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Abstract: Bicuspid aortic valve (BAV) is the most common congenital heart defect responsible for
valvular and aortic complications in affected patients. Causes and mechanisms of this pathology are
still elusive and thus the lack of early detection biomarkers leads to challenges in its diagnosis and
prevention of associated cardiovascular anomalies. The aim of this study was to explore the potential
use of urine Nuclear Magnetic Resonance (NMR) metabolomics to evaluate a molecular fingerprint
of BAV. Both multivariate and univariate statistical analyses were performed to compare the urinary
metabolome of 20 patients with BAV with that of 24 matched controls. Orthogonal partial least
squared discriminant analysis (OPLS-DA) showed statistically significant discrimination between
cases and controls, suggesting seven metabolites (3-hydroxybutyrate, alanine, betaine, creatine,
glycine, hippurate, and taurine) as potential biomarkers. Among these, glycine, hippurate and
taurine individually displayed medium sensitivity and specificity by receiver operating characteristic
(ROC) analysis. Pathway analysis indicated two metabolic pathways likely perturbed in BAV subjects.
Possible contributions of gut microbiota activity and energy imbalance are also discussed. These
results constitute encouraging preliminary findings in favor of the use of urine-based metabolomics
for early diagnosis of BAV.
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1. Introduction

Bicuspid aortic valve (BAV) is the most common congenital heart defect, usually
asymptomatic, resulting from an abnormal aortic cusp formation during valvulogenesis. It
has a prevalence of 0.5 to 2% in the general population [1,2] and 30%, approximately, in
individuals with aortic valve disorders [3,4]. Generally, males are more often affected than
females.

BAV is considered a multifaceted heterogeneous disease because of the diverse clinical
manifestations [5–7]. During the last decades, the knowledge of genetic and epigenetic
aspects of BAV has increased significantly [8]; however, elucidating the mechanisms un-
derlying BAV and related complications still poses several challenges. In clinical practice,
its diagnosis is mainly entrusted to imaging techniques, and no effective strategies exist
to prevent progression and its related disorders. In this regard, due to the association of
BAV with lifelong increased risk of adverse cardiovascular events, among which the most
insidious is bicuspid aortopathy [9], there is a growing need for developing new screening
methods and identification of non-invasive biomarkers for improving the prompt diagnosis
and monitoring of BAV, and to define the best and safest time point for surgery.

Molecules 2021, 26, 4220. https://doi.org/10.3390/molecules26144220 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-7432-4815
https://orcid.org/0000-0002-3505-0310
https://orcid.org/0000-0002-9695-5957
https://doi.org/10.3390/molecules26144220
https://doi.org/10.3390/molecules26144220
https://doi.org/10.3390/molecules26144220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26144220
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26144220?type=check_update&version=1


Molecules 2021, 26, 4220 2 of 14

Metabolomics is the study of the biochemical profile of the metabolome, i.e., the set of
low molecular weight (<1.5 kDa) metabolites in a biological system arising from physio-
logical and pathological cellular processes [10]. The characterization of the metabolome
makes metabolomics a promising strategy to identify biomarkers in clinical practice for
the diagnosis and assessment of severity and response to therapy in a number of clinical
disease states [11]. This approach has provided valuable insight also into the metabolic
changes associated with cardiovascular diseases [12] such as myocardial ischemia [13] and
infarction, coronary artery disease [14], and heart failure [15]. To the best of our knowledge,
only a few metabolomics studies have been performed to identify metabolic alterations
in BAV patients [16–18] with a special focus on the lipid molecular class, it being the
dysregulated lipid metabolism recognized as an established risk factor in cardiovascular
diseases [19].

In the current study, we explored the potential of urine metabolome analysis as an
informative tool to support BAV diagnosis. Urine is a biofluid largely used for clinical diag-
nosis since it contains not only many plasma components but also the catabolic products of
different metabolic pathways. Compared to other biofluids, it offers different advantages: it
is abundant, readily available, easy to store, and non-invasively collected. By a comparative
nontargeted metabolomics analysis of urine from BAV patients and matched controls based
on proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, we searched for a possible
characteristic metabolite signature associated with BAV.

2. Results

Our study population comprised 44 individuals (20 cases and 24 controls) including 31
men and 13 women between the ages of 18 and 74 years. In order to reduce uninformative
variations that could interfere with the identification of relevant information encoded in
the experimental spectral data set, controls were selected according to some matching
variables, and restricted exclusion criteria for the health status of subjects were applied to
both groups (see Materials and Methods section). The baseline characteristics of the study
population are summarized in Table 1. Only the body surface area (BSA) was significantly
higher in BAV than controls.

Table 1. Baseline characteristics of the study population: cases vs. controls.

BAV Controls p-Value

Number 20 24 -
Age, yrs 40.1 (18–74) 42.7 (23–69) 0.600

Males, n (%) 17 (85) 14 (58) 0.055
Weight, kg 75.15 ± 7.47 71.8 ± 8.1 0.169
Height, cm 175 (152–189) 177 (158–186) 0.389

BMI, kg/m2 24.60 ± 2.48 23.36. ± 1.88 0.687
BSADB, m2 1.90 ± 0.12 1.79 ± 0.14 0.014
HR, bpm 69.95 ± 11.76 72.28 ± 11.85 0.514

Smoking, n (%) 5 (25) 6 (25) 1.00
Continuous normally distributed variables are reported as mean ± standard deviation; continuous non-normally
distributed variables are reported as median (interquartile range, IQR); categorical variables as n (%). Abbre-
viations: BMI, body mass index; BSADB, body surface area, calculated according to DuBois’s formula; HR,
heart rate.

All BAV subjects were asymptomatic. Echocardiographic data are shown in Table 2.
The morphologic analysis of BAV showed that 12 patients (60%) had type 1 and eight
patients (40%) type 2 BAV. Compared to controls, the patient group showed no significant
dilatation of the aortic dimensions above the normal values [20]. Similarly, LV indices
of the BAV group were significantly higher than in controls but still within the normal
range [20].
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Table 2. Echocardiographic measurements of aortic root dimensions and left ventricular volume.

BAV
(n = 20)

Controls
(n = 24) p-Value

Aortic root
Annulus (mm) 23.6 (20–26) 21.83 (19–25) 0.023

Sinuses of Valsalva (mm) 28.5 (28–34) 26.12 (25–28) 0.015
Sinotubular junction (mm) 27.54 ± 3.87 25.29 ± 2.31 0.024

Ascending Aorta (mm) 28.65 ± 4.3 26.20 ± 2.63 0.021
Left ventricular

ESV index (mL/m2) 21.85 ± 6.19 17.90 ± 3.88 0.014
EDV index (mL/m2) 61.95 ± 9.98 54.29 ± 10.12 0.015
SV index (mL/m2) 39.49 ± 7.67 32.83 ± 9.63 0.043

EF (%) 61.71 ± 8.44 64.04 ± 4.73 0.406
BAV morphology

Type 1, n (%) 12 (60) - -
Type 2, n (%) 8 (40) - -

Continuous normally distributed variables are reported as mean ± standard deviation; continuous non-normally
distributed variables are reported as median [interquartile range (IQR)]; categorical variables as n (%). Abbre-
viations: EDV, end-diastolic volume; EF, ejection fraction; SV, stroke volume; ESV, end-systolic volume; Type 1,
fusion of the left coronary cusp and right coronary cusp (L-R); Type 2, fusion of the right coronary cusp with the
non-coronary cusp.

An untargeted metabolomics approach was employed to compare the NMR urinary
metabolic profiles of BAV and controls. The unsupervised analysis of the entire data set
in the form of PCA provided a model with two components explaining around 24% of
the spectral variance. Visual inspection of the scores plot resulted in no detection of either
outliers (i.e., scores outside the Hotelling’s T2 range) or clustering based on the disease
status (Figure 1A). To further explore whether any urinary compositional variability related
to this congenital malformation was present in BAV subjects compared to controls, a
supervised analysis was carried out by using OPLS-DA. This approach led to a good
separation between groups (Figure 1B) with acceptable values of explained variation
related to classes (R2Y = 0.78) and predictive ability (Q2 = 0.46), thus indicating reliable
changes in urine metabolic profiles of BAV in comparison with controls. Additionally, a
CV-ANOVA test revealed that the model was significant (p = 0.003), and a permutation test
for the Y variable indicated that it was not influenced by overfitting (Y-axis intercept equal
to 0.318 for Q2). Furthermore, receiver operating characteristic (ROC) analysis of the model
revealed an AUC equal to 0.863. To further validate these results, an external validation
test was done by randomly taking out 25% of samples in the data set as blind samples
and processing the OPLS-DA prediction model with the remaining 75% of samples. This
operation, repeated 20 times, provided an average correct classification rate of 0.70 ± 0.05
(Fischer p-value < 0.05).
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for the pairwise comparison between BAV (▲) and controls (●). Abbreviation: 3-OHB, 3-hydroxy-
butyrate; ala, alanine; bet, betaine; crt, creatine; gly, glycine; hip, hippurate; tau, taurine. 

The analysis of the OPLS-DA correlation coefficient S-line plot suggested that the 
BAV metabolic signature primarily responsible for class separation comprised a panel of 
seven metabolites (Figure 1C). In particular, the levels of urinary 3-hydroxybutyrate (3-

Figure 1. PCA scores plot (A), OPLS−DA scores plot (B), and correlation coefficient S-line plot (C) for
the pairwise comparison between BAV (N) and controls (•). Abbreviation: 3-OHB, 3-hydroxybutyrate;
ala, alanine; bet, betaine; crt, creatine; gly, glycine; hip, hippurate; tau, taurine.

The analysis of the OPLS-DA correlation coefficient S-line plot suggested that the BAV
metabolic signature primarily responsible for class separation comprised a panel of seven
metabolites (Figure 1C). In particular, the levels of urinary 3-hydroxybutyrate (3-OHB),
alanine, glycine, and taurine were higher in cases than in controls, while betaine, creatine,
and hippurate were less abundant.
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The specific set of discriminant metabolites found in a pairwise comparison was
submitted to pathway analysis by using the MetPA module in order to map the possi-
ble metabolic implications of the detected differences. As shown in Figure 2, the seven
biomarkers were involved in 13 metabolic pathways whose weight was judged by their
influence value. Only two metabolic pathways (glycine, serine and threonine metabolism,
and taurine and hypotaurine metabolism) had an impact value > 0.1, and thus they were
screened as potential target pathways mostly related to BAV.

Molecules 2021, 26, x 5 of 15 
 

 

 

OHB), alanine, glycine, and taurine were higher in cases than in controls, while betaine, 
creatine, and hippurate were less abundant. 

The specific set of discriminant metabolites found in a pairwise comparison was sub-
mitted to pathway analysis by using the MetPA module in order to map the possible met-
abolic implications of the detected differences. As shown in Figure 2, the seven biomarkers 
were involved in 13 metabolic pathways whose weight was judged by their influence 
value. Only two metabolic pathways (glycine, serine and threonine metabolism, and tau-
rine and hypotaurine metabolism) had an impact value > 0.1, and thus they were screened 
as potential target pathways mostly related to BAV. 

 
Figure 2. Topology map, generated using MetaboAnalyst, describing the impact of the seven dis-
criminant metabolites identified through comparative analysis of BAV against controls by OPLS-
DA. Bubble size is proportional to the impact of each pathway, while bubble color denotes the 
degrees of significance from highest (red) to lowest (white). 

We also assessed the relationship between the abovementioned putative biomarkers 
(Figure 3). The largest positive correlation was observed between taurine and glycine (r = 
0.553, p = 3.7·10−4). The correlation between hippurate and 3-OHB was also significant but 
negative (r = –0.350, p = 0.02). Furthermore, a weak but significant (p < 0.05) correlation 
was observed for alanine with glycine, hippurate, and taurine. 

Figure 2. Topology map, generated using MetaboAnalyst, describing the impact of the seven
discriminant metabolites identified through comparative analysis of BAV against controls by OPLS-
DA. Bubble size is proportional to the impact of each pathway, while bubble color denotes the degrees
of significance from highest (red) to lowest (white).

We also assessed the relationship between the abovementioned putative biomarkers
(Figure 3). The largest positive correlation was observed between taurine and glycine
(r = 0.553, p = 3.7·10−4). The correlation between hippurate and 3-OHB was also significant
but negative (r = −0.350, p = 0.02). Furthermore, a weak but significant (p < 0.05) correlation
was observed for alanine with glycine, hippurate, and taurine.
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It is worth stating that the multivariate statistical analysis methods for analysis of
metabolomics data focus on the relationships among variables (i.e., metabolites). Thus, the
contents of the seven markers discriminating between cases and controls were also screened
individually using univariate statistical analysis. To this aim, by the integration of the
corresponding selected NMR signals, the variation in the relative content was monitored
and depicted in the box plots in Figure 4. Of the seven compounds, three exhibited a
significant inter-group variation (p < 0.05), namely, glycine, taurine, and hippurate, with
large absolute effect sizes for the first two molecules (>0.8) and a medium value for the
latter (>0.5). These three candidate biomarkers were also subjected to ROC analysis to
evaluate their ability to separate BAV and controls (Figure 5). The statistical parameters of
the ROC curves showed an AUC value ≥0.70 for all of three metabolites, thus pointing
out a medium diagnostic capability for each compound. It is worth noting that the AUC
generated with each metabolite was lower than those of the curve generated from the entire
data set by OPLS-DA, indicating an improvement of the diagnostic performance of the
multivariate statistical model.
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Figure 5. Receiver operating characteristic (ROC) analysis of glycine, hippurate, and taurine for differentiating BAV patients
from healthy controls.

3. Discussion

In the last decades, metabolomics has emerged as a useful tool in the study of diseases
and a fascinating and innovative method toward the understanding of pathogenesis,
diagnosis and management of different pathologies, and the development of tailored
approaches [21,22]. Blood and urine are both suitable biofluids for metabolomics analysis.
On one hand, blood (plasma or serum) offers the main advantage of being uniquely uniform
and very homeostatic. Thus, it is less affected by confounding factors such as age, gender,
or diet. On the other, urine is easier to obtain and handle, samples need less preparation,
and the collection is not invasive. In cardiovascular medicine, metabolomics studies
have been focused principally on the analysis of human plasma or serum [23–25]. In the
particular case of the bicuspid aortic valve (BAV) defect, the metabolic snapshots generated
by metabolomics studies on plasma from BAV subjects have highlighted perturbations
in purine metabolism and fatty acid biosynthesis, redox imbalance, and deficient energy
production [16,18].

Various studies have shown that urine NMR metabolomics has potential as a screening
tool for accurate diagnosis [26–28]. Since, to the best of our knowledge, no investigation
has been performed so far on the urine metabolome of BAV subjects, in the present study
we applied urine-based metabolomics for a comparative analysis of the metabolic profile
of adult asymptomatic subjects with BAV (n = 20) and healthy controls (n = 24). In order
to reduce age and gender dependence heterogeneity in the study population, age and
gender matching between cases and controls was applied. The multivariate statistical
analyses of the NMR spectral data suggested seven discriminant metabolites, three of
which (hippurate, taurine, and glycine) individually exhibited medium diagnostic power
by ROC analysis. In particular, we found low levels of hippurate (Hip) in BAV. Hip is
the glycine conjugate of benzoic acid resulting from the metabolic conversion by gut mi-
crobes of dietary aromatic compounds. Therefore, perturbations in Hip urinary levels
are often attributed to changes in gut microbial activities [29]. Accordingly, our result
could be taken as an indication of a possible association between gut microbial and BAV
disease. Consistent with this view, there is the accumulating evidence of a contribution of
gut microbiota to the development of cardiovascular diseases [30]. A further indication
supporting this hypothesis may arise from the lower content of betaine in BAV compared to
controls. Indeed, besides being involved in several important metabolic pathways, includ-
ing the formation of specific phosphatidylcholines (lipid metabolism) and the synthesis
of homocysteine (a metabolite with a debated association with cardiovascular morbidity
and mortality [31]), betaine is a metabolite associated with gut microbial activity [32]. It
can produce trimethylamine under the effect of gut microbiota, which is further oxidized
as trimethylamine-N-oxide (TMAO) in liver, another metabolite having dose-dependent
associations with cardiovascular diseases [33,34].

Additionally, our data evidenced a higher excretion of taurine (Tau) and 3-hydroxy
butyrate (3-OHB) in BAV patients compared to controls. Tau is a nonessential amino
acid, derived primarily from the diet and produced in very limited quantities by the heart
and brain [35]. It has multiple vital functions in cardiac processes, contributing to the
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regulation of blood pressure, adequate oxidative metabolism, and ATP production [36].
Furthermore, most of the beneficial effects of Tau on cardiovascular diseases have been
suggested to be due to its action on reactive oxygen species as well as on intracellular
Na+ and Ca2+ overloads [37]. 3-OHB is a ketone body, synthesized from oxidation of fatty
acids (FAs) primarily in the liver. Ketone bodies are energy substrates for heart-like fatty
acids, glucose, lactate, and amino acids. It has been shown that alterations in ketone bodies
can be associated with heart disease as a consequence of an imbalance of lipid oxidation,
although not always do these anomalies follow the same trend. For instance, higher levels
of ketone bodies in blood from heart failure (HF) patients were observed compared to
healthy controls [38,39]. On the contrary, a recent metabolomics investigation showed
that the serum concentrations of the ketone bodies were lower in patients with HF with
reduced ejection fraction than in controls [40]. Although the physiological importance of
these metabolomic findings has not been determined yet, we do not exclude that the higher
urinary level of 3-OHB in BAV compared to controls may also be indicative of a possible
derangement of energy metabolism, as also suggested by plasma-based metabolomics
studies on BAV [16,17]. The disturbance of energy supply would explain also the lower
levels of creatine (Cr) in BAV than controls. Indeed, Cr is a metabolite essential for
normal cardiac function. It might augment cellular energy supply and attenuate the loss of
cellular Ca2+ whose abnormal modulation is known to be implicated in various cardiac
pathologies [41].

It has been reported that abnormalities in amino acid metabolism are associated with
cardiovascular diseases [42]. The results of our study showed that the levels of two amino
acids, alanine (Ala) and glycine (Gly) were more elevated in BAV urine than in controls. Ala
is a glycogenic amino acid that can be converted into glucose by gluconeogenesis, acting
as an energy source to meet the huge demand of energy consumed in various metabolic
activities. Gly is a non-essential amino acid, participating in a wide range of metabolic
pathways [43]. It can regulate lipid metabolism [44] and immune cell activation [45].
Furthermore, it is a substrate for the biosynthesis of glutathione, a major antioxidant in
human cells [46]. Recently, its circulating levels have also been associated with a lower
incidence of myocardial infarction [44]. The results of our metabolic pathway analysis,
in particular, suggested a possible perturbation of glycine metabolism in BAV, a pathway
producing important energy metabolism precursors for the Krebs cycle. Nevertheless,
since Gly is a metabolite at the intersection of many metabolic pathways, we cannot rule
out that the higher levels of Gly in BAV compared to controls may represent also the causal
effect of a metabolite to which glycine is metabolically closely linked.

4. Strengths and Limitations of the Study

This study has weaknesses and strengths. The main criticism is represented by the
small sample size, thus limiting the statistical power of the results. At least 30 subjects
per group should be included in clinical metabolomics studies to successfully achieve
discriminatory identification of metabolite profiles, although this number is dependent on
design details. However, it should be remembered that the present study was intended
as explorative, aimed at investigating the potential of urine metabolome analysis as an
informative tool to support BAV diagnosis. Based on the low number of samples, it can
thus pilot further studies with larger sample sizes to determine the clinical utility of urine
NMR in the diagnosis of BAV.

While somewhat limited, the present study has also an important strength. To the
best of our knowledge, there are no previously published data on the urine metabolome
of BAV subjects. A limited number of metabolomics studies have been performed on
BAV. Among these, Wang et al. analyzed the serum metabolome of BAV patients and
healthy individuals by liquid chromatography–mass spectrometry (LC-MS) [16]. Doppler
et al. compared the ascending thoracic aortic wall tissue of BAV patients with aortic
aneurysms, tricuspid aortic valve (TAV) patients with aortic aneurysms, and TAV subjects
undergoing surgery for aortic dissection [17]. The analytical technique was the Flow
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Injection Analysis Tandem Mass Spectrometry (FIA-MS/MS). Martinez et al. analyzed the
plasma metabolic profile of TAV individuals, BAV patients with no aortic dilation, BAV
patients with ascending aorta dilation at the time of diagnosis, and patients with TAV
and ascending aorta dilation [17]. Another study was performed by Xiong et al. with a
specific focus on the metabolomics profile involved in BAV aortic stenosis prior to and
after transcatheter aortic valve replacement in comparison with TAV [47]. Although the
abovementioned investigations vary to great extend in terms of study design, their results
point to the hypothesis of an important role of the lipid and energy metabolisms in BAV
disease. Complementing this information, our findings support the presence of altered
energy metabolism under the BAV condition and suggest a potential role of intestinal
microbiota in this cardiac abnormality. In light of the increasing evidence of a possible
relationship of gut microbiota and cardiovascular disease development [30], this association
deserves to be investigated further, even in the case of BAV malformation.

5. Materials and Methods
5.1. Study Population and Sample Collection

This prospective, monocentric study included 44 adult subjects (20 cases and 24
healthy controls) enrolled at the Paediatric and Adult Congenital Heart Centre, IRCCS
Policlinico San Donato, Milan, Italy. The institution’s Ethics Board approved the study (CE
126/INT/15) and informed consent was obtained from the participants.

Each subject underwent a complete physical examination (height, weight, heart rate,
blood pressure [BP]), a cardiac examination performed by professional cardiologists, and
a 2-dimensional (2D) transthoracic color Doppler echocardiography (TTE) to address the
diagnosis of BAV. BP was measured before or after the ultrasound examination using
a validated automated oscillometric. Exclusion criteria were: diagnosed or suspected
connective tissue disorders such as Marfan syndrome, previous cytoreductive treatments
(i.e., chemotherapy, radiotherapy), lasting steroidal therapy, graft-versus-host disease,
active infective diseases, serological positivity for HIV, hepatitis B virus (HBV) (in non-
vaccinated subject) and/or hepatitis C virus (HCV), and presence of other major congenital
heart defects (e.g., aortic coarctation, aortic valve surgery, aortic stenosis, aortic insufficiency,
or thoracic aortic aneurysm).

Personal medical history (i.e., comorbidities, previous cardiac surgical or hemody-
namic interventions, age at BAV diagnosis, symptoms), the use of medications, physical
activity, and family history of congenital heart diseases, especially aortic valve diseases,
were investigated.

Urine samples were self-collected by participants under overnight fasting conditions
following provided instructions and immediately delivered to the laboratory on ice. Once
in the laboratory, samples were stored at −80 ◦C until shipping on dry ice to the University
of Cagliari for metabolomics analysis.

5.2. Chemicals

Sodium 3-trimethylsilyl [2,2,3,3-d4]-propionate (TSP) and deuterium oxide (D2O,
99.9% D) were purchased from Cambridge Isotope Laboratories, Inc. (Cambridge, MA,
USA). Sodium azide (NaN3), K2HPO4·3H2O and KH2PO4, all at analytical grade, were
obtained from Sigma Aldrich (Milano, Italy).

5.3. Sample Preparation

Urine samples were thawed in ice. An aliquot of 1 mL was transferred into a microcen-
trifuge tube and 10 µL of NaN3 (10% w/w) was added to avoid possible bacterial growth.
The samples were vortexed and then centrifuged at 12,000 g for 10 min at 4 ◦C. To stabilize
the pH of urine samples, 630 µL of the supernatants were mixed with 70 µL of phosphate
buffer solution in D2O (1.5 M, pH 7.4) containing TSP (6 mM) as internal standard. The
mixture was vortexed and an aliquot of 650 µL was transferred into a 5 mm NMR tube for
the analysis.
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5.4. 1H NMR Spectroscopy
1H NMR spectra were recorded at 300 K using a Varian Unity Inova 500 NMR spec-

trometer (Agilent Technologies, Santa Clara, CA, USA), operating at 499.839 MHz. Water
suppression was achieved with a Noesypresat pulse sequence during a 3.5 s relaxation
delay and 1 ms mixing time. NMR spectra were acquired with an acquisition time of 1.5 s,
32 K data points and 256 scans over a spectral width of 6000 Hz.

NMR spectra were processed by using MestReNova (Version 10.0, Mestrelab Research
SL, Valencia, Spain). After Fourier transformation with 0.3 Hz line broadening and a
zero-filling to 64 K, spectra were phased and baseline corrected, and the chemical shift
scale was set by assigning a value of δ = 0.00 ppm to the signal of the internal standard TSP.
After correction for misalignments in chemical shift primarily due to pH-dependent signals,
NMR spectra were binned to 0.002 ppm intervals between 0.5 and 9.5 ppm, excluding the
region corresponding to water (4.6–5.2 ppm) and TSP (−0.5 ppm) signals. All spectra were
normalized using the Probabilistic Quotient Normalization (PQN) method [48].

5.5. Statistical Analysis

The binned NMR data set was converted into a Microsoft Office Excel file and then
imported into SIMCA version 16.0 (Umetrics, Umeå, Sweden) for statistical assessment.
Prior to multivariate statistical analysis, data were Pareto scaled to emphasize both large-
and small-concentration metabolite signals. Then, principal component analysis (PCA) [49]
and orthogonal partial least square-discriminant analysis (OPLS-DA) [50] were applied.
PCA, an unsupervised pattern recognition method, was first performed to examine the
intrinsic variation in the data set. Afterwards, OPLS-DA was performed to maximize the
separation between groups of observations by removing variability not relevant to class
separation. The model performance was evaluated by the coefficients R2 and Q2, indicating
goodness of fit and prediction, respectively. To provide a further objective assessment of
the performance and stability of the model, internal validation was performed by cross
validation-analysis of variance (CV-ANOVA), with a p-value < 0.05 [51] and permuta-
tion testing to check the validity and the degree of overfitting. The predictive accuracy
of the OPLS-DA models was also examined by receiver operating characteristic (ROC)
analysis [52]. The ROC is a calculation of the rate of false positive (1-sensitivity) to true
positive (specificity) classifications that makes no assumption of class boundaries. The area
under the ROC curve (AUC) is equal to the probability that reflects the overall diagnostic
accuracy of a certain index in the diagnosis of diseases. An AUC lower than 0.5 indicates
a classification accuracy no better than chance, 0.5 < AUC ≤ 0.7 means low diagnostic
accuracy, 0.7 < AUC ≤ 0.9 means medium diagnostic accuracy, and 0.9 < AUC < 1.0
means high diagnostic accuracy.

For validation purposes, external validation of the OPLS-DA models was also applied
by dividing the data set in such a way that randomly selected samples of 75% of the
participants were used to form a training set, while the samples of the remaining 25% were
used as the test set. This procedure was repeated 20 times to construct 20 random training-
test set pairs. OPLS-DA models were built based on the training set and then blindly
predicted the classes of the samples in the test set. Each time the correct classification rate
was calculated.

The contribution of variables to group discrimination was evaluated by analyzing the
OPLS-DA correlation coefficient loading plots (S-line). This plot depicts simultaneously the
outcomes of the covariance (peak height) and correlation (color code) analyses applied to
the 1H-NMR dataset. The observed phase of the resonance signals represents the relative
changes in the concentration of metabolites: positive peak phase reflects metabolites with
increased concentration in the group positioned along the positive direction of the first
component of the model, and vice versa. The color of variables contains information
on their statistical significance: a hot color shows a more significant contribution than
the cold one for the intergroup discrimination, as calculated from the correlation matrix.
The spectral regions that contributed most to class separation were selected according
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to the following criteria: |p(cov)| ≥ 0.05; |p(corr)| ≥ 0.5. Metabolites identification
was performed according to the literature [53,54], the Human Metabolome Database
(www.hmdb.ca, accessed on 28 May 2021), and by using the trial version of Chenomx
NMR suite 7.0 (Chenomx Inc., Alberta, AB, Canada).

Pathway analysis was performed using Metabolomics Pathway Analysis (MetPA;
https://www.metaboanalyst.ca, accessed on 28 May 2021), a web-based metabolomics
tool [55] that combines several advanced pathway enrichment analysis procedures along
with the analysis of pathway topological characteristics to help the identification of the
most relevant metabolic pathways involved in a given metabolomic study.

Metabolites identified by discriminant loadings in the OPLS-DA S-line plot were
quantified by analyzing the integrals of selected distinctive NMR signals. Relative con-
tents in the two groups were submitted to univariate statistical analysis performed using
GraphPad Prism version 8.0.0 (GraphPad Software, San Diego, California, CA, USA,
www.graphpad.com, accessed on 28 May 2021). The Mann–Whitney U test was used to
assess group differences between metabolites (a p-value < 0.05 was evaluated statistically
significant) with effect sizes (ES) calculated by Cohen’s d-test [56]. ES values between 0.2
and 0.5 were classified as small, between 0.5 and 0.8 as medium, and over 0.8 as large. ROC
curves were built to test the sensibility and the specificity of the selected metabolites by
using the same software. Correlation analysis was assessed using a Pearson’s test.

6. Conclusions

Many individuals with BAV do not experience symptoms until they begin to have
complications. Imaging techniques are the current standard for BAV diagnosis. However,
this is done when symptoms have already manifested. Thus, early diagnosis is fundamental
to preventing BAV symptoms and the adverse cardiac outcomes related to this heart defect.
The discovery of candidate biomarkers of BAV can contribute to developing preventive
interventions and to improving the understanding of the structural molecular basis of this
pathology.

Our study allowed a preliminary evaluation of the potential utility of urine NMR
metabolomics to provide new insights into BAV. Overall, the findings suggest that BAV has
a measurable influence on the urinary metabolome of patients. A panel set of seven poten-
tial discriminant metabolites was identified by multivariate statistical analysis, suggesting
a possible association of BAV with two metabolic pathways (taurine and hypotaurine
metabolism, and glycine, serine and threonine metabolism), gut microbial activity, and
energy imbalance. Furthermore, three metabolites (glycine, taurine, and hippurate) indi-
vidually showed a medium diagnostic potential. These findings can contribute to a better
understanding of the pathology of BAV and provide a basis for future investigations on
the use of noninvasive urinary metabolomics for improved diagnosis and prognosis of this
complex and clinically heterogeneous disease.
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