W.; Sooampon, S.; Sritularak, B.; Likhitvitayawuid, K.; Kuvatanasuchati, J.; Pavasant, P. Anti-periodontal pathogen and anti-inflammatory activities of oxyresveratrol. Nat. Prod. Comm. 2013, 8, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Liang, Y.; Zhao, B.; Wang, Y. Oxyresveratrol protects human lens epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis by activation of Akt/HO-1 pathway. J. Pharm. Sci. 2019, 139, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-I.; Kim, J.-H.; Lee, J.-M.; Kho, Y.-J.; Lim, S.S.; Park, J.-B.; Kim, J.; Kim, S.C.; Lee, J.-Y. FOXO3a Activation by oxyresveratrol of Morus bombycis Koidzumi extract mediates antioxidant activity. Anim. Cells Syst. 2016, 20, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Chen, J.-R.; Pais, E.M.; Wang, T.-Y.; Miao, L.; Li, L.; Li, L.-Y.; Qiu, F.; Hu, L.-M.; Gao, X.-M.; et al. Oxyresveratrol is a phytoestrogen exerting anti-inflammatory effects through NF-κB and estrogen receptor signaling. Inflammation 2017, 40, 1285–1296. [Google Scholar] [CrossRef]
- Jo, H.; Hwang, D.; Kim, J.-K.; Lim, Y.-H. Oxyresveratrol improves tight junction integrity through the PKC and MAPK signaling pathways in Caco-2 cells. Food Chem. Toxicol. 2017, 108, 203–213. [Google Scholar] [CrossRef]
- Hwang, D.; Jo, H.; Hwang, S.; Kim, J.-K.; Kim, I.-H.; Lim, Y.-H. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed. Pharmacother. 2017, 85, 280–286. [Google Scholar] [CrossRef]
- Hwang, D.; Jo, H.; Ma, S.-H.; Lim, Y.-H. Oxyresveratrol stimulates mucin production in an NAD+-dependent manner in human intestinal goblet cells. Food Chem. Toxicol. 2018, 118, 880–888. [Google Scholar] [CrossRef]
- Yeom, J.; Ma, S.; Lim, Y.-H. Oxyresveratrol induces autophagy via the ER stress signaling pathway, and oxyresveratrol-induced autophagy stimulates MUC2 synthesis in human goblet. Antioxidants 2020, 9, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hankittichai, P.; Lou, H.J.; Wikan, N.; Smith, D.R.; Potikanond, S.; Nimlamool, W. Oxyresveratrol inhibits IL-1β-induced inflammation via suppressing AKT and ERK1/2 activation in human microglia, HMC3. Int. J. Mol. Sci. 2020, 21, 6054. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.I.; Shahzad, M.; Shabbir, A. Oxyresveratrol ameliorates allergic airway inflammation via attenuation of IL-4, IL-5, and IL-13 expression levels. Cytokine 2015, 76, 375–381. [Google Scholar] [CrossRef]
- Aziz, R.S.; Siddiqua, A.; Shahzad, M.; Shabbir, A.; Naseem, N. Oxyresveratrol ameliorates ethanol-induced gastric ulcer via downregulation of IL-6, TNF-α NF-ĸB, and COX-2 levels, and upregulation of TFF-2 levels. Biomed. Pharmacother. 2019, 110, 554–560. [Google Scholar] [CrossRef]
- Yeom, J.; Ma, S.; Kim, J.-K.; Lim, Y.-H. Oxyresveratrol ameliorates dextran sulfate sodium-induced colitis in rats by suppressing inflammation. Molecules 2021, 26, 2630. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Chen, H.; Fu, Y.; Wang, W.; Li, Q.; Li, X.; Wang, X.; Fan, G.; Zhang, Y. The underlying molecular mechanisms involved in traditional Chinese medicine Smilax china L. for the treatment of pelvic inflammatory disease. Evid-Based Compl. Alt. Med. 2021, 2021, 5552532. [Google Scholar] [CrossRef]
- Radapong, S.; Sarker, S.D.; Ritchie, K.J. Oxyresveratrol possesses DNA damaging activity. Molecules 2020, 25, 2577. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.A.; Spina, M.G.; Lorenz, P.; Ebmeyer, U.; Wolf, G.; Horn, T.F.W. Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 2004, 1017, 98–107. [Google Scholar] [CrossRef]
- Breuer, C.; Wolf, G.; Andrabi, S.A.; Lorenz, P.; Horn, T.F.W. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 2006, 393, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.T.; Lamont, M.; Chibrikova, L.; Fekkes, D.; Vlug, A.; Lorenz, P.; Kreutzmann, P.; Slemmer, J.E. Potential neuroprotective effects of oxyresveratrol against traumatic injury. Eur. J. Pharmacol. 2012, 680, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, P.; Singh, V.; Somvanshi, P.; Bhardwaj, T.; Barreto, G.E.; Ashraf, G.M.; Mishra, B.N.; Chundawat, R.S.; Haque, S. Identification of new BACE1 inhibitors for treating Alzheimer’s disease. J. Mol. Model. 2021, 27, 58. [Google Scholar] [CrossRef]
- Choi, B.; Kim, S.; Jang, B.-G.; Kim, M.-J. Piceatannol, a natural analogue of resveratrol, effectively reduces beta-amyloid levels via activation of alpha-secretase and matrix metalloproteinase-9. J. Funct. Foods 2016, 23, 124–134. [Google Scholar] [CrossRef]
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits app production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants 2021, 10, 408. [Google Scholar] [CrossRef]
- Sangsen, Y.; Sooksawate, T.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. A Self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med. 2018, 84, 820–828. [Google Scholar] [CrossRef]
