Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of L. angustifolia, var. Moldoveanca 4, Alba 7, and Vis Magic 10 Essential Oils Determined by GC-MS
2.2. FT-IR Analyses
2.3. Assessment of the Antioxidant Activity
2.4. Assessment of Antimicrobial Effects
3. Discussion
4. Materials and Methods
4.1. Obtaining Essential Oils
4.2. Determination of the Chemical Composition of Lavender Essential Oils by GC-MS
4.3. FT-IR Analysis
4.4. Determination of the Antioxidant Activity by ABTS Assay
4.5. Determination of the Antioxidant Activity by DPPH Assay
4.6. Preparation of Bacterial Strains
4.7. Testing of Antimicrobial Activity
4.7.1. Diffusion Method
4.7.2. Microdilution Method
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Irshad, M.; Ali Subhani, M.; Ali, S.; Hussain, A. Biological Importance of Essential Oils. In Essential Oils—Oils of Nature; El-Shemy, H.A., Ed.; Intech Open: London, UK, 2019; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Benjilali, B.; Ayadi, A. Methode d’études des propriétes antiseptiques des huiles essentielles par contact direct en milieu gelose (Thymus capita-tus, Rosmarinus officinalis, Eucalyptus globulus, Artemisia herba alba). Plant Méd. Phytothér. 1986, 2, 155–167. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Kaloustian, J.; Chevalier, J.; Mikail, C.; Martino, M.; Abou, L.; Vergnes, M.F. Étude de six huiles essentielles: Composition chimique et activité antibactérienne. Phytothérapie 2008, 6, 160–164. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Amarowicz, R.; Kandeil, A.; Ali, M.A.; Ibrahim, E.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J. Agric. Food Res. 2021, 4, 100135. [Google Scholar] [CrossRef]
- Santoyo, S.; Jaime, L.; García-Risco, M.R.; Lopez-Hazas, M.; Reglero, G. Supercritical fluid extraction as an alternative process to obtain antiviral agents from thyme species. Ind. Crop. Prod. 2014, 52, 475–480. [Google Scholar] [CrossRef]
- Zaha, D.C.; Bungau, S.; Aleya, S.; Tit, D.M.; Vesa, C.M.; Popa, A.R.; Pantis, C.; Maghiar, O.A.; Bratu, O.G.; Furau, C.; et al. What antibiotics for what pathogens? The sensitivity spectrum of isolated strains in an intensive care unit. Sci. Total Environ. 2019, 687, 118–127. [Google Scholar] [CrossRef]
- Zaha, D.C.; Bungau, S.; Uivarosan, D.; Tit, D.M.; Maghiar, T.A.; Maghiar, O.; Pantis, C.; Fratila, O.; Rus, M.; Vesa, C.M. Antibiotic Consumption and Microbiological Epidemiology in Surgery Departments: Results from a Single Study Center. Antibiotics 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Cavanagh, H.M.; Wilkinson, J.M. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Bogdan, M.; Bungau, S.; Tit, D.M.; Copolovici, L.; Behl, T.; Otrisal, P.; Aleya, L.; Cioca, G.; Berescu, D.; Uivarosan, D.; et al. Variations in the chemical composition of the essentials oil of Lavandula angustifolia mill, Moldoveanca 4 Romanian variety. Rev. Chim. 2020, 71, 307–315. [Google Scholar] [CrossRef]
- Robu, S.; Chesaru, B.I.; Diaconu, C.; Dumitriu-Buzia, O.; Tutunaru, D.; Stanescu, U.; Lisa, E.L. Lavandula hybrida: Microscopic characterization and the evaluation of the essential oil. Farmacia 2016, 64, 914–917. [Google Scholar]
- Sokovic, M.; Glamoclija, J.; Marin, P.D.; Brkic, D.; van Griensven, L. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.R. In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother. 1997, 40, 305–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salam, A.M.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev. 2021, 121, 3495–3560. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, R.; Lopez-Malo, A.; Palou, E. Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. J. Food Sci. 2011, 76, M95–M100. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Tamgue, O.; Dongmo, J.B.L.; Dakole, C.D.; Leth, V.; Vismer, H.F.; Zollo, P.H.A.; Nkengfack, A.E. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Stevic, T.; Beric, T.; Savikin, K.; Sokovic, M.; Godevac, D.; Dimkic, I.; Stankovic, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Gonceariuc, M.; Balmuş, Z. Brevet Pentru Soi de Plantă (Plant Variety). Patent MD 73 2010-07-31, 2010. Available online: http://www.db.agepi.md/pdfSoi/patents/brevet/eliberare/v%202005%200002.pdf (accessed on 14 December 2020).
- Gonceariuc, M.; Balmuş, Z. Brevet Pentru Soi de Plantă (Plant Variety). Patent MD 74 2010-07-31, 2010. Available online: http://www.db.agepi.md/pdfSoi/patents/brevet/eliberare/v%202005%200003.pdf (accessed on 14 December 2020).
- Gonceariuc, M.; Balmuş, Z. Brevet Pentru Soi de Plantă (Plant Variety). Patent MD 75 2010-07-31, 2010. Available online: http://www.db.agepi.md/pdfSoi/patents/brevet/eliberare/v%202005%200004.pdf (accessed on 14 December 2020).
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial activity of essential oils from plants of the genus Origanum. Food Control 2013, 34, 539–546. [Google Scholar] [CrossRef]
- Behnam, S.; Farzaneh, M.; Ahmadzadeh, M.; Tehrani, A.S. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun. Agric. Appl. Biol. Sci. 2006, 71, 1321–1326. [Google Scholar] [PubMed]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. Gc-MS analysis of essential oils from some greek aromatic plants and their fungitoxicity on penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Kıvrak, Ş. Essential oil composition and antioxidant activities of eight cultivars of Lavender and Lavandin from western Anatolia. Ind. Crop. Prod. 2018, 117, 88–96. [Google Scholar] [CrossRef]
- Raina, A.P.; Negi, K.S. Comparative Essential Oil Composition of Lavendula species from India. J. Herbs Spices Med. Plants 2012, 18, 268–273. [Google Scholar] [CrossRef]
- ISO 3515:2002(en). Oil of Lavender (Lavandula Angustifolia Mill.). Available online: https://www.iso.org/obp/ui/#iso:std:iso:3515:ed-3:v1:en (accessed on 2 June 2021).
- Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: Preparation, Properties and Uses; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassole, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebie, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora moldenke, Mentha x piperita l. and Ocimum basilicum l. Essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Lafhal, S.; Vanloot, P.; Bombarda, I.; Kister, J.; Dupuy, N. Identification of metabolomic markers of lavender and lavandin essential oils using mid-infrared spectroscopy. Vib. Spectrosc. 2016, 85, 79–90. [Google Scholar] [CrossRef]
- Samfira, I.; Rodino, S.; Petrache, P.; Cristina, R.; Butu, M.; Butnariu, M. Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry. Dig. J. Nanomater. Biostruct. 2015, 10, 557–566. [Google Scholar]
- Bounaas, K.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; de la Guardia, M.; El Hattab, M. Essential oil counterfeit identification through middle infrared spectroscopy. Microchem. J. 2018, 139, 347–356. [Google Scholar] [CrossRef]
- Moisa, C.; Andreea, L.P.; Pop, G.; Chambre, D.; Copolovici, L.; Cioca, G.; Bungau, S.; Copolovici, D. Variation of the Chemical Composition of Thymus Vulgaris Essential Oils by Phenological Stages. Rev. Chim. 2019, 70, 633–637. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Valderrama, A.; de Gante, C. Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. Am. J. Anal. Chem. 2017, 08, 726–741. [Google Scholar] [CrossRef] [Green Version]
- Bungau, S.; Baldea, I.; Copolovici, L. The determination of ascorbic acid from fruits using a landolt type method. Rev. Chim. 2003, 54, 213–216. [Google Scholar]
- Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem. 2004, 84, 519–525. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- El-Massry, K.F.; El-Ghorab, A.H.; Farouk, A. Antioxidant activity and volatile components of Egyptian Artemisia judaica L. Food Chem. 2002, 79, 331–336. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2015, 2015, 795435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Azhdarzadeh, F.; Hojjati, M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr. Food Sci. Res. 2016, 3, 43–50. [Google Scholar] [CrossRef]
- Huang, D.F.; Xu, J.G.; Liu, J.X.; Zhang, H.; Hu, Q.P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiology 2014, 83, 357–365. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.J.; Orange, N.; Dufour, A.; Cornelis, P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev. 2017, 41, 698–722. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Bersani, C.; Comi, G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J. Food Prot. 1999, 62, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Djenane, D.; Aider, M.; Yanguela, J.; Idir, L.; Gomez, D.; Roncales, P. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Mahomoodally, M.F. Essential oils from 9 exotic and endemic medicinal plants from Mauritius shows in vitro antibacterial and antibiotic potentiating activities. S. Afr. J. Bot. 2020, 132, 355–362. [Google Scholar] [CrossRef]
- Owen, L.; Laird, K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Crit. Rev. Microbiol. 2018, 44, 414–435. [Google Scholar] [CrossRef]
- Bigos, M.; Wasiela, M.; Kalemba, D.; Sienkiewicz, M. Antimicrobial Activity of Geranium Oil against Clinical Strains of Staphylococcus aureus. Molecules 2012, 17, 10276–10291. [Google Scholar] [CrossRef] [Green Version]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- De Rapper, S.; Kamatou, G.; Viljoen, A.; van Vuuren, S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid. Based Complement. Altern. Med. 2013, 2013, 852049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 3515:2002 Oil of Lavender (Lavandula Angustifolia Mill.). 2002. Available online: https://www.iso.org/standard/36253.html (accessed on 25 November 2020).
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH radical dot and ABTS radical dot assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Csakvari, A.C.; Lupitu, A.; Bungau, S.; Gitea, M.A.; Gitea, D.; Tit, D.M.; Copolovici, L.; Nemeth, S.; Copolovici, D. Fatty acids profile and antioxidant activity of almond oils obtained from six Romanian varieties. Farmacia 2019, 67, 882–887. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2017; Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 20 November 2020).
Compound | RT (Min) | Var. Moldoveanca 4 (1) | Var. Alba 7 (2) | Var. Vis Magic 10 (3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
(-)-β-bourbonene | 24.48 | 0.11 ± 0.00 | 0.14 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.09 ± 0.01 | 0.07 ± 0.01 |
1.8-cineole | 8.86 | 1.46 ± 0.05 | 3.15 ± 0.12 | 2.72 ± 0.03 | 2.19 ± 0.06 | 1.41 ± 0.03 | 2.82 ± 0.09 | 0.77 ± 0.01 | 0.95 ± 0.12 | 2.54 ± 0.12 |
3-carene | 8.01 | 0.21 ± 0.01 | 1.24 ± 0.01 | 0.26 ± 0.00 | 0.55 ± 0.01 | 0.35 ± 0.01 | 0.77 ± 0.03 | 0.20 ± 0.02 | 0.21 ± 0.02 | 0.66 ± 0.03 |
8-hidroxylinalool | 23.21 | 0.28 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.00 ± 0.00 | 0.04 ± 0.01 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.03 ± 0.00 |
acetic acid. hexyl ester | 7.76 | 0.17 ± 0.01 | 0.26 ± 0.01 | 0.18 ± 0.01 | 0.22 ± 0.02 | 0.18 ± 0.00 | 0.34 ± 0.02 | 0.10 ± 0.01 | 0.14 ± 0.02 | 0.35 ± 0.03 |
bornyl acetate | 21.11 | 0.29 ± 0.01 | 0.08 ± 0.02 | 0.38 ± 0.02 | 0.38 ± 0.03 | 0.22 ± 0.00 | 0.46 ± 0.02 | 0.32 ± 0.07 | 0.27 ± 0.03 | 0.43 ± 0.02 |
butanoic acid. hexyl ester | 17.72 | 0.51 ± 0.01 | 0.91 ± 0.01 | 0.61 ± 0.01 | 0.48 ± 0.01 | 0.26 ± 0.11 | 1.01 ± 0.08 | 0.31 ± 0.02 | 0.24 ± 0.07 | 1.08 ± 0.01 |
camphene | 5.57 | 0.20 ± 0.01 | 0.31 ± 0.00 | 0.35 ± 0.01 | 0.38 ± 0.01 | 0.21 ± 0.01 | 0.42 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.00 | 0.33 ±0.02 |
camphor | 15.19 | 0.43 ± 0.06 | 0.19 ± 0.02 | 0.13 ± 0.02 | 0.49 ± 0.01 | 0.36 ± 0.00 | 0.98 ± 0.05 | 0.39 ± 0.01 | 0.41 ± 0.06 | 0.12 ± 0.04 |
caryophyllene | 25.49 | 4.47 ± 0.06 | 5.39 ± 0.20 | 5.41 ± 0.02 | 4.26 ± 0.13 | 3.55 ± 0.14 | 4.53 ± 0.00 | 3.95 ± 0.05 | 4.10 ± 0.15 | 4.58 ± 0.03 |
caryophyllene oxide | 29.67 | 0.68 ± 0.02 | 0.46 ± 0.02 | 0.17 ± 0.00 | 0.31 ± 0.01 | 0.23 ± 0.01 | 0.42 ± 0.01 | 0.28 ± 0.01 | 0.46 ± 0.09 | 0.23 ± 0.00 |
cis-α-bergamotene | 25.92 | 0.24 ± 0.01 | 0.55 ± 0.02 | 0.30 ± 0.04 | 0.26 ± 0.02 | 0.22 ± 0.04 | 0.26 ± 0.03 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.03 |
cis-geranyl acetate | 24.17 | 0.21 ± 0.00 | 0.29 ± 0.01 | 0.14 ± 0.01 | 0.56 ± 0.02 | 0.57 ± 0.02 | 0.60 ± 0.01 | 0.52 ± 0.01 | 0.47 ± 0.02 | 0.46 ± 0.01 |
cis-linalool oxide | 11.75 | 0.44 ± 0.03 | 0.52 ± 0.01 | 0.27 ± 0.01 | 0.36 ± 0.02 | 0.36 ± 0.01 | 0.29 ± 0.01 | 0.29 ± 0.02 | 0.35 ± 0.03 | 0.19 ± 0.02 |
cis-β ocimene | 10.19 | 1.36 ± 0.04 | 0.43 ± 0.01 | 2.70 ± 0.00 | 2.08 ± 0.01 | 2.11 ± 0.01 | 2.27 ± 0.04 | 2.15 ± 0.10 | 1.99 ± 0.03 | 2.83 ± 0.08 |
D-limonene | 8.91 | 0.69 ± 0.02 | 2.85 ± 0.12 | 1.66 ± 0.03 | 2.06 ± 0.11 | 1.54 ± 0.03 | 3.12 ± 0.06 | 1.00 ± 0.07 | 0.94 ± 0.10 | 2.58 ± 0.07 |
germacrene D | 27.14 | 1.08 ± 0.02 | 1.01 ± 0.02 | 1.16 ± 0.01 | 0.86 ± 0.03 | 1.31 ± 0.05 | 0.81 ± 0.01 | 1.27 ± 0.03 | 1.27 ± 0.05 | 0.86 ± 0.03 |
isocaryophyllene | 26.43 | 2.74 ± 0.05 | 2.72 ± 0.10 | 2.92 ± 0.01 | 2.37 ± 0.06 | 2.98 ± 0.11 | 2.27 ± 0.01 | 3.16 ± 0.05 | 3.06 ± 0.08 | 2.39 ± 0.02 |
lavandulyl acetate | 21.36 | 2.09 ± 0.03 | 0.34 ± 0.02 | 3.11 ± 0.01 | 2.45 ± 0.04 | 1.51 ± 0.04 | 2.55 ± 0.00 | 1.79 ± 0.04 | 1.94 ± 0.11 | 2.70 ± 0.06 |
linalool | 14.17 | 33.27 ± 0.24 | 46.83 ± 0.84 | 32.19 ± 0.02 | 31.97 ± 0.35 | 32.26 ± 0.24 | 33.77 ± 0.19 | 29.93 ± 0.22 | 30.97 ± 0.51 | 34.61 ± 0.12 |
linalyl acetate | 20.40 | 35.18 ± 0.53 | 17.70 ± 0.29 | 31.45 ± 0.03 | 33.42 ± 0.04 | 35.32 ± 0.22 | 28.03 ± 0.10 | 37.13 ± 0.84 | 36.80 ± 0.63 | 27.55 ± 0.39 |
linalyl formate | 23.62 | 0.11 ± 0.00 | 0.15 ± 0.01 | 0.10 ± 0.01 | 0.25 ± 0.00 | 0.29 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.00 | 0.24 ± 0.01 | 0.58 ± 0.02 |
m-cymene | 8.43 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.00 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.02 |
p-cymene | 8.63 | 0.21 ± 0.01 | 0.24 ± 0.00 | 0.05 ± 0.00 | 0.19 ± 0.01 | 0.14 ± 0.01 | 0.09 ± 0.02 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.06 ± 0.02 |
tau-cadinol | 31.27 | 0.14 ± 0.01 | 0.10 ± 0.01 | 0.04 ± 0.00 | 0.10 ± 0.00 | 0.05 ± 0.00 | 0.29 ± 0.00 | 0.07 ± 0.00 | 0.08 ± 0.01 | 0.13 ± 0.01 |
terpinen-4-ol | 17.45 | 6.71 ± 0.06 | 7.70 ± 0.12 | 3.63 ± 0.14 | 4.26 ± 0.05 | 6.53 ± 0.04 | 3.10 ± 0.04 | 7.16 ± 0.14 | 6.32 ± 0.36 | 3.06 ± 0.13 |
trans-linalool oxide | 12.70 | 0.27 ± 0.01 | 0.53 ± 0.01 | 0.14 ± 0.00 | 0.39 ± 0.00 | 0.33 ± 0.01 | 0.28 ± 0.00 | 0.24 ± 0.02 | 0.26 ± 0.03 | 0.21 ± 0.01 |
trans-β-ocimene | 9.50 | 3.17 ± 0.09 | 1.22 ± 0.01 | 6.99 ± 0.01 | 4.56 ± 0.02 | 3.89 ± 0.01 | 5.56 ± 0.03 | 4.19 ± 0.16 | 4.07 ± 0.04 | 6.66 ± 0.06 |
α cedrene | 25.33 | 0.10 ± 0.00 | 0.19 ± 0.01 | 0.08 ± 0.00 | 0.10 ± 0.00 | 0.08 ± 0.00 | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.07 ± 0.00 |
α limonene diepoxide | 23.31 | 0.17 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.01 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.01 | 0.03 ± 0.00 | 0.00 ± 0.00 | 0.03 ± 0.01 |
α pinene | 5.15 | 0.34 ± 0.01 | 0.46 ± 0.01 | 0.30 ± 0.01 | 0.39 ± 0.00 | 0.34 ± 0.00 | 0.37 ± 0.01 | 0.38 ± 0.02 | 0.36 ± 0.00 | 0.32 ± 0.01 |
α thujene | 4.94 | 0.14 ± 0.01 | 0.26 ± 0.01 | 0.09 ± 0.01 | 0.13 ± 0.00 | 0.15 ± 0.00 | 0.14 ± 0.00 | 0.17 ± 0.01 | 0.15 ± 0.00 | 0.12 ± 0.01 |
α-santoline alcohol | 17.22 | 1.11 ± 0.01 | 1.29 ± 0.01 | 0.96 ± 0.04 | 1.59 ± 0.00 | 0.90 ± 0.01 | 0.71 ± 0.01 | 1.12 ± 0.02 | 1.05 ± 0.02 | 0.73 ± 0.02 |
α-terpineol | 18.23 | 0.61 ± 0.00 | 0.96 ± 0.02 | 0.09 ± 0.00 | 0.85 ± 0.02 | 1.02 ± 0.01 | 1.05 ± 0.00 | 0.98 ± 0.02 | 0.92 ± 0.02 | 1.14 ± 0.04 |
β myrcene | 7.07 | 0.26 ± 0.01 | 0.79 ± 0.05 | 0.54 ± 0.02 | 0.53 ± 0.01 | 0.62 ± 0.00 | 1.01 ± 0.01 | 0.54 ± 0.02 | 0.53 ± 0.03 | 1.00 ± 0.02 |
β-pinene | 6.51 | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.29 ± 0.01 | 0.28 ± 0.00 | 0.17 ± 0.01 | 0.46 ± 0.01 | 0.09 ± 0.01 | 0.15 ± 0.03 | 0.47 ± 0.02 |
γ-cadinene | 27.99 | 0.19 ± 0.01 | 0.23 ± 0.01 | 0.18 ± 0.02 | 0.33 ± 0.01 | 0.16 ± 0.01 | 0.47 ± 0.03 | 0.20 ± 0.00 | 0.17 ± 0.01 | 0.33 ± 0.01 |
γ-terpinene | 10.83 | 0.13 ± 0.00 | 0.24 ± 0.00 | 0.08 ± 0.00 | 0.15 ± 0.00 | 0.21 ± 0.01 | 0.15 ± 0.01 | 0.23 ± 0.02 | 0.21 ± 0.01 | 0.19 ± 0.02 |
Wavenumbers (cm−1) of ATR-FTIR Absorption Band for LEOs | Vibration Assignment | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Var. Moldoveanca 4 (1) | Var. Alba 7 (2) | Var. Vis Magic 10 (3) | ||||||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
3455 | 3454 | 3457 | 3455 | 3456 | 3454 | 3455 | 3453 | 3457 | ν (O–H) from alcohols | [22] |
3088 | 3086 | 3088 | 3088 | 3088 | 3088 | 3088 | 3088 | 3088 | ν (=C–H, Csp2); νasym (C-H) and νsym (C–H) from CH3 group; νasym (C–H) and νsym (C–H) from CH2 group. | [22,23] |
2968 | 2967 | 2968 | 2968 | 2968 | 2968 | 2968 | 2968 | 2968 | ||
2929 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | ||
2878 | 2877 | 2877 | 2879 | 2879 | 2875 | 2879 | 2879 | 2876 | ||
2858 | 2858 | 2858 | 2859 | 2858 | 2858 | 2585 | 2858 | 2858 | ||
2730 | 2730 | 2730 | 2729 | 2730 | 2730 | 2730 | 2730 | 2730 | ||
1738 | 1738 | 1738 | 1738 | 1738 | 1738 | 1737 | 1737 | 1738 | ν (C=O) carbonyl group from aliphatic esters; ν (C=C–C) alkyl group from alkenes; ν (C=C) from unsaturated compouns. | [22,24] |
nd | 1723 | nd | nd | nd | nd | nd | nd | nd | ||
1674 | 1673 | 1674 | 1674 | 1674 | 1674 | 1674 | 1674 | 1674 | ||
1644 | 1643 | 1644 | 1644 | 1644 | 1644 | 1644 | 1644 | 1644 | ||
1595 | 1596 | 1595 | 1596 | 1595 | 1596 | 1595 | 1595 | 1595 | ||
1450 | 1450 | 1450 | 1450 | 1450 | 1450 | 1450 | 1450 | 1450 | δ asym (C–H) and (C–H) in-plane bending from CH3 and CH2 groups. | [22,25,26] |
1412 | 1411 | 1412 | 1412 | 1412 | 1412 | 1412 | 1412 | 1412 | ||
1369 | 1373 | 1370 | 1370 | 1370 | 1370 | 1369 | 1369 | 1371 | ||
1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | 1239 | ν asym (C–O) and ν sym (C–O) from ester group; νasym (C–O) and νsym (C–O) from alcohols; δ sym (CH3(CO)), νasym (C–O–C) and νsym (C–O–C); δ (O-H) in-plane from secondary alcohols. | [22,24,25,27] |
nd | 1207 | nd | nd | nd | nd | nd | nd | nd | ||
1171 | 1171 | 1171 | 1171 | 1171 | 1171 | 1171 | 1171 | 1171 | ||
1110 | 1111 | 1109 | 1110 | 1110 | 1109 | 1109 | 1110 | 1109 | ||
1092 | 1091 | 1093 | 1093 | 1093 | 1093 | 1092 | 1092 | 1093 | ||
1018 | 1016 | 1018 | 1018 | 1018 | 1018 | 1018 | 1018 | 1018 | ||
994 | 993 | 993 | 993 | 994 | 993 | 993 | 993 | 993 | δ (C–H), ω (CH2), ω (C–H) out-of-plane; ω (O–H) out-of-plane from alcohols. | [22,23,28] |
919 | 919 | 919 | 919 | 919 | 919 | 919 | 919 | 919 | ||
863 | 864 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | ||
834 | 835 | 834 | 834 | 834 | 834 | 834 | 834 | 834 | ||
738 | 736 | 740 | 739 | 739 | 738 | 739 | 739 | 738 | ||
690 | 689 | 690 | 690 | 690 | 690 | 690 | 690 | 690 |
Essential Oil | Year | ABTS Assay | DPPH Assay | ||
---|---|---|---|---|---|
Inhibition% | mmol TEAC/L | Inhibition% | mg Trolox/L | ||
Var. Moldoveanca 4 (1) | 2017 | 66.15 ± 4.99 a | 0.5959 ± 0.0577 | 52.66 ± 4.09 a | 1.8364 ± 0.2209 |
2018 | 56.23 ± 12.77 a | 0.4811 ± 0.1478 | 24.10 ± 4.88 b | 1.8369 ± 0.2638 | |
2019 | 57.19 ± 3.14 a | 0.4923 ± 0.0363 | 42.70 ± 0.24 c | 1.2980 ± 0.0129 | |
Var. Alba 7 (2) | 2017 | 71.36 ± 4.64 a | 0.6562 ± 0.0536 | 61.57 ± 2.51 a | 2.3184 ± 0.1359 |
2018 | 62.23 ± 8.43 a | 0.5506 ± 0.0975 | 58.68 ± 2.19 a | 2.1620 ± 0.1182 | |
2019 | 56.20 ± 2.79 a | 0.4808 ± 0.0322 | 32.37 ± 2.35 b | 0.7393 ± 0.1271 | |
Var. Vis magic 10 (3) | 2017 | 65.29 ± 6.06 a | 0.5859 ± 0.0701 | 69.83 ± 8.23 a | 2.7654 ± 0.4452 |
2018 | 76.74 ± 4.15 a | 0.7185 ± 0.0480 | 76.17 ± 4.18 a | 3.1080 ± 0.2261 | |
2019 | 72.04 ± 5.78 a | 0.6640 ± 0.0668 | 39.39 ± 1.19 b | 1.1192 ± 0.0645 |
No. of the Sample | Essential Oil | Inhibition Zone (mm) | |
---|---|---|---|
ATCC | Clinical Isolates | ||
Single | |||
1 | Var. Moldoveanca 4 | 18.5 ± 2.12 | 18.0 ± 0.00 |
2 | Var. Alba 7 | 19.5 ± 0.70 | 18.5 ± 2.12 |
3 | Var. Vis magic 10 | 21.5 ± 0.70 | 20.0 ± 0.70 |
In combination with geranium or tea tree EO (v/v) | |||
4 | Var. Alba 7:EO geranium = 1:1 | 24.5 ± 0.70 | 25.0 ± 1.00 |
5 | Var. Alba 7: EO geranium = 2:1 | 27.0 ± 1.41 | 27.0 ± 0.70 |
6 | Var. Alba 7: EO tea tree = 1:1 | 31.0 ± 1.12 | 33.5 ± 0.70 |
7 | Var. Alba 7:EO tea tree = 2:1 | 30.0 ± 1.00 | 31.0 ± 1.12 |
No. of the Sample | Essential Oil | Inhibition Zone (mm) | |
---|---|---|---|
ATCC | Clinical Isolates | ||
Single | |||
1 | Var. Moldoveanca 4 | 18.0 ± 2.12 | 19.5 ± 0.70 |
2 | Var. Alba 7 | 18.5 ± 2.12 | 18.5 ± 2.12 |
3 | Var. Vis magic 10 | 25.5 ± 0.70 | 24.5 ± 0.70 |
In combination with geranium or tea tree EO (v/v) | |||
4 | Var. Alba 7:EO geranium = 1:1 | 18.5 ± 0.70 | 19.5 ± 0.70 |
5 | Var. Alba 7: EO geranium = 2:1 | 22.5 ± 0.70 | 24.5 ± 0.70 |
6 | Var. Alba 7: EO tea tree = 1:1 | TI | TI |
7 | Var. Alba 7:EO tea tree = 2:1 | TI | TI |
No. of the Sample | Essential Oil | Inhibition Zone (mm) | |
---|---|---|---|
ATCC | Clinical Isolates | ||
Single | |||
1 | Var. Moldoveanca 4 | 12.5 ± 0.70 | 13.5 ± 0.70 |
2 | Var. Alba 7 | 13.5 ± 0.70 | 14.5 ± 0.70 |
3 | Var. Vis magic 10 | 14.5 ± 0.70 | 14.5 ± 0.70 |
In combination with geranium or tea tree EO (v/v) | |||
4 | Var. Alba 7:EO geranium = 1:1 | TI | TI |
5 | Var. Alba 7: EO geranium = 2:1 | TI | TI |
6 | Var. Alba 7: EO tea tree = 1:1 | TI | TI |
7 | Var. Alba 7:EO tea tree = 2:1 | TI | TI |
No. of the Sample | Essential Oil | MIC (v/v) % | |||||
---|---|---|---|---|---|---|---|
S. aureus | E. coli | C. albicans | |||||
ATCC | Clinical Isolates | ATCC | Clinical Isolates | ATCC | Clinical Isolates | ||
1 | Var. Moldoveanca 4 | 12.5 | 12.5 | 25 | 25 | 12.5 | 12.5 |
2 | Var. Alba 7 | 6.25 | 12.5 | 12.5 | 25 | 6.25 | 12.5 |
3 | Var. Vis magic 10 | 3.12 | 3.12 | 12.5 | 6.25 | 3.12 | 6.25 |
4 | Var. Alba 7:EO geranium = 1:1 | 3.12 | 3.12 | 25 | 25 | 1.56 | 3.12 |
5 | Var. Alba 7: EO geranium = 2:1 | 1.56 | 3.12 | 6.25 | 12.5 | 0.78 | 1.56 |
6 | Var. Alba 7: EO tea tree = 1:1 | 1.56 | 1.56 | 3.12 | 3.12 | 0.78 | 0.78 |
7 | Var. Alba 7:EO tea tree = 2:1 | 1.56 | 1.56 | 1.56 | 1.56 | 0.78 | 0.78 |
Strain | Antibiotic (Abbreviation) | Microcompresses Content (µg) | Reference Range |
---|---|---|---|
Staphylococcus aureus ATCC 25923 | Clindamycin (DA) | 2 | 24–30 |
Vancomycin (VA) | 30 | 17–21 | |
Escherichia coli ATCC 25922 | Ceftazidime | 30 | 25–32 |
Moxifloxacin | 5 | 28–35 | |
Pseudomonas aeruginosa ATCC 27853 | Ceftazidime | 30 | 22–29 |
Ciprofloxacin | 5 | 25–33 | |
Candida albicans ATCC 10231 | Fluconazole Ketoconazole | 25 15 | ≥19 ≥28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdan, M.A.; Bungau, S.; Tit, D.M.; Zaha, D.C.; Nechifor, A.C.; Behl, T.; Chambre, D.; Lupitu, A.I.; Copolovici, L.; Copolovici, D.M. Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules 2021, 26, 4381. https://doi.org/10.3390/molecules26144381
Bogdan MA, Bungau S, Tit DM, Zaha DC, Nechifor AC, Behl T, Chambre D, Lupitu AI, Copolovici L, Copolovici DM. Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules. 2021; 26(14):4381. https://doi.org/10.3390/molecules26144381
Chicago/Turabian StyleBogdan, Mihaela Alexandra, Simona Bungau, Delia Mirela Tit, Dana Carmen Zaha, Aurelia Cristina Nechifor, Tapan Behl, Dorina Chambre, Andreea Ioana Lupitu, Lucian Copolovici, and Dana Maria Copolovici. 2021. "Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia" Molecules 26, no. 14: 4381. https://doi.org/10.3390/molecules26144381
APA StyleBogdan, M. A., Bungau, S., Tit, D. M., Zaha, D. C., Nechifor, A. C., Behl, T., Chambre, D., Lupitu, A. I., Copolovici, L., & Copolovici, D. M. (2021). Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules, 26(14), 4381. https://doi.org/10.3390/molecules26144381