Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content of UAE, UTE, ASE, and PEF Extracts from Fresh Apple Pomace
2.2. Phloridzin Quantification in Fresh Apple Pomace Extracts by Q-TOF-LC/MS
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Apple Pomace
3.3. Extractions of Phenolic Compounds
3.3.1. Ultrasound-Assisted Extraction (UAE)
3.3.2. Ultraturrax Extraction (UTE)
3.3.3. Accelerated Solvent Extraction (ASE)
3.3.4. Pulsed Electric Field Treatment (PEF)
3.4. Determination of the Total Phenolic Content (TPC)
3.5. Q-TOF-LC/MS Analysis of Phenolic Compounds
3.6. Standard Preparation, Calibration Curves, Limits of Detection, and Quantification
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karikas, G.A. Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects new analytical methods and bioassays view project new analytical methods and bioassays view project. J. BUON 2010, 15, 627–638. [Google Scholar]
- Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017, 69, 243–256. [Google Scholar] [CrossRef]
- Li, D.; Sun, L.; Yang, Y.; Wang, Z.; Yang, X.; Zhao, T.; Gong, T.; Zou, L.; Guo, Y. Young apple polyphenols postpone starch digestion in vitro and in vivo. J. Funct. Food 2019, 56, 127–135. [Google Scholar] [CrossRef]
- Moradi-marjaneh, R.; Paseban, M.; Sahebkar, A.A. Natural products with SGLT2 inhibitory activity: Possibilities of application for the treatment of diabetes. Phytother. Res. 2019, 33, 2518. [Google Scholar] [CrossRef]
- Franquin-Trinquier, S.; Maury, C.; Baron, A.; Le Meurlay, D.; Mehinagic, E. Optimization of the extraction of apple monomeric phenolics based on response surface methodology: Comparison of pressurized liquid-solid extraction and manual-liquid extraction. J. Food Compos. Anal. 2014, 34, 56–67. [Google Scholar] [CrossRef]
- Koutsos, A.; Lovegrove, J.A. Chapter 12—An Apple a Day Keeps the Doctor Away—Inter-Relationship Between Apple Consumption, the Gut Microbiota and Cardiometabolic Disease Risk Reduction. In Diet-Microbe Interactions in the Gut; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 173–194. [Google Scholar]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Sci. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. Food Sci. Biotechnol. 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Cossignani, L.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef]
- Castro-López, C.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chem. 2017, 237, 1139–1148. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT-Food Sci. Technol. 2018, 93, 511–516. [Google Scholar] [CrossRef]
- Torres, R.A.C.; Santos, D.T.; Meireles, M.A.A. Novel extraction method to produce active solutions from plant materials. Food Public Health 2015, 5, 38–46. [Google Scholar] [CrossRef]
- Xu, W.; Zhai, J.; Cui, Q.; Liu, J.; Luo, M.; Fu, Y.; Zu, Y. Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Sep. Purif. Technol. 2016, 166, 73–82. [Google Scholar] [CrossRef]
- Sturm, J.; Wienhold, P.; Frenzel, T.; Speer, K. Ultra Turrax® tube drive for the extraction of pesticides from egg and milk samples. Anal. Bioanal. Chem. 2018, 410, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, V.; Neri, L.; Sacchetti, G.; Di Mattia, C.D.; Mastrocola, D.; Pittia, P. Response of organic and conventional apples to freezing and freezing pre-treatments: Focus on polyphenols content and antioxidant activity. Food Chem. 2020, 308, 125570. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Al-Anaki, W.S.; Ismail, F.A.; Al-Jishi, F. Solvent and temperature effect of accelerated solvent extraction (ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in commercial tea and coffee. Food Chem. 2020, 311, 126021. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, X.; Wang, Z.; Xiao, W.; He, Z.; Xiong, Z.; Zhao, L. Extraction optimization of accelerated solvent extraction for eight active compounds from yaobitong capsule using response surface methodology: Comparison with ultrasonic and reflux extraction. J. Chromatogr. A 2020, 1620, 460984. [Google Scholar] [CrossRef]
- Lohani, U.C.; Muthukumarappan, K. Application of the pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innov. Food Sci. Emerg. 2016, 35, 29–35. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Garanto, X.; Badiella, L.; Motilva, M. Seasonal variability of the phytochemical composition of New red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2018, 66, 10011–10025. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Bi, J.; Liu, X.; Li, X.; Guo, C. Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT-Food Sci. Technol. 2019, 108, 421–428. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Y.D.; Valles, B.S.; Lobo, A.P. Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Pollini, L.; Tringaniello, C.; Ianni, F.; Blasi, F.; Manes, J.; Cossignani, L. Impact of ultrasound extraction parameters on the antioxidant properties of moringa oleifera leaves. Antioxidants 2020, 9, 277. [Google Scholar] [CrossRef]
- Rusu, M.E.; Gheldiu, A.; Mocan, A.; Moldovan, C.; Popa, D.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [Green Version]
- Kokkali, M.; Martí-Quijal, F.J.; Taroncher, M.; Ruiz, M.; Kousoulaki, K.; Barba, F.J. Improved extraction efficiency of antioxidant bioactive compounds from Tetraselmis chuii and Phaedoactylum tricornutum using pulsed electric fields. Molecules 2020, 25, 3921. [Google Scholar] [CrossRef]
- Montesano, D.; Rocchetti, G.; Cossignani, L.; Senizza, B.; Pollini, L.; Lucini, L.; Blasi, F. Untargeted metabolomics to evaluate the stability of extra-virgin olive oil with added Lycium barbarum carotenoids during storage. Foods 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
Conditions | UAE | UTE |
---|---|---|
EtOH:H2O (v/v) | 60 °C, 60 min | 1 min at 9500 rpm, 1 min at 13,500 rpm |
50:50 | 71.19 ± 26.34 | 64.43 ± 23.84 |
70:30 | 63.63 ± 23.76 | 62.23 ± 23.21 |
30:70 | 55.86 ± 21.62 | 58.39 ± 21.90 |
Conditions | PEF | |
---|---|---|
EtOH:H2O (v/v) | 20.0 kV–100 kJ/kg | 30.0 kV–17 kJ/kg |
50:50 | 65.21 ± 2.11 | 17.56 ± 0.63 |
70:30 | 753.84 ± 26.38 | 208.53 ± 7.30 |
30:70 | 9.29 ± 0.34 | 11.49 ± 0.43 |
Conditions | 25% FLUSH | 50% FLUSH | ||
---|---|---|---|---|
EtOH:H2O (v/v) | 25 °C | 40 °C | 25 °C | 40 °C |
50:50 | 654.10 ± 7.85 | 401.98 ± 16.14 | 533.37 ± 48.00 | 782.84 ± 13.31 |
70:30 | 393.86 ± 4.21 | 513.42 ± 20.54 | 314.23 ± 29.16 | 388.06 ± 6.21 |
30:70 | 271.07 ± 2.98 | 653.63 ± 26.15 | 140.20 ± 12.44 | 938.33 ± 15.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules 2021, 26, 4272. https://doi.org/10.3390/molecules26144272
Pollini L, Cossignani L, Juan C, Mañes J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules. 2021; 26(14):4272. https://doi.org/10.3390/molecules26144272
Chicago/Turabian StylePollini, Luna, Lina Cossignani, Cristina Juan, and Jordi Mañes. 2021. "Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques" Molecules 26, no. 14: 4272. https://doi.org/10.3390/molecules26144272
APA StylePollini, L., Cossignani, L., Juan, C., & Mañes, J. (2021). Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules, 26(14), 4272. https://doi.org/10.3390/molecules26144272