- Rahman, M.A.; Bishayee, K.; Sadra, A.; Huh, S.-O. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 23–36. [Google Scholar] [CrossRef]
- Hasriadi; Limpeanchob, N. In vitro cytotoxicity of Artocarpus lakoocha aqueous extract and oxyresveratrol in SH-SY5Y cells. J. Phys. Conf. Ser. 2018, 1028, 012009. [Google Scholar] [CrossRef]
- Shah, A.; Chao, J.; Legido-Quigley, C.; Chang, R.C.-C. Oxyresveratrol exerts ATF4- and Grp78-mediated neuroprotection against endoplasmic reticulum stress in experimental Parkinson’s disease. Nutr. Neurosci. 2021, 24, 181–196. [Google Scholar] [CrossRef]
- Shah, A.; Ho, Y.S.; Ng, K.M.; Wang, M.; Legido-Quigley, C.; Chang, R.C.C. Neuroprotective effects of oxyresveratrol on 6-hydroxydopamine on medial forebrain bundles in a rat model of Parkinson disease: Abridged secondary publication. Hong Kong Med. J. 2020, 26, 26–28. [Google Scholar]
- Rodsiri, R.; Benya-aphikul, H.; Teerapattarakan, N.; Wanakhachornkrai, O.; Boonlert, W.; Tansawat, R.; Wiwattanapatapee, R.; Sritularak, B.; Likhitwitayawuid, K. Neuroprotective effect of oxyresveratrol in rotenone-induced Parkinsonism rats. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Lee, H.-J.; Feng, J.-H.; Sim, S.-M.; Lim, S.-S.; Lee, J.-Y.; Suh, H.-W. Effects of resveratrol and oxyresveratrol on hippocampal cell death induced by kainic acid. Anim. Cell. Syst. 2019, 23, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Ma, L.; Chen, G.; Li, S. The effects of oxyresveratrol abrogates inflammation and oxidative stress in rat model of spinal cord injury. Mol. Med. Rep. 2018, 17, 4067–4073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.Y.; Lee, J.-H.; Jegal, K.H.; Cho, I.J.; Kim, Y.W.; Kim, S.C. Oxyresveratrol abrogates oxidative stress by activating ERK-Nrf2 pathway in the liver. Chem. Biol. Interact. 2016, 245, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Hyrsova, L.; Vanduchova, A.; Dusek, J.A.; Smutny, T.; Carazo, A.; Maresova, V.; Trejtnar, F.; Barta, P.; Anzenbacher, P.; Dvorak, Z.; et al. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol. Lett. 2019, 300, 81–91. [Google Scholar] [CrossRef]
- Lee, J.-H.; Baek, S.Y.; Jang, E.J.; Ku, S.K.; Kim, K.M.; Ki, S.H.; Kim, C.-E.; Park, K.I.; Kim, S.C.; Kim, Y.W. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase. Chem. Biol. Interact. 2018, 289, 68–74. [Google Scholar] [CrossRef]
- Yang, G.; Zhan, J.; Yang, Y.; Yuan, L.; Wang, P.; Ho, C.-T.; Li, S. Inhibitory effects of oxyresveratrol on ERK and Smad1/2 phosphorylation and HSC activation in preventing carbon tetrachloride-induced rat liver fibrosis. Food Sci. Hum. Well. 2021, 10, 6–12. [Google Scholar] [CrossRef]
- Lee, E.H.; Park, K.-I.; Kim, K.-Y.; Lee, J.-H.; Jang, E.J.; Ku, S.K.; Kim, S.C.; Suk, H.Y.; Park, J.Y.; Baek, S.Y.; et al. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. Phytomedicine 2019, 62, 152780. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Shahani, M.Y.; Hameed, A.; Khan, S.; Sikandar, M.; Ali, H. Relationship of superoxide dismutase and glutathione peroxidase activities and oxyresveratrol in isoniazid induced hepatotoxicity in experimental model in mice. Pakistan J. Med. Health Sci. 2020, 14, 1234–1237. [Google Scholar]
- Jia, Y.-N.; Lu, H.-P.; Peng, Y.-L.; Zhang, B.-S.; Gong, X.-B.; Su, J.C.; Zhou, Y.; Pan, M.-H.; Xu, L. Oxyresveratrol prevents lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. Int. Immunopharmacol. 2018, 56, 105–112. [Google Scholar] [CrossRef]
- Jia, Y.-N.; Peng, Y.-L.; Zhao, Y.-P.; Cheng, X.-F.; Zhou, Y.; Chai, C.-L.; Zeng, L.-S.; Pan, M.-H.; Xu, L. Comparison of the hepatoprotective effects of the three main stilbenes from mulberry twigs. J. Agric. Food Chem. 2019, 67, 5521–5529. [Google Scholar] [CrossRef]
- Abdel Bar, F.M.; Abbas, G.M.; Gohar, A.A.; Lahloub, M.-F.I. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Nat. Prod. Res. 2020, 34, 952–959. [Google Scholar] [CrossRef]
- van den Brand, A.D.; Villevoye, J.; Nijmeijer, S.M.; van den Berg, M.; van Duursen, M.B.M. Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines. Toxicology 2019, 422, 35–43. [Google Scholar] [CrossRef]
- Sunilkumar, D.; Drishya, G.; Chandrasekharan, A.; Shaji, S.K.; Bose, C.; Jossart, J.; Perry, J.J.P.; Mishra, N.; Kumar, G.B.; Nair, B.G. Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem. Pharmacol. 2020, 173, 113724. [Google Scholar] [CrossRef]
- Liu, D.; Kim, D.-H.; Park, J.-M.; Na, H.-K.; Surh, Y.-J. Piceatannol inhibits phorbol ester-induced NF-κB activation and COX-2 expression in cultured human mammary epithelial cells. Nutr. Cancer 2009, 61, 855–863. [Google Scholar] [CrossRef]
- Lv, T.; Jian, Z.; Li, D.; Ao, R.; Zhabg, X.; Yu, B. Oxyresveratrol induces apoptosis and inhibits cell viability via inhibition of the STAT3 signaling pathway in Saos-2 cells. Mol. Med. Rep. 2020, 22, 5191–5198. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, G.; Li, C.; Wang, S.; Zhu, M.; Wang, J.; Yue, H.; Ma, X.; Zhen, Y.; Shu, X. Metabolic profile and structure-activity relationship of resveratrol and its analogs in human bladder cancer cells. Cancer Manag. Res. 2019, 11, 4631–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sintuyanon, N.; Phoolcharoen, W.; Pavasant, P.; Sooampon, S. Resveratrol demonstrated higher antiproliferative and antiangiogenic efficacy compared with oxyresveratrol on head and neck squamous cell carcinoma cell lines. Nat. Prod. Commun. 2017, 12, 1781–1784. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, W.; Bai, Y.; Wan, L.; Sun, X.; Liu, Y.; Xiong, W.; Zhang, Y.-Y.; Zhou, L. Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis. J. Nat. Med. 2018, 72, 481–492. [Google Scholar] [CrossRef]
- Singh, M.; Tripathi, M.; Singh, A.; Azad, C.; Gambhir, I.; Kumar, B.; Purohit, S. A therapeutic approach to target mitochondrial dysfunction using molecular docking studies: Screening of natural drugs for oral carcinoma. Pharmacogn. Mag. 2018, 14, S192–S196. [Google Scholar] [CrossRef]
- Liu, T.; Liu, M.; Guo, Q.; Liu, Y.; Zhao, Y.; Wu, Y.; Sun, B.; Wang, Q.; Liu, J.; Han, J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J. Mol. Liq. 2020, 311, 113364. [Google Scholar] [CrossRef]
- Li, R.; Song, Y.; Ji, Z.; Li, L.; Zhou, L. Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectal cancer: Network and experimental analyses. BioFactors 2020, 46, 158–167. [Google Scholar] [CrossRef]
- He, H.; Lu, Y.-H. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J. Agric. Food Chem. 2013, 61, 8110–8119. [Google Scholar] [CrossRef]
- Wongon, M.; Limpeanchob, N. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells. Heliyon 2020, 6, e03458. [Google Scholar] [CrossRef]
- Wongon, M.; Limpeanchob, N. Artocarpus lacucha extract and oxyresveratrol inhibit glucose transporters in human intestinal Caco-2 cells. Planta Med. 2021. [Google Scholar] [CrossRef]
- He, H.; Yu, W.-G.; Yang, J.-P.; Ge, S.; Lu, Y.-H. Multiple comparisons of glucokinase activation mechanisms of five mulberry bioactive ingredients in hepatocyte. J. Agric. Food Chem. 2016, 64, 2475–2484. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, H.; Chang, H.B.; Choi, H.; Kim, Y.S.; Rho, Y.K.; Seong, S.; Choi, D.H.; Park, D.; Ku, B. DW1029M, a novel botanical drug candidate, inhibits advanced glycation end-product formation, rat lens aldose reductase activity, and TGF-β1 signaling. Am. J. Physiol. Renal Physiol. 2014, 306, F1161–F1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Yang, R.; Yao, H.; Wu, Y.; Pan, W.; Jia, A.-Q. Inhibiting the formation of advanced glycation end-products by three stilbenes and the identification of their adducts. Food Chem. 2019, 295, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-C.; He, H.; Wei, X.; Ge, S.; Lu, Y.-H. Comparison of regulation mechanisms of five mulberry ingredients on insulin secretion under oxidative stress. J. Agric. Food Chem. 2016, 64, 8763–8772. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Jin, B.; Shin, J.-H.; Adisakwattana, S.; Kwon, O. Standardized Mori ramulus extract improves insulin secretion and insulin sensitivity in C57BLKS/J db/db mice and INS-1 cells. Biomed. Pharmacother. 2017, 92, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-Y.; Tse, I.M.Y.; Li, E.T.S.; Wang, M. Inhibitory effects of oxyresveratrol and cyanomaclurin on adipogenesis of 3T3-L1 cells. J. Funct. Foods 2015, 15, 207–216. [Google Scholar] [CrossRef]
- Pavlović, N.; Đanić, M.; Stanimirov, B.; Goločorbin-Kon, S.; Stankov, K.; Lalić-Popović, M.; Mikov, M. In silico discovery of resveratrol analogues as potential agents in treatment of metabolic disorders. Curr. Pharm. Des. 2019, 25, 3776–3783. [Google Scholar] [CrossRef]
- Uchitomi, R.; Nakai, S.; Matsuda, R.; Onishi, T.; Miura, S.; Hatazawa, Y.; Kamei, Y. Genistein, daidzein, and resveratrols stimulate PGC-1β-mediated gene expression. Biochem. Biophys. Rep. 2019, 17, 51–55. [Google Scholar] [CrossRef]
- Jo, S.-P.; Kim, J.-K.; Lim, Y.-H. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 2014, 65, 213–218. [Google Scholar] [CrossRef]
- Hwang, D.; Jo, S.-P.; Lee, J.; Kim, J.-K.; Kim, K.-H.; Lim, Y.-H. Antihyperlipidaemic effects of oxyresveratrol containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J. Funct. Foods 2015, 19, 353–362. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, N.-J.; Lee, A.R.; Lee, D.H.; Seo, M.-J.; Kim, S.; Chang, S.-H.; Yang, D.K.; Hwang, Y.-J.; Hwang, K.-A.; et al. Oxyresveratrol increases energy expenditure through Foxo3a-mediated Ucp1 induction in high-fat-diet-induced obese mice. Int. J. Mol. Sci. 2019, 20, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.Y.; Tse, I.M.Y.; Li, E.T.S.; Wang, M. Oxyresveratrol supplementation to C57bl/6 mice fed with a high-fat diet ameliorates. Nutrients 2017, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, M.-H.; Koh, Y.-C.; Lee, T.-L.; Wang, B.; Chen, W.-K.; Nagabhushanam, K.; Ho, C.-T. Resveratrol and oxyresveratrol activate thermogenesis via different transcriptional coactivators in high-fat diet-induced obese Mice. J. Agric. Food Chem. 2019, 67, 13605–13616. [Google Scholar] [CrossRef]
- Park, J.-E.; Lee, G.-H.; Kim, J.; Choi, S.-W.; Kim, E. Anti-obesity effect of Ramulus mori extracts and stilbenes in high fat diet-fed C57BL/6J mouse. J. Nutr. Health 2020, 56, 570–582. [Google Scholar] [CrossRef]
- Chuanasa, T.; Phromjai, J.; Lipipun, V.; Likhitwitayawuid, K.; Suzuki, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res. 2008, 80, 62–70. [Google Scholar] [CrossRef]
- Lipipun, V.; Sasivimolphan, P.; Yoshida, Y.; Daikoku, T.; Sritularak, B.; Ritthidej, G.; Likhitwitayawuid, K.; Pramyothin, P.; Hattori, M.; Shiraki, K. Topical cream-based oxyresveratrol in the treatment of cutaneous HSV-1 infection in mice. Antiviral Res. 2011, 91, 154–160. [Google Scholar] [CrossRef]
- Sasivimolphan, P.; Lipipun, V.; Ritthidej, G.; Chitphet, K.; Yoshida, Y.; Daikoku, T.; Sritularak, B.; Likhitwitayawuid, K.; Pramyothin, P.; Hattori, M.; et al. Microemulsion-based oxyresveratrol for topical treatment of Herpes Simplex Virus (HSV) infection: Physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS PharmSciTech 2012, 13, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Sasivimolphan, P.; Lipipun, V.; Likhitwitayawuid, K.; Takemoto, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antiviral Res. 2009, 84, 95–97. [Google Scholar] [CrossRef]
- Galindo, I.; Hernáez, B.; Berná, J.; Fenoll, J.; Cenis, J.L.; Escribano, J.M.; Alonso, C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir. Res. 2011, 91, 57–63. [Google Scholar] [CrossRef]
- Lin, S.-C.; Chen, M.-C.; Li, S.; Lin, C.-C.; Wang, T.T. Antiviral activity of nobiletin against chikungunya virus in vitro. Antivir. Ther. 2017, 22, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Fan, Y.; Wang, X.; Jiang, X.; Zou, J.; Huang, R. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression. Eur. J. Oral Sci. 2020, 128, 18–26. [Google Scholar] [CrossRef]
- Zakova, T.; Rondevaldova, J.; Bernardos, A.; Landa, P.; Kokoska, L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol. Immunol. Hung. 2018, 65, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Joung, D.-K.; Choi, S.-H.; Kang, O.-H.; Kim, S.-B.; Mun, S.-H.; Seo, Y.-S.; Kang, D.-H.; Gong, R.; Shin, D.-W.; Kim, Y.-C.; et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2015, 12, 663–667. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-G.; Raorane, C.J.; Ryu, S.Y.; Shim, J.-J.; Lee, J. The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling 2019, 35, 758–767. [Google Scholar] [CrossRef]
- Sheng, J.-Y.; Chen, T.-T.; Tan, X.-J.; Chen, T.; Jia, A.-Q. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship. Bioorg. Med. Chem. Lett. 2015, 25, 5217–5220. [Google Scholar] [CrossRef]
- Jaimes, J.D.; Jarosova, V.; Vesely, O.; Mekadim, C.; Mrazek, J.; Marsik, P.; Killer, J.; Smejkal, K.; Kloucek, P.; Havlik, J. Effect of selected stilbenoids on human fecal microbiota. Molecules 2019, 24, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarosova, V.; Vesely, O.; Marsik, P.; Jaimes, J.D.; Smejkal, K.; Kloucek, P.; Havlik, J. Metabolism of stilbenoids by human faecal microbiota. Molecules 2019, 24, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratanabanangkoon, K.; Poopyruchpoog, N.; Charccnsiri, K. (1976) A preliminary study on the antifungal activity of 2,4,3′,5′-tetrahydroxystilbene on dermatophytes. J. Sci. Soc. Thail. 1976, 2, 202–205. [Google Scholar] [CrossRef]
- Perrot, T.; Schwartz, M.; Saiag, F.; Salzet, G.; Dumarçay, S.; Favier, F.; Gérardin, P.; Girardet, J.-M.; Sormani, R.; Morel-Rouhier, M.; et al. Fungal glutathione transferases as tools to explore the chemical diversity of amazonian wood extractives. ACS Sustain. Chem. Eng. 2018, 6, 13078–13085. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.G. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans. Microbiology 2018, 164, 1112–1121. [Google Scholar] [CrossRef]
- Passos, C.L.A.; Ferreira, C.; Soares, D.C.; Saraiva, E.M. Leishmanicidal effect of synthetic trans-resveratrol analogs. PLoS ONE 2015, 10, e0141778. [Google Scholar] [CrossRef] [Green Version]
- Janthasoot, W.; Ratanabanangkoon, K.; Chudapongse, P. Inhibition of mitochondrial ATPase by 2,4,3′,5′-tetrahydroxystilbene. Chem. Biol. Interact. 1977, 18, 355–364. [Google Scholar] [CrossRef]
- Kim, S.; Ko, H.; Park, J.E.; Jung, S.; Lee, S.K.; Chun, Y.-J. Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. J. Med. Chem. 2002, 45, 160–164. [Google Scholar] [CrossRef]
- Thu, H.N.; My, L.H.T.; Van, P.N.; Thi, H.D. Bioactivity-guided isolation and identification of xanthine oxidase inhibitors from Morus alba bark. J. Adv. Pharm. Res. 2020, 4, 94–100. [Google Scholar]
- Zhao, P.; Chen, S.-K.; Cai, Y.-H.; Lua, X.; Li, Z.; Cheng, Y.-K.; Zhang, C.; Hu, X.; He, X.; Luo, H.-B. The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay. Biochim. Biophys. Acta 2013, 1834, 2089–2096. [Google Scholar] [CrossRef]
- Liu, M.; Liu, T.; Shi, Y.; Zhao, Y.; Yan, H.; Sun, B.; Wang, Q.; Wang, Z.; Han, J. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: Binding ability, activity and stability. Food Funct. 2019, 10, 8182–8194. [Google Scholar] [CrossRef]
- Su, Y.; Sun, C.; Chen, Y.; Liu, S.; Jing, N.; Li, S. Toxic trans-crotonaldehyde in mitochondria intercepted by oxyresveratrol contributing to anticancer. IUBMB Life 2019, 71, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Kano, Y.; Yao, X. Elucidation of the bioactive constituents in traditional Chinese medicine “Mori Cortex”. Stud. Plan. Sci. 1999, 6, 281–289. [Google Scholar]
- Yin, Y.; Chen, Y.; Xu, L.; Zhao, X.; Zhuang, Q.; Tang, H.; Yang, S. Attenuation of myocardial fibrosis by oxyresveratrol involves mirna-145-mediated cd137/smad/nfatc1 signaling in an atherosclerotic model. Lat. Am. J. Pharm. 2020, 39, 1752–1759. [Google Scholar]
- Lee, J.; Kwon, G.; Park, J.; Kim, J.-K.; Lim, Y.-H. SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp. Biol. Med. 2016, 241, 1757–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matencio, A.; Guerrero-Rubio, M.A.; Caldera, F.; Cecone, C.; Trotta, F.; García-Carmona, F.; López-Nicolás, J.M. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int. J. Pharm. 2020, 589, 119862. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Characterization of resveratrol, oxyresveratrol, piceatannol and roflumilast as modulators of phosphodiesterase activity. Study of yeast lifespan. Pharmaceuticals 2020, 13, 225. [Google Scholar] [CrossRef]
- Saowakon, N.; Tansatit, T.; Wanichanon, C.; Chanakul, W.; Reutrakul, V.; Sobhon, P. Fasciola gigantica: Anthelmintic effect of the aqueous extract of Artocarpus lakoocha. Exp. Parasitol. 2009, 122, 289–298. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Sulera, H.A.R.; Ahmad, B.; Peters, D.G.; Mubarak, M.S. A comprehensive review of the health perspectives of resveratrol. Food Funct. 2017, 8, 4284–4305. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Ozyurek, M.; Guclu, K.; Capanotlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Ozyurek, M.; Guclu, K.; Capanotlu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, A.; Shi, P.; Zhang, H. A theoretical study on the antioxidant activity of piceatannol and isorhapontigenin scavenging nitric oxide and nitrogen dioxide radicals. PLoS ONE 2017, 12, e0169773. [Google Scholar] [CrossRef]
- Qiu, F.; Komatsu, K.-I.; Saito, K.-I.; Kawasaki, K.; Yao, X.; Kano, Y. Pharmacological properties of traditional medicines (XXI): Analysis of plasma, urine, and bile of rats after oral administration of water extract of Mori Cortex. Nat. Med. 1996, 50, 103–108. [Google Scholar]
- Qiu, F.; Komatsu, K.-I.; Saito, K.-I.; Kawasaki, K.; Yao, X.; Kano, Y. Pharmacological properties of traditional medicines. XXII. Pharmacokinetic study of mulberroside A and its metabolites in rat. Biol. Pharm. Bull. 1996, 19, 1463–1467. [Google Scholar] [CrossRef] [Green Version]
- Zhaxi, M.; Chen, L.; Li, X.; Komatsu, K.; Yao, X.; Qiu, F. Three major metabolites of mulberroside A in rat intestinal contents and feces. Planta. Med. 2010, 76, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhang, J.; Chen, G.; Lu, Z.; Wang, X.; Sha, N.; Shao, B.; Li, P.; Guo, D. High performance liquid chromatographic method for the determination and pharmacokinetic studies of oxyresveratrol and resveratrol in rat plasma after oral administration of Smilax china extract. Biomed. Chromatogr. 2008, 22, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, G.; Lu, Z.; Zhang, J.; Guo, D. Distribution study of two constituents in rat after oral administration of Smilax china extract. Zhongguo Zhongyao Zazhi 2009, 34, 2512–2515. [Google Scholar] [PubMed]
- Huang, H.; Zhang, J.; Chen, G.; Lu, Z.; Sha, N.; Guo, D. Simultaneous determination of oxyresveratrol and resveratrol in rat bile and urine by HPLC after oral administration of Smilax china extract. Nat. Prod. Comm. 2009, 4, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, G.; Lu, Z.; Zhang, J.; Guo, D. Identification of seven metabolites of oxyresveratrol in rat urine and bile using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2010, 24, 426–432. [Google Scholar] [CrossRef]
- Bertram, R.M.; Takemoto, J.K.; Remsberg, C.M.; Vega-Villa, K.R.; Sablani, S.; Davies, N. High-performance liquid chromatographic analysis: Applications to nutraceutical content and urinary disposition of oxyresveratrol in rats. Biomed. Chromatogr. 2010, 24, 516–521. [Google Scholar] [CrossRef]
