Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review
Abstract
:1. Introduction
2. Cellulose-Based Aerogels
2.1. Synthesis of Cellulose Aerogels
2.2. Application of Cellulose-Based Aerogels
3. Chitosan-Based Aerogels
3.1. Synthesis of Chitosan-Based Aerogels
3.2. Applications of Chitosan-Based Aerogels
3.2.1. Chitosan Aerogels for Water Purification
3.2.2. Chitosan Aerogels for CO2 Capture
4. Graphene Oxide-Based Aerogels
4.1. Synthesis Methods for GO-Based Aerogels
4.2. Applications of GO-Based Aerogels
5. Silica Aerogels
5.1. Silica Aerogel Synthesis
5.2. Silica Aerogel Applications
5.2.1. Adsorption of MAHs and PAHs
5.2.2. Adsorption of Dyes
5.2.3. Adsorption of Heavy Metals
5.2.4. Adsorption of Other Pollutants
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New trends in bio-based aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef]
- Javadi, E.; Baghdadi, M.; Taghavi, L.; Panahi, H.A. Removal of 4-nonylphenol from Surface Water and Municipal Wastewater Effluent Using Three-Dimensional Graphene Oxide–Chitosan Aerogel Beads. Int. J. Environ. Res. 2020, 14, 513–526. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Shi, Y.; Song, L.; Yu, R.; Qu, J.; Yu, Z.-Z. Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustain. Chem. Eng. 2019, 7, 11228–11240. [Google Scholar] [CrossRef]
- Lee, S.P.; Ali, G.A.; Algarni, H.; Chong, K.F. Flake size-dependent adsorption of graphene oxide aerogel. J. Mol. Liq. 2019, 277, 175–180. [Google Scholar] [CrossRef]
- Kiliyankil, V.A.; Fugetsu, B.; Sakata, I.; Wang, Z.; Endo, M. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J. Colloid Interface Sci. 2021, 582, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhu, J.; Ge, S.; Jiang, C.; Guo, T.; Peng, T.; Huang, T.; Xie, L. Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation. Surf. Coat. Technol. 2020, 385, 125361. [Google Scholar] [CrossRef]
- Nawaz, M.; Khan, A.A.; Hussain, A.; Jang, J.; Jung, H.-Y.; Lee, D.S. Reduced graphene oxide-TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere 2020, 261, 127702. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical CO2 adsorption of non-steroidal anti-inflammatory drugs into biopolymer aerogels. J. CO2 Util. 2020, 36, 40–53. [Google Scholar] [CrossRef]
- García-González, C.A.; Sosnik, A.; Kalmár, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Control. Release 2021, 332, 40–63. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Mikkonen, K.S.; García-González, C.A. Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Struct. 2021, 28, 100188. [Google Scholar] [CrossRef]
- Franco, P.; Aliakbarian, B.; Perego, P.; Reverchon, E.; De Marco, I. Supercritical adsorption of quercetin on aerogels for active packaging applications. Ind. Eng. Chem. Res. 2018, 57, 15105–15113. [Google Scholar] [CrossRef]
- Venkataraman, M.; Mishra, R.; Kotresh, T.; Militky, J.; Jamshaid, H. Aerogels for thermal insulation in high-performance textiles. Text. Prog. 2016, 48, 55–118. [Google Scholar] [CrossRef]
- Gu, W.; Sheng, J.; Huang, Q.; Wang, G.; Chen, J.; Ji, G. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Guo, B.; Liang, G.; Yu, S.; Wang, Y.; Zhi, C.; Bai, J. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications. Energy Storage Mater. 2021, 39, 146–165. [Google Scholar] [CrossRef]
- Sun, K.; Kou, Y.; Dong, H.; Ye, S.; Zhao, D.; Liu, J.; Shi, Q. The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 2021, 9, 1213–1220. [Google Scholar] [CrossRef]
- Amonette, J.E.; Matyáš, J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous Mater. 2017, 250, 100–119. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Maldonado-Hódar, F. Carbon aerogels for catalysis applications: An overview. Carbon 2005, 43, 455–465. [Google Scholar] [CrossRef]
- Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J. 2016, 300, 98–118. [Google Scholar] [CrossRef]
- Dan, H.; Li, N.; Xu, X.; Gao, Y.; Huang, Y.; Akram, M.; Yin, W.; Gao, B.; Yue, Q. Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Sci. Total Environ. 2020, 739, 139983. [Google Scholar] [CrossRef]
- Prasanna, V.L.; Mamane, H.; Vadivel, V.K.; Avisar, D. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater. J. Hazard. Mater. 2020, 384, 121396. [Google Scholar] [CrossRef]
- Lyu, W.; Li, J.; Zheng, L.; Liu, H.; Chen, J.; Zhang, W.; Liao, Y. Fabrication of 3D compressible polyaniline/cellulose nanofiber aerogel for highly efficient removal of organic pollutants and its environmental-friendly regeneration by peroxydisulfate process. Chem. Eng. J. 2021, 414, 128931. [Google Scholar] [CrossRef]
- Esmaeili, Z.; Izadyar, S.; Hamzeh, Y.; Abdulkhani, A. Preparation and Characterization of Highly Porous Cellulose Nanofibrils/Chitosan Aerogel for Acid Blue 93 Adsorption: Kinetics, Isotherms, and Thermodynamics Analysis. J. Chem. Eng. Data 2021, 66, 1068–1080. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, P.; Wang, M.; Zhao, H.; Yang, J.; Xu, F. Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain. Chem. Eng. 2016, 4, 6409–6416. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.; Li, X.; Su, D.; Zhang, F.; Ji, H.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, Z.; Rashidi, A.M.; Samadi, M.T.; Rahmani, A.R. N-doped reduced graphene oxide aerogel for the selective adsorption of oil pollutants from water: Isotherm and kinetic study. J. Ind. Eng. Chem. 2018, 61, 416–426. [Google Scholar] [CrossRef]
- Gao, C.; Wang, X.-L.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions. Carbohydr. Polym. 2021, 256, 117564. [Google Scholar] [CrossRef]
- Huo, J.-b.; Yu, G.; Wang, J. Adsorptive removal of Sr (II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. Chemosphere 2021, 278, 130492. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kang, S.-M.; Jang, S.-C.; Lee, G.-W.; Shim, H.E.; Rethinasabapathy, M.; Roh, C.; Huh, Y.S. One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants. J. Mater. Chem. A 2019, 7, 1737–1748. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Liu, Y.; Zhang, C.; Tan, X.; Zeng, G.; Song, B.; Jiang, L. Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review. J. Hazard. Mater. 2018, 342, 177–191. [Google Scholar] [CrossRef]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose aerogels: Synthesis, applications, and prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar]
- Meng, S.; Yu, S.; Tang, F.; Hu, X.; Lu, J.; Fei, X.; Zhu, M. Fiber engineering of silica-based aerogels with surface specificity and regenerability for continuous removal of dye pollutants from wastewaters. Microporous Mesoporous Mater. 2021, 314, 110874. [Google Scholar] [CrossRef]
- Marques, J.; Matias, T.; Valente, A.J.M.; Portugal, A.; Quina, M.J.; Gando-Ferreira, L.; Durães, L. Adsorption of phenol on silica aerogels using a stirred tank and a fixed bed column. Cienc. Tecnol. Mater. 2017, 29, e229–e233. [Google Scholar] [CrossRef]
- Ahmadi, M.; Madadlou, A.; Saboury, A.A. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food Chem. 2016, 196, 1016–1022. [Google Scholar] [CrossRef]
- Seantier, B.; Bendahou, D.; Bendahou, A.; Grohens, Y.; Kaddami, H. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 2016, 138, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.N.; Cudjoe, E.; Douglas, A.; Scheiman, D.; McCorkle, L.; Meador, M.A.B.; Rowan, S.J. Polyimide cellulose nanocrystal composite aerogels. Macromolecules 2016, 49, 1692–1703. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Barowski, A.; Ratke, L. Gas permeability of cellulose aerogels with a designed dual pore space system. Molecules 2019, 24, 2688. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Su, X.; Zhu, W.; Hua, W.; Qian, Z.; Liu, L.; Yao, J. Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv. 2016, 6, 63773–63781. [Google Scholar] [CrossRef]
- Fan, P.; Yuan, Y.; Ren, J.; Yuan, B.; He, Q.; Xia, G.; Chen, F.; Song, R. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr. Polym. 2017, 162, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Han, S.; Li, J.; Sun, Q. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr. Polym. 2015, 123, 150–156. [Google Scholar] [CrossRef]
- Karadagli, I.; Schulz, B.; Schestakow, M.; Milow, B.; Gries, T.; Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 2015, 106, 105–114. [Google Scholar] [CrossRef]
- Laskowski, J.; Milow, B.; Ratke, L. The effect of embedding highly insulating granular aerogel in cellulosic aerogel. J. Supercrit. Fluids 2015, 106, 93–99. [Google Scholar] [CrossRef]
- Baldino, L.; Zuppolini, S.; Cardea, S.; Diodato, L.; Borriello, A.; Reverchon, E.; Nicolais, L. Production of biodegradable superabsorbent aerogels using a supercritical CO2 assisted drying. J. Supercrit. Fluids 2020, 156, 104681. [Google Scholar] [CrossRef]
- Buchtova, N.; Budtova, T. Cellulose aero-, cryo-and xerogels: Towards understanding of morphology control. Cellulose 2016, 23, 2585–2595. [Google Scholar] [CrossRef]
- Gebald, C.; Wurzbacher, J.A.; Tingaut, P.; Zimmermann, T.; Steinfeld, A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 2011, 45, 9101–9108. [Google Scholar] [CrossRef] [PubMed]
- Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 2015, 7, 7373–7381. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Nguyen, S.T.; Fan, Z.; Duong, H.M. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 2015, 270, 168–175. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Feng, J.; Le, N.T.; Le, A.T.; Hoang, N.; Tan, V.B.; Duong, H.M. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 2013, 52, 18386–18391. [Google Scholar] [CrossRef]
- Lin, R.; Li, A.; Zheng, T.; Lu, L.; Cao, Y. Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv. 2015, 5, 82027–82033. [Google Scholar] [CrossRef]
- Wang, D.; Yu, H.; Fan, X.; Gu, J.; Ye, S.; Yao, J.; Ni, Q. High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption–flocculants: Paving way from nanoscale to macroscale. ACS Appl. Mater. Interfaces 2018, 10, 20755–20766. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.; Ikkala, O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.-L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2014, 2, 6337–6342. [Google Scholar] [CrossRef] [Green Version]
- Gopakumar, D.A.; Arumughan, V.; Pottathara, Y.B.; KS, S.; Pasquini, D.; Bračič, M.; Seantier, B.; Nzihou, A.; Thomas, S.; Rizal, S. Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications. Polymers 2019, 11, 495. [Google Scholar]
- Wu, H.; Wang, Z.-M.; Kumagai, A.; Endo, T. Amphiphilic cellulose nanofiber-interwoven graphene aerogel monolith for dyes and silicon oil removal. Compos. Sci. Technol. 2019, 171, 190–198. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Zhang, L.; Zhou, Y.; Yang, Y.; Jin, Y. Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater. Cellulose 2017, 24, 5069–5078. [Google Scholar] [CrossRef]
- Ji, Y.; Wen, Y.; Wang, Z.; Zhang, S.; Guo, M. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu (II) and organic pollutants removal. J. Clean. Prod. 2020, 255, 120276. [Google Scholar] [CrossRef]
- Han, S.; Sun, Q.; Zheng, H.; Li, J.; Jin, C. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 2016, 136, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Nilsen-Nygaard, J.; Strand, S.P.; Vårum, K.M.; Draget, K.I.; Nordgård, C.T. Chitosan: Gels and interfacial properties. Polymers 2015, 7, 552–579. [Google Scholar] [CrossRef] [Green Version]
- Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr. Polym. 2001, 46, 39–47. [Google Scholar] [CrossRef]
- Lai, K.C.; Hiew, B.Y.Z.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Chiu, W.S.; Khiew, P.S. Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresour. Technol. 2019, 274, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, C.; Shi, R.; Zhang, H.; Gong, L.; Dai, L. Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydr. Polym. 2019, 223, 115048. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Wen, F.; Chen, J.; Chen, W.; Huang, Y.; Wang, B. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polymer 2021, 213, 123316. [Google Scholar] [CrossRef]
- Song, J.; Liu, J.; Zhao, W.; Chen, Y.; Xiao, H.; Shi, X.; Liu, Y.; Chen, X. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air. Ind. Eng. Chem. Res. 2018, 57, 4941–4948. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Zeng, F.; Li, X.; Sun, J.; Li, C.; Lin, H.; Su, Z. HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr. Polym. 2021, 255, 117402. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Fu, Z.; Lu, L.; Cheng, J.; Fei, Y. A ‘top modification’ strategy for enhancing the ability of a chitosan aerogel to efficiently capture heavy metal ions. J. Colloid Interface Sci. 2021, 594, 141–149. [Google Scholar] [CrossRef]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127. [Google Scholar] [CrossRef]
- Guo, D.-M.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Yang, D.-J. Efficient removal of Pb (II), Cr (VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr. Polym. 2018, 202, 306–314. [Google Scholar] [CrossRef]
- Li, Z.; Shao, L.; Ruan, Z.; Hu, W.; Lu, L.; Chen, Y. Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions. Carbohydr. Polym. 2018, 193, 221–227. [Google Scholar] [CrossRef]
- Wang, X.-L.; Guo, D.-M.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R. High-efficacy adsorption of Cr (VI) and anionic dyes onto β-cyclodextrin/chitosan/hexamethylenetetramine aerogel beads with task-specific, integrated components. Int. J. Biol. Macromol. 2019, 128, 268–278. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, L.; Le, Z.; Wang, Y.; Liu, Z.; Huang, G.; Adesina, A.A. Preparation of porous chitosan/carboxylated carbon nanotube composite aerogels for the efficient removal of uranium (VI) from aqueous solution. Int. J. Biol. Macromol. 2020, 160, 1000–1008. [Google Scholar] [CrossRef]
- Najaflou, S.; Rad, M.F.; Baghdadi, M.; Bidhendi, G.R.N. Removal of Pb (II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies. J. Environ. Manag. 2021, 286, 112167. [Google Scholar] [CrossRef]
- Yu, B.; Xu, J.; Liu, J.-H.; Yang, S.-T.; Luo, J.; Zhou, Q.; Wan, J.; Liao, R.; Wang, H.; Liu, Y. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 2013, 1, 1044–1050. [Google Scholar] [CrossRef]
- de Luna, M.S.; Ascione, C.; Santillo, C.; Verdolotti, L.; Lavorgna, M.; Buonocore, G.; Castaldo, R.; Filippone, G.; Xia, H.; Ambrosio, L. Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr. Polym. 2019, 211, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Hsan, N.; Dutta, P.; Kumar, S.; Bera, R.; Das, N. Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol. 2019, 125, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Huang, W.; Li, Z. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int. J. Biol. Macromol. 2019, 136, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, H.; Hu, E.; Lei, Z.; Fan, B.; Wang, Q. Efficient adsorption of uranium from aqueous solutions by microalgae based aerogel. Microporous Mesoporous Mater. 2020, 305, 110383. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, S.; Han, F.; Li, M.; Wang, N.; Liu, L. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydr. Polym. 2021, 264, 118033. [Google Scholar] [CrossRef] [PubMed]
- Alhwaige, A.A.; Ishida, H.; Qutubuddin, S. Chitosan/polybenzoxazine/clay mixed matrix composite aerogels: Preparation, physical properties, and water absorbency. Appl. Clay Sci. 2020, 184, 105403. [Google Scholar] [CrossRef]
- Li, L.; Wei, Z.; Liu, X.; Yang, Y.; Deng, C.; Yu, Z.; Guo, Z.; Shi, J.; Zhu, C.; Guo, W.; et al. Biomaterials cross-linked graphene oxide composite aerogel with a macro–nanoporous network structure for efficient Cr (VI) removal. Int. J. Biol. Macromol. 2020, 156, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Ebisike, K.; Okoronkwo, A.E.; Alaneme, K.K. Adsorption of Cd (II) on chitosan–silica hybrid aerogel from aqueous solution. Environ. Technol. Innov. 2019, 14, 100337. [Google Scholar] [CrossRef]
- de Luna, M.S.; Sirignano, M. Upcycling soot particles into chitosan-based aerogels for water purification from organic pollutants. J. Hazard. Mater. Lett. 2021, 2, 100019. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, W.; Liu, X.; Zhang, W. Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J. Mater. Chem. A 2015, 3, 331–340. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Song, X.; Jiao, Y.; Zhou, C. Preparation of chitosan/lanthanum hydroxide composite aerogel beads for higher phosphorus adsorption. Mater. Lett. 2018, 218, 201–204. [Google Scholar] [CrossRef]
- Luo, J.; Fan, C.; Xiao, Z.; Sun, T.; Zhou, X. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123584. [Google Scholar] [CrossRef]
- Shahnaz, T.; Sharma, V.; Subbiah, S.; Narayanasamy, S. Multivariate optimisation of Cr (VI), Co (III) and Cu (II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. J. Water Process. Eng. 2020, 36, 101283. [Google Scholar] [CrossRef]
- Cao, N.; Lyu, Q.; Li, J.; Wang, Y.; Yang, B.; Szunerits, S.; Boukherroub, R. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J. 2017, 326, 17–28. [Google Scholar] [CrossRef]
- Yi, L.; Yang, J.; Fang, X.; Xia, Y.; Zhao, L.; Wu, H.; Guo, S. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J. Hazard. Mater. 2020, 385, 121507. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sheikhi, A.; Van De Ven, T.G. Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 2016, 32, 11771–11779. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, M.; Wang, Y.; Wu, H.; Ji, N.; Dai, L.; Li, Y.; Xiong, L.; Shi, R.; Sun, Q. High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal Ions. J. Agric. Food Chem. 2019, 67, 13648–13657. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, E.; Aprea, P.; Salzano de Luna, M.; Caputo, D.; Filippone, G. Mechanically Coherent Zeolite 13X/Chitosan Aerogel Beads for Effective CO2 Capture. ACS Appl. Mater. Interfaces 2021, 13, 20728–20734. [Google Scholar] [CrossRef]
- Mruthunjayappa, M.H.; Sharma, V.T.; Dharmalingam, K.; Sanna Kotrappanavar, N.; Mondal, D. Engineering a Biopolymer-Based Ultrafast Permeable Aerogel Membrane Decorated with Task-Specific Fe–Al Nanocomposites for Robust Water Purification. ACS Appl. Bio Mater. 2020, 3, 5233–5243. [Google Scholar] [CrossRef]
- Chaudhary, J.P.; Vadodariya, N.; Nataraj, S.K.; Meena, R. Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 2015, 7, 24957–24962. [Google Scholar] [CrossRef]
- Chen, P.; Liang, Y.; Yang, B.; Jia, F.; Song, S. In situ reduction of Au (I) for efficient recovery of gold from thiosulfate solution by the 3D MoS2/chitosan aerogel. ACS Sustain. Chem. Eng. 2020, 8, 3673–3680. [Google Scholar] [CrossRef]
- Huang, T.; Shao, Y.-w.; Zhang, Q.; Deng, Y.-f.; Liang, Z.-x.; Guo, F.-z.; Li, P.-c.; Wang, Y. Chitosan-cross-linked graphene oxide/carboxymethyl cellulose aerogel globules with high structure stability in liquid and extremely high adsorption ability. ACS Sustain. Chem. Eng. 2019, 7, 8775–8788. [Google Scholar] [CrossRef]
- Yu, R.; Shi, Y.; Yang, D.; Liu, Y.; Qu, J.; Yu, Z.-Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 2017, 9, 21809–21819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Li, W.; Gao, Y.; Lei, C.; Huang, H.; Yang, J.; Zhang, H.; Li, D. High-Capacity Reusable Chitosan Absorbent with a Hydrogel-Coated/Aerogel-Core Structure and Superhydrophilicity under Oil for Water Removal from Oil. ACS Appl. Bio Mater. 2020, 3, 5872–5879. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, M.; Chen, D. Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium (VI) adsorption. Ind. Eng. Chem. Res. 2018, 57, 8472–8483. [Google Scholar] [CrossRef]
- Wang, C.; He, G.; Cao, J.; Fan, L.; Cai, W.; Yin, Y. Underwater Superoleophobic and Salt-Tolerant Sodium Alginate/N-Succinyl Chitosan Composite Aerogel for Highly Efficient Oil–Water Separation. ACS Appl. Polym. Mater. 2020, 2, 1124–1133. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Liang, D.; Xiao, Z.; Xie, Y.; Li, J. Sulfhydryl-Modified Chitosan Aerogel for the Adsorption of Heavy Metal Ions and Organic Dyes. Ind. Eng. Chem. Res. 2020, 59, 14531–14536. [Google Scholar] [CrossRef]
- Guo, X.; Qu, L.; Zhu, S.; Tian, M.; Zhang, X.; Sun, K.; Tang, X. Preparation of three-dimensional chitