Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electronic Spectra
2.2. Infrared Spectra
2.3. 1H and 13C-NMR Spectra
2.4. In Vitro Antimicrobial Activity
2.5. Acute Toxicity
2.6. In Vivo Antimalarial Studies
2.7. In Silico Studies
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine(MT)
3.3. Synthesis of Ligand Complexes
3.4. Synthesis of [{Dy/Er/Gd(salen)}3(MT)].3H2O
3.5. In Vitro Antimicrobial Activity
3.6. Antimicrobial Assay
3.7. Determination of Acute Toxicity (LD50)
3.8. In Vivo Studies
3.9. In Silico Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Artemisinin and Artemisinin-Based Combination Therapy Resistance. 2017. Available online: http://www.who.int/malaria/publications/atoz/artemisinin-resistanceapril2017/en/ (accessed on 20 January 2021).
- WHO. Malaria Could Make a Comeback Thanks to COVID-19. 2020. Available online: https://www.weforum.org/agenda/2020/04/malaria-treatment-rise-africa-coronavirus/ (accessed on 20 January 2021).
- Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial Drug Discovery: Efficacy Models for Compound Screening. Nat. Rev. Drug Discov. 2004, 3, 509–520. [Google Scholar] [CrossRef]
- Ojha, H.; Gahlot, P.; Tiwari, A.K.; Pathak, M.; Kakkar, R. Quantitative structure activity relationship study of 2, 4, 6-trisubstituted-s-triazine derivatives as antimalarial inhibitors of Plasmodium falciparum dihydrofolate reductase. Chem. Biol. Drug Des. 2011, 77, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Modh, R.P.; Patel, A.C.; Chikhalia, K.H. Design, synthesis, antibacterial, and antifungal studies of novel 3-substituted coumarinyl-triazine derivatives. Heterocycl. Commun. 2013, 19, 343–349. [Google Scholar] [CrossRef]
- Machakanur, S.S.; Patil, B.R.; Badiger, D.S.; Bakale, R.P.; Gudasi, K.B.; Annie, B.S. Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1, 3, 5-triazine hydrazones. J. Mol. Struct. 2012, 1011, 121–127. [Google Scholar] [CrossRef]
- Lozano, V.; Aguado, L.; Hoorelbeke, B.; Marleen, R.; María-José, C.; Dominique, S.; Jan, B.; Ana, S.-F.; María-Jesús, P.-P. Targeting HIV entry through interaction with envelope glycoprotein 120 (gp120): Synthesis and antiviral evaluation of 1, 3, 5-triazines with aromatic amino acids. J. Med. Chem. 2011, 54, 5335–5348. [Google Scholar] [CrossRef]
- Moni, S.; Kuldeep, C.; Rahul, S.; Preeti, V.; Manish, K.S.; Abhisheak, S.; Suman, G.; Jitendra, K.S.; Jawahar, L.; Preeti, C.; et al. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J. Med. Chem. 2013, 56, 4374–4392. [Google Scholar]
- Chiara, D.; Massimo, C.; Margherita, G.; Roberto, F.; Simona, S.; Giovanni, S.; Rita, M. Evaluation of in vitro anti-inflammatory activity of some 2-alkyl-4, 6-dimethoxy-1, 3, 5-triazines. J. Pharm. Pharmacol. 2010, 58, 219–226. [Google Scholar]
- Zhao, H.; Liu, Y.; Cui, Z.; Beattie, D.; Gu, Y.; Wang, Q. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food. Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef]
- Uysal, S.; Koc, Z.E. Synthesis and Characterization of Dendrimeric Melamine Cored [salen/salophenFe(III)] and [salen/salophenCr(III)] Capped Complexes and Their Magnetic Behaviors. J. Hazard. Mater. 2010, 175, 532–539. [Google Scholar] [CrossRef]
- Wu, J.; Chen, L.; Fu, T.; Zhao, H.; Guo, D.; Wang, X.; Wang, Y. New application for aromatic Schiff base: High efficient flameretardant and anti-dripping action for polyesters. Chem. Eng. J. 2018, 336, 622–632. [Google Scholar] [CrossRef]
- Agathian, K.; Kannammal, L.; Meenarathi, B.; Kailash, S.; Anbarasan, R. Synthesis, characterization and adsorption behavior of cotton fiberbased Schiff base. Int. J. Biol. Macromol. 2018, 107, 1102–1112. [Google Scholar] [CrossRef]
- Naz, A.; Arun, S.; Narvi, S.S.; Alam, M.S.; Singh, A.; Bhartiya, P.; Dutta, P.K. Cu(II)-carboxymethyl chitosan-silane schiff basecomplex grafted onnano silica: Structural evolution, antibacterial performance and dyedegradation ability. Int. J. Biol. Macromol. 2018, 110, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamdani, A.A.S.; Balkhi, A.M.; Falah, A.; Shaker, S.A. Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi Chem. Soc. 2016, 20, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Diem, H.; Matthias, G. Amino Resins. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Wiley: Weinheim, Germany, 2006; pp. 1–20. [Google Scholar]
- Tripathi, K.D. Essentials of Medical Pharmacology, 5th ed.; Jaypee Brothers Medical Publishers Ltd.: New Delhi, India, 2003; p. 78. [Google Scholar]
- Shah, D.; Modh, R.P.; Chikhalia, K.H. Privileged s-triazines: Structure and pharmacological applications. Future Med. Chem. 2014, 6, 463–477. [Google Scholar] [CrossRef]
- Hatfield, S.E. Applications of Triazine Chemistry: Education, Remediation, and Drug Delivery. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2007. [Google Scholar]
- Tobe, A.; Kobayashi, T. Pharmacological studies on triazine derivatives V. Sedative and neuroleptic actions of 2-amino-4-(4-(2- hydroxyethyl)-piperazin-1-yl)-6- trifluoromethyl-s-triazine (TR-10). Jpn. J. Aerosp. Med. Psychol. 1976, 26, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Leena, G.; Naresh, S.; Aditya, V.; Saumya, S.; Suman, G.; Neena, G.; Prem, M.S.C. Synthesis and biological evaluation of new [1,2,4] triazino[5,6-b] indol-3-ylthio-1,3,5-triazines and [1,2,4] triazino [5,6-b] indol-3-yl thio-pyrimidines against Leishmania donovani. Eur. J. Med. Chem. 2010, 45, 2359–2365. [Google Scholar]
- Hashmi, S.Z. Synthesis of Pharmacologically Important s-Triazine Derivatives. J. Pharmacol. Res. Rev. 2016, 1, 1–9. [Google Scholar]
- Sonikan, J.; Pankaj, K.J.; Shalu, S.; Devarapalli, K.; Jaya, D. Anticancer s-triazine derivatives: A synthetic attribute. Mini-Rev. Org. Chem. 2020, 17, 904–921. [Google Scholar]
- Guo, F.J.; Hyun, S.B.; Hiroyuki, N.; Jong-Dae, L. O-Carboranylalkoxy-1,3,5-Triazine Derivatives: Synthesis, Characterization, X-ray Structural Studies, and Biological Activity. Molecules 2018, 23, 2194. [Google Scholar]
- Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur. J. Med. Chem. 2017, 142, 523–549. [Google Scholar] [CrossRef]
- Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Lu, J.; Averill, A.; Almassy, R.; Chu, S. Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorg. Med. Chem. Lett. 2008, 18, 619–623. [Google Scholar] [CrossRef]
- Salehzadeh, S.; Nouri, S.M.; Keypour, H.; Bagherzadeh, M. Synthesis of Gadolinium(III) and Samarium(III) Complexes of New Potentially Heptadentate(N4O3) Tripodal Schiff Base Ligands, and a Theoretical Study. Polyhedron 2005, 24, 1478–1486. [Google Scholar] [CrossRef]
- Casellato, U.; Tamburini, S.; Tomasin, P.; Vigato, P.A.; Botta, M. Lanthanide(III) Complexes with a Podand Schiff Base Containing an N4O3 Coordination Site. Inorg. Chim. Acta 1996, 247, 143–145. [Google Scholar] [CrossRef]
- Mikhalyova, E.A.; Yakovenko, A.V.; Zeller, M.; Gavrilenko, K.S.; Lofland, S.E.; Addiso, A.W.; Pavilshchuk, V.V. Structure, Magnetic and Luminescence Properties of Lanthanide Complexes Ln2(Salphen)3.H2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb,Dy; H2Salphen = N,N1-Bis(salicylidene)-1,2-phenylenediamine). Inorg. Chim. Acta 2014, 414, 97–104. [Google Scholar] [CrossRef]
- Chen, R.X.; Gao, T.; Sun, W.B.; Li, H.F.; Wu, Y.H.; Xu, M.M.; Zou, Y.; Yan, P.F. Salen Homonuclear and Heteronuclear Lanthanide(III) Complexes with Near-Infrared (NIR) Luminescence. Inorg. Chem. Comm. 2015, 56, 79–82. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Feng, W.X.; Su, P.Y.; Shi, G.X.; Zhang, Z.; Fan, D.D.; Lu, R.; Lu, X.Q.; Wong, W.K.; et al. Photo-luminescent Hetero-tetranuclear Zn2Ln2 (Ln = Nd, Yb, Er, Gd, Eu or Tb) Complexes Self-assembled from the Benzimidazole-based HL and bpe. Inorg. Chem. Comm. 2013, 35, 213–216. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Yan, P.; Hou, G.; Li, G. Structure and Electrochemistry of Salen Cerium(IV) Complexes Tuned by Multiform Counter Ions. Inorg. Chim. Acta 2013, 405, 182–187. [Google Scholar] [CrossRef]
- Oruma, U.S.; Ukoha, P.O.; Asegbeloyin, J.N. Synthesis, Characterization and Biological Studies of S-1,3-Benzothiazol-2-ylthiophene-2-carbothioate and its Ce(IV) and Nd(III) Complexes. Asian J. Chem. 2014, 26, 7622–7626. [Google Scholar] [CrossRef]
- Obasi, L.N.; Oruma, U.S.; Al-Swaidan, I.A.; Ramasami, P.; Ezeorah, C.J.; Ochonogor, A.E. Synthesis, Characterization and Antibacterial Studies of N-(Benzothiazol-2-yl)-4-chlorobenzenesulphonamide and its Neodymium(III) and Thallium(III) Complexes. Molecules 2017, 22, 153. [Google Scholar] [CrossRef] [Green Version]
- Taha, Z.A.; Ajlouni, A.M.; Al-Hassan, K.A.; Hajazi, A.K.; Faiq, A.B. Synthesis, Characterization, Biological Activity and Fluorescence Properties of Bis-(salicylaldehyde)-1,3-propylenediimine Schiff base Ligand and Its Lanthanide Complexes. Spectrochim. Acta Part A 2011, 81, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Wani, W.A.; Saleem, K. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth. React. Inorg. Met. Chem. 2013, 43, 1162–1170. [Google Scholar] [CrossRef]
- Uysal, S.; Koc, Z.E. Synthesis and Characterization of Dopamine Substitue Tripodal Trinuclear [(salen/salophen/salpropen) M] (M = Cr(III), Mn(III), Fe(III) ions) Capped S-triazine Complexes: Investigation of their Thermal and Magnetic Properties. J. Mol. Struc. 2016, 1109, 119–126. [Google Scholar] [CrossRef]
- Uysal, Ş.; Uçan, H.I. The synthesis and characterization of melamine based Schiff bases and its trinuclear [salen/salophenFe (III)] and [salen/salophenCr (III)] capped complexes. J. Incl. Phenom. Macrocycl. Chem. 2009, 65, 299–304. [Google Scholar] [CrossRef]
- Uysal, Ş.; Koç, Z.E.; Çelikbilek, Ş.; Uçan, H.İ. Synthesis of star-shaped macromolecular schiff base complexes having melamine cores and their magnetic and thermal behaviors. Synth. Commun. 2012, 42, 1033–1044. [Google Scholar] [CrossRef]
- Lekha, L.; Raja, K.K.; Rajagopal, G.; Easwaramoorthy, D. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide (III) Schiff base complexes containing N, O donor atoms. J. Mol. Struct. 2014, 1056, 307–313. [Google Scholar] [CrossRef]
- Bertini, I.; Luchinat, C.; Parigi, G. Magnetic Susceptibility in Paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 40, 249–273. [Google Scholar] [CrossRef]
- İşçi, B.; Uysal, S. The synthesis and characterization of [M(salen/salophen/saldeta)][M=Cr(III), Mn(III) or Fe(III)] capped s-triazine cored tripodal trinuclear Schiff bases complexes. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 281–299. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 200–228. [Google Scholar]
- Ukoha, P.O.; Oruma, U.S. Synthesis and Antimicrobial Studies of N, N1-Bis(4- Dimethylaminobezylidene)ethane-1,2-diamine (DAED) and its Nickel(II) and Platinium(IV) complexes. J. Chem. Soc. Niger. 2014, 39, 102–107. [Google Scholar]
- Uchechukwu, S.O.; Pius, O.U.; Lydia, R.; Mohamed, I.E.; Lawrence, N.O.; Ponnadurai, R.; Klaus, J. Synthesis, Characterization, Antimicrobial Screening, and Computational Studies of a Tripodal Schiff Base Containing Pyrimidine Unit. J. Heterocycl. Chem. 2018, 55, 1119–1129. [Google Scholar]
- Kostova, I.; Manolov, I.; Momekov, G. Cytotoxic Activity of New Neodymium (III) Complexes of Bis-coumarins. Eur. J. Med. Chem. 2004, 39, 765–775. [Google Scholar] [CrossRef]
- Wolters, K. Clinical Pharmacology Made Incredibly Easy, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Artesunate. Artesunate Chemical Properties, Usage, Production. 2016. Available online: www.chemicalbook.com/ChemicalProductProperty_EN_CB3157307.htm (accessed on 8 August 2017).
- Kopel, P.; Sindelar, Z.; Klicka, R. Complexes of Iron(III) Salen and Saloph Schiff Bases with Bridging Dicarboxylic and Tricarboxylic Acids. Transit. Met. Chem. 1998, 23, 139–142. [Google Scholar] [CrossRef]
- Gembicky, M.; Boca, R.; Renz, F. A Heptanuclear Fe(III)-Fe(III)6 System with Twelve Unpaired Electrons. Inorg. Chem. Comm. 2000, 3, 662–665. [Google Scholar] [CrossRef]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries; Cambridge University Press: Cambridge, UK, 2006; pp. 393–394. [Google Scholar]
- Alli, A.; Ehinmidu, J.; Ibrahim, Y. Preliminary phytochemical screening and antimicrobial activities of some medicinal plants used in Ebiraland. Bayero J. Pure Appl. Sci. 2011, 4, 10–16. [Google Scholar] [CrossRef]
- Council, N.R. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Peters, W. The four-day suppressive in vivo antimalarial test. Ann. Trop. Med. Parasitol. 1975, 69, 155–171. [Google Scholar] [CrossRef]
- Saidu, K.; Onah, J.; Orisadipe, A.; Olusola, A.; Wambebe, C.; Gamaniel, K. Antiplasmodial, analgesic, and anti-inflammatory activities of the aqueous extract of the stem bark of Erythrina senegalensis. J. Ethnopharmacol. 2000, 71, 275–280. [Google Scholar] [CrossRef]
- Ukwe, V.C.; Epueke, E.A.; Ekwunife, O.I.; Okoye, T.C.; Akudor, G.C.; Ubaka, C.M. Antimalarial activity of aqueous extract and fractions of leaves of Ageratum conyzoides in mice infected with Plasmodium berghei. Int. J. Pharm. Sci. 2010, 2, 33–38. [Google Scholar]
Compound | Color | Λm (Ω−1cm2mol−1) | Yield g (%) | M.p. (°C) | Elemental Analysis % Calc. and Found | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | ||||||||
Calc. | Found | Calc. | Found | Calc. | Found | |||||
C27H18O6N6 (MT) | White | - | (2.25) 86.21 | 346 a | 62.07 | 61.95 | 3.45 | 3.40 | 16.09 | 15.90 |
C75H57N12O12Dy3.3H2O (Dy(III)MT) | Yellow | 4.60 | (0.27) 58.70 | 325 a | 48.43 | 48.30 | 3.39 | 3.50 | 9.04 | 8.80 |
C75H57N12O12Er3.3H2O (Er(III)MT) | Yellow | 6.70 | (0.28) 59.57 | 324 a | 48.08 | 48.10 | 3.37 | 3.50 | 8.97 | 8.60 |
C75H57N12O12Gd3.3H2O (Gd(III)MT) | Yellow | 18.40 | (0.30) 65.22 | 352 a | 48.86 | 48.90 | 3.42 | 3.60 | 9.12 | 8.90 |
Compound | λmax | ε × 103 (mol−1dm3cm−1) | Band Assignment | |
---|---|---|---|---|
nm | cm−1 | |||
MT | 233 | 42,918 | 2.88 | π–π* |
291 | 34,364 | 1.82 | π–π* | |
Dy(III)MT | 348 | 28,736 | 10.9 | n–π* |
Er(III)MT | 347 | 28,818 | 9.72 | n–π* |
Gd(III)MT | 350 | 28,571 | 9.82 | n–π* |
Compound | νC-H ar | νC=O | νC=N | νC–C | νCOO− | νC–N | νLn–O | νLn–N |
---|---|---|---|---|---|---|---|---|
MT | - | 1674(s) | 1501(m) a 1573(m) b | 1422(m) | 1391(m) | 1168(m) | - | - |
Dy(III)MT | 3129(sh) | 1698(m) | 1594(m) a 1631(s) b 1542(m) c | 1475(m) 1448(m) | 1410(s) | 1151(m) 1125(m) | 579(m) | 489(m) 437(m) |
Er(III)MT | 3158(w) | 1696(m) | 1596(s) a 1632(s) b 1543(s) c | 1477(m) | 1410(s) | 1151(m) 1125(w) | 575(m) | 439(m) |
Gd(III)MT | 3125(m) | 1702(m) | 1592(m) a 1636(m) b 1540(s) c | 1483(m) | 1412(s) | 1153(m) | 571(m) | 437(m) |
Compound | OHCarboxylic | CH=N | Haromatic | CH2=CH2 | DMSO |
---|---|---|---|---|---|
MT | 10.17(1H,s) | 9.77(1H,s) 8.29(1H,s) | 7.99–6.25(4H,m) | - | 2.50 |
Dy(III)MT | - | - | 7.65(4H,m) | 5.82(4H,s) | 2.46 |
Er(III)MT | - | - | - | - | - |
Gd(III)MT | - | - | - | - | - |
Compound | Carboxylic Carbon | Azomethine Carbon | Carbons on Triazine Ring | Aromatic Carbons | DMSO Peak |
---|---|---|---|---|---|
MT | 193.47 | 167.47, 165.75 | 139.07, 136.98 | 130.32, 129.92 | 39.89 |
Dy(III)MT | - | - | - | - | 39.58 |
Er(III)MT | - | - | - | - | - |
Gd(III)MT | - | - | - | - | - |
50 μg/mL | ||||||
---|---|---|---|---|---|---|
Compound | B. c (ATCC 14579) | S. a (ATCC 6538P) | P. a (ATCC 9027) | E. c (ATCC 6749) | C. a | A. n |
MT | 5 | 15 | 12 | 6 | 31 | 21 |
Dy(III)MT | 5 | 1 | 1 | 3 | 2 | 15 |
Er(III)MT | 2 | 2 | 5 | 5 | 3 | 14 |
Gd(III)MT | 3 | 9 | 2 | 8 | 2 | 12 |
25 μg/mL | ||||||
MT | - | 10 | 7 | 2 | 19 | 15 |
Dy(III)MT | - | - | - | - | 2 | |
Er(III)MT | - | - | - | - | - | - |
Gd(III)MT | - | 3 | - | 4 | - | - |
12.5 μg/mL | ||||||
MT | - | 5 | 3 | 3 | 6 | 10 |
Dy(III)MT | - | - | - | - | - | - |
Er(III)MT | - | - | - | - | - | - |
Gd(III)MT | - | - | - | - | - | - |
MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|
Compound | B. c (ATCC 14579) | S. a (ATCC 6538P) | P. a (ATCC 9027) | E. c (ATCC 6749) | C. a | A. n |
MT | 50 | 5.57 | 6.27 | 7.3 | 2.60 | 2.30 |
Dy(III)MT | 50 | 50 | 50 | 50 | 50 | 25 |
Er(III)MT | 50 | 50 | 50 | 50 | 50 | 50 |
Gd(III)MT | 50 | 25 | 50 | 25 | 50 | 50 |
Controls (μg/mL) | ||||||
T | 1.90 | 1.80 | 0.63 | 2.15 | 2.10 | 0.58 |
F | 6.25 | 6.25 | 6.25 | 2.80 | 0.64 | 0.74 |
CP | 1.50 | 0.70 | 0.92 | 0.65 | 2.00 | 6.25 |
G | 1.40 | 2.70 | 0.71 | 2.60 | 2.50 | 0.64 |
Drug/Dose (mg/kg) | % Parasitemia | %Inhibition (PC) |
---|---|---|
MT 25 | 10.6667 ± 0.88192 | 65.81 |
MT 50 | 5.0000 ± 1.52753 | 84.02 |
Artesunate 5 | 4.00 ± 0.58 | 87.22 |
Dist. Water 5 mL/kg | 31.33 ± 3.38 | 00.00 |
Compound | SARS-CoV-2. (6Y84) | E. coli DNA Gyrase (5MMN) |
---|---|---|
MT | −5.69 | −7.03 |
Dy(III)MT | −7.30 | −5.82 |
Er(III)MT | −7.98 | −7.03 |
Gd(III)MT | −7.55 | −6.59 |
CQ | −6.31 | - |
HCQ | −6.30 | - |
Cipro | - | −5.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oruma, U.S.; Ukoha, P.O.; Uzoewulu, C.P.; Ndefo, J.C.; Ugwuoke, S.C.; Ukwueze, N.N.; Eze, T.E.; Ekowo, L.C.; Eze, F.U.; Chinaegbomkpa, U.V.; et al. Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes. Molecules 2021, 26, 4379. https://doi.org/10.3390/molecules26144379
Oruma US, Ukoha PO, Uzoewulu CP, Ndefo JC, Ugwuoke SC, Ukwueze NN, Eze TE, Ekowo LC, Eze FU, Chinaegbomkpa UV, et al. Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes. Molecules. 2021; 26(14):4379. https://doi.org/10.3390/molecules26144379
Chicago/Turabian StyleOruma, Uchechukwu Susan, Pius Oziri Ukoha, Chiamaka Peace Uzoewulu, Joseph Chinedum Ndefo, Sabastine Chinweike Ugwuoke, Nkechinyere Nwanneka Ukwueze, Tochukwu Emmanuella Eze, Lilian Chinenye Ekowo, Florence Uchenna Eze, Uchenna Vivian Chinaegbomkpa, and et al. 2021. "Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes" Molecules 26, no. 14: 4379. https://doi.org/10.3390/molecules26144379
APA StyleOruma, U. S., Ukoha, P. O., Uzoewulu, C. P., Ndefo, J. C., Ugwuoke, S. C., Ukwueze, N. N., Eze, T. E., Ekowo, L. C., Eze, F. U., Chinaegbomkpa, U. V., Okafor, S. N., & Ezeorah, C. J. (2021). Synthesis, Biological and In Silico Studies of a Tripodal Schiff Base Derived from 2,4,6-Triamino-1,3,5-triazine and Its Trinuclear Dy(III), Er(III), and Gd(III) Salen Capped Complexes. Molecules, 26(14), 4379. https://doi.org/10.3390/molecules26144379