- Tian, F.; Wei, H.; Jia, T.; Tian, H. An improved highly sensitive method to determine low oxyresveratrol concentrations in rat plasma and its pharmacokinetic application. Biomed. Chromatogr. 2014, 28, 667–672. [Google Scholar] [CrossRef]
- Huang, H.-L.; Huang, G.-Y.; Liang, F.; Liu, K.-L.; Ren, G.; Shao, F.; Liu, R.-H. LC-MS/MS method for the determination of oxyresveratrol in rat plasma and its application to pharmacokinetic study. Chin. J. New Drugs 2014, 23, 76–79. [Google Scholar]
- Chen, W.; Yeo, S.C.M.; Elhennawy, M.G.A.A.; Lin, H.-S. Oxyresveratrol: A bioavailable dietary polyphenol. J. Funct. Foods 2016, 22, 122–131. [Google Scholar] [CrossRef]
- Mei, M.; Ruan, J.-Q.; Wu, W.-J.; Zhou, R.-N.; Lei, J.P.-C.; Zhao, H.-Y.; Yan, R.; Wang, Y.-T. In vitro pharmacokinetic characterization of mulberroside A, the main polyhydroxylated stilbene in Mulberry (Morus alba L.), and its bacterial metabolite oxyresveratrol in traditional oral use. J. Agric. Food Chem. 2012, 60, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Mei, M.; Ruan, J.; Wu, W.; Wang, Y.; Yan, R. Regioselective glucuronidation of oxyresveratrol, a natural hydroxystilbene, by human liver and intestinal microsomes and recombinant UGTs. Drug Metab. Pharmacokinet. 2014, 29, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Junsaeng, D.; Anukunwithaya, T.; Songvut, P.; Sritularak, B.; Likhitwitayawuid, K.; Khemawoot, P. Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Compl. Altern. Med. 2019, 19, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Bonilla, P.; López-Nicolás, J.M.; García-Carmona, F. Use of reversed phase high pressure liquid cromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/β-cyclodextrin complexes. J. Chromatogr. B 2010, 878, 1569–1575. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, W.; Zhang, Y.; Wang, C.; Zhao, S. Preparation of hydroxypropyl cyclodextrin inclusion of oxyresveratrol/pterostilbene. Adv. Mat. Res. 2013, 641–642, 97–110. [Google Scholar] [CrossRef]
- He, J.; Zheng, Z.-P.; Zhu, Q.; Guo, F.; Chen, J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules 2017, 22, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. The inclusion complex of oxyresveratrol in modified cyclodextrins: A thermodynamic, structural, physicochemical, fluorescent and computational study. Food Chem. 2017, 232, 177–184. [Google Scholar] [CrossRef]
- He, J.; Guo, F.; Lin, L.; Chen, H.; Chen, J.; Cheng, Y.; Zheng, Z.-P. Investigating the oxyresveratrol β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin complexes: The effects on oxyresveratrol solution, stability, and antibrowning ability on fresh grape juice. LWT Food Sci. Technol. 2019, 100, 263–270. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; Conesa, I.; Muñoz-Sánchez, I.; Laveda-Cano, L.; Cano-Yelo, D.; García-Carmona, F.; López-Nicolás, J.M. Evaluation of juice and milk “food models” fortified with oxyresveratrol and β-Cyclodextrin. Food Hydrocoll. 2020, 98, 105250. [Google Scholar] [CrossRef]
- Matencio, A.; Dhakar, N.K.; Bessone, F.; Musso, G.; Cavalli, R.; Dianzani, C.; García-Carmona, F.; López-Nicolás, J.M.; Trotta, F. Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr. Polym. 2020, 231, 115763. [Google Scholar] [CrossRef]
- Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; López-Nicolás, J.M.; Trotta, F. Comparative evaluation of solubility, cytotoxicity and photostability studies of resveratrol and oxyresveratrol loaded nanosponges. Pharmaceutics 2019, 11, 545. [Google Scholar] [CrossRef] [Green Version]
- Sangsen, Y.; Wiwattanawongsa, K.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf. B 2015, 131, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sangsen, Y.; Wiwattanawongsa, K.; Likhitwitayawuid, K.; Sritularak, B.; Graidist, P.; Wiwattanapatapee, R. Influence of surfactants in self-microemulsifying formulations on enhancing oral bioavailability of oxyresveratrol: Studies in Caco-2 cells and in vivo. Int. J. Pharm. 2016, 498, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Sangsen, Y.; Wiwattanawongsa, K.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. Comparisons between a self-microemulsifying system and lipid nanoparticles of oxyresveratrol on the physicochemical properties and Caco-2 cell permeability. Eur. J. Lipid Sci. Technol. 2017, 119, 1600053. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Liu, G.; Miao, J.-Y.; Xie, L.; Cao, Y. Nanoemulsion improves oral bioavailability and transdermal absorption efficiency of oxyresveratrol. Xiandai Shipin Keji 2021, 37, 1–10, 220. [Google Scholar]
- Suzuki, Y.; Muangnoi, C.; Thaweesest, W.; Teerawonganan, P.; Bhuket, P.R.N.; Titapiwatanakun, V.; Yoshimura-Fujii, M.; Sritularak, B.; Likhitwitayawuid, K.; Rojsitthisak, P.; et al. Exploring novel cocrystalline forms of oxyresveratrol to enhance aqueous solubility and permeability across a cell monolayer. Biol. Pharm. Bull. 2019, 42, 1004–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouiyangkul, P.; Saithong, S.; Tantishaiyakul, V. Syntheses and crystal structures of hydrated and anhydrous 1:2 cocrystals of oxyresveratrol and zwitterionic proline. Acta Cryst. E 2020, 76, 1528–1534. [Google Scholar] [CrossRef]
- Ouiyangkul, P.; Tantishaiyakul, V.; Hirun, N. Exploring potential coformers for oxyresveratrol using principal component analysis. Int. J. Pharm. 2020, 587, 119630. [Google Scholar] [CrossRef]
- He, J.; Zhu, Q.; Dong, X.; Pan, H.; Chen, J.; Zheng, Z. Oxyresveratrol and ascorbic acid O/W microemulsion: Preparation, characterization, anti-isomerization and potential application as antibrowning agent on fresh-cut lotus root slices. Food Chem. 2017, 214, 269–276. [Google Scholar] [CrossRef]
- Hong, S.; Li, J.; Huang, X.; Liu, H. A facile approach to generate cross-linked poly(cyclotriphosphazeneco-oxyresveratrol) nanoparticle with intrinsically fluorescence. J. Inorg. Organomet. Polym. Mat. 2018, 28, 2258–2263. [Google Scholar] [CrossRef]
Plant Name | Family | Reference |
---|---|---|
Gymnosperms | ||
Gnetum africanum Welw. | Gnetaceae | [18] |
Gnetum cuspidatum Blume | Gnetaceae | [19] |
Gnetum gnemonoides Brongn. | Gnetaceae | [20] |
Gnetum hainanse C.Y. Cheng ex L.K. Fu, Y.F. Yu & M.G. Gilbert | Gnetaceae | [21,22] |
Gnetum montanum Markgr. | Gnetaceae | [23] |
Gnetum pendulum C.Y. Cheng | Gnetaceae | [24,25] |
Angiosperms | ||
1. Class: Monocotyledons | ||
Chrysopogon aciculatis (Retz.) Trin. | Poaceae | [26] |
Schoenocaulon officinale (Schltdl. & Cham.) A. Gray ex Benth. | Liliaceae | [6] |
Smilax china L. | Smilacaceae | [27,28,29,30,31,32,33,34,35,36,37] |
Smilax microphylla C.H.Wright | Smilacaceae | [38] |
Veratrum album L. | Melanthiaceae | [10] |
Veratrum dahuricum (Turcz.) Loes. | Melanthiaceae | [39] |
Veratrum grandiflorum (Maxim. Ex Baker) Loes. | Melanthiaceae | [11] |
Veratrum lobelianum Bernh. | Melanthiaceae | [40] |
Veratrum maackii Regel | Melanthiaceae | [41] |
2. Class: Dicotyledons | ||
2.1 Subclass: Apetalae (Monochlamydeae) | ||
Artocarpus dadah Miq. | Moraceae | [42,43] |
Artocarpus fulvicortex F.M. Jarret | Moraceae | [44] |
Artocarpus gomezianus Wall. ex Trécul. | Moraceae | [45,46] |
Artocarpus heterophyllus Lam. | Moraceae | [47,48,49] |
Artocarpus hirsutus Lam. | Moraceae | [50] |
Artocarpus hypargyreus Hance ex Benth. | Moraceae | [51] |
Artocarpus lakoocha Wall. ex Roxb./Artocarpus lacucha Buch.-Ham. | Moraceae | [52,53,54,55,56,57] |
Artocarpus nitidus subsp. lingnanensis (Merr.) F.M. Jarrett | Moraceae | [58] |
Artocarpus rigida Blume | Moraceae | [43] |
Artocarpus styracifolius Pierre | Moraceae | [59] |
Artocarpus. thailandicus C.C. Berg | Moraceae | [60] |
Artocarpus xanthocarpus Merr. | Moraceae | [61] |
Bagassa guianensis Aubl. | Moraceae | [62] |
Cudrania cochinchinensis (Lour.) Kudô & Masam. | Moraceae | [63,64,65] |
Cudrania tricuspidate (Carrière) Bureau ex Lavallée | Moraceae | [66,67,68,69] |
Maclura cochinchinensis (Lour.) Corner | Moraceae | [70] |
Maclura pomifera (Raf.) C.K. Schneid. | Moraceae | [71,72,73] |
Morus alba L. | Moraceae | [74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108] |
Morus atropurpurea Roxb. | Moraceae | [92,93,108] |
Morus australis Poir. | Moraceae | [108,109,110] |
Morus bombycis Koidz | Moraceae | [93,111] |
Morus cathayana Hemsl. | Moraceae | [108] |
Morus laevigata Wall. ex Brandis | Moraceae | [108] |
Morus latifolia Poir. | Moraceae | [85] |
Morus macroura Miq. | Moraceae | [112,113] |
Morus multicaulis Perr. | Moraceae | [108] |
Morus nigra L. | Moraceae | [14,108,114,115,116] |
Morus rubra L. | Moraceae | [98] |
Morus wittiorum Hand.-Mazz. | Moraceae | [117] |
Morus yunnanensis Koidz. | Moraceae | [118] |
2.2 Subclass: Polypetalae | ||
Caesalpinia furfuracea (Prain) Hattink | Caesalpiniaceae | [119] |
Cassia garrettiana (Craib) H.S. Irwin & Barneby | Caesalpiniaceae | [120] |
Glycosmis pentaphylla (Retz.) DC. | Rutaceae | [121] |
Melaleuca Leucadendron L. | Myrtaceae | [122] |
Prunus dulcis (Mill.) D.A. Webb | Rosaceae | [123] |
Pterocarpus marsupium Roxb. | Fabaceae | [124] |
Spirotropis longifolia (DC.) Baill. | Fabaceae | [125] |
Tetrastigma hemsleyanum Diels et Gilg. | Vitaceae | [126] |
Model | Reference |
---|---|
Mushroom tyrosinase | [14,34,37,49,61,63,67,77,84,97,109,111,124,128,138,139,141,148,149,150,151,152,153,154,155] |
Murine tyrosinase from cell lysates | [128,149] |
Human tyrosinase from cell lysates | [128] |
Cellular tyrosinase/melanogenesis | [49,61,68,77,97,124,128,138,152,153,154,156,157,158,159] |
Hypopigmentation in animals | [49,77,97,159] |
Depigmentation in humans | [160] |
Anti-browning effect | [78] |
Model | Reference |
---|---|
DPPH (1,1-diphenyl-2-picrylhydrazyl radical) | [54,61,75,80,90,94,106,114,124,157,162] |
O2• − (superoxide anion) | [61,75,80,162,163] |
HO• (hydroxyl radical) | [80] |
ABTS• + (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid radical) | [61,90,116,157,164] |
H2O2 and NO• (nitric oxide radical) | [90,94,165] |
Ferric reducing ability of plasma (FRAP) | [90,164] |
Peroxy radical oxygen radical absorbance capacity (ORAC) | [90,164] |
Rat liver microsomes | [106] |
Rat brain homogenates | [76] |
Liposomes | [54] |
Cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and lipoxygenases | [42,166] |
Mouse mammary in organ culture | [42] |
Mouse microglial cells and primary mixed glial cultures | [94] |
Mouse P19 cells | [167] |
Mouse BV-2 microglial cells | [168] |
Mouse macrophage RAW 264.7.cells | [47,106,169,170,171] |
Rat mast cells | [122] |
Rat polymorphonuclear leukocytes (PMNs) | [117] |
Rat cortical neurons | [27] |
Rat PC12 pheochromocytoma cells | [172] |
Human Jurkat leukemic T cells | [93] |
Human periodontal ligament (hPDL) cells | [173] |
Human lens epithelial cells (HLECs) | [174] |
Human primary epidermal keratinocytes | [68] |
Human embryonic fibroblast (HEF) cells | [175] |
Human chondrocyte cells | [169] |
Human breast adenocarcinoma cells | [176] |
Human intestinal Caco-2 cells | [177,178] |
Human intestinal goblet LS 174T cells | [179,180] |
Human microglia cells | [181] |
Mouse model of ovalbumin (OVA)-induced allergic airway inflammation | [182] |
Mouse model of ethanol-induced ulceration | [183] |
Mouse model of dextran sodium sulfate-treated colitis | [171] |
Rat model of carrageenan-induced hind-paw edema | [106,169] |
Rat model of dextran sulfate sodium-induced colitis | [184] |
Molecular docking | [185] |
Biological/Pharmacological Activity | Oxyresveratrol | Resveratrol | Reference |
---|---|---|---|
(1) Antioxidant and anti-inflammatory activities | |||
DPPH | higher | [61,94] | |
O2− • | higher | [61] | |
H2O2 | higher | [94,165] | |
NO• | higher | [94] | |
FRAP | higher | [164] | |
ABTS+ • | higher | [61,116,164] | |
ORAC | higher | [164] | |
Inhibition of LPS-induced production of NO in BV-2 microglial cells | higher | [18,168] | |
COX-1, COX-2 | higher | [166] | |
5-Lipoxigenase | higher | [166] | |
Protection against CCl4--induced liver fibrosis in rats | higher | [204] | |
Inhibition of PAF-induced release of β-glucuronidase in rat polymorphonuclear leukocytes | higher | [117] | |
(2) Inhibition of tyrosinase or melanogensis | |||
Mushroom tyrosinase (l-dopa) | higher | [124,138,148] | |
higher | [152] | ||
Mushroom tyrosinase (l-tyrosine) | higher | [61,138,151,152] | |
Murine tyrosinase (l-tyrosine) | higher | [149] | |
Cellular tyrosinase activity and melanogenesis in B16F0 cells | higher | [128,153] | |
Melanogenesis in Streptomyces bikiniensis | higher | [154] | |
(3) Neuroprotection | |||
Prevention of 6-OHDA neurotoxicity (Model of Parkinson’s disease) | higher | [79,196,197] | |
Prevention of KA neurotoxicity | higher | [199] | |
Prevention of EtOH neurotoxicity | higher | [41] | |
(4) Glucose and lipid metabolism | |||
Inhibition of α-glucosidase | higher | [220] | |
Stimulation of insulin secretion in MIN 6 cells | higher | [226] | |
Stimulation of glucokinase activity and expression | higher | [223] | |
Inhibition of AGE (advanced glycation end-products) formation | |||
Model of BSA-acrolein | higher | [225] | |
Model of BSA-glucose | higher | [124] | |
Model of BSA-methylglyoxal | higher | [225] | |
Stimulation of PGC-1β-mediated gene expression (Peroxisome proliferator activated receptor gamma co-activator-1β) | higher | [230] | |
Reduction of Firmicutes to Bacteroidetes ratio (F/B) in feces | higher | [248] | |
(5) Antimicrobial activities | |||
Antifungal activity | higher | [125] | |
Inhibition of Staphylococcus aureus (Gram positive) | higher | [244] | |
Inhibition of quorum-sensing of Chromobacterium violaceum (Gram negative) | higher | [247] | |
(6) Others | |||
Inhibition of phosphodiesterase-2 | higher | [264] | |
Inhibition of phosphodiesterase-4 | higher | [257] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likhitwitayawuid, K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021, 26, 4212. https://doi.org/10.3390/molecules26144212
Likhitwitayawuid K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules. 2021; 26(14):4212. https://doi.org/10.3390/molecules26144212
Chicago/Turabian StyleLikhitwitayawuid, Kittisak. 2021. "Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems" Molecules 26, no. 14: 4212. https://doi.org/10.3390/molecules26144212
APA StyleLikhitwitayawuid, K. (2021). Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules, 26(14), 4212. https://doi.org/10.3390/molecules26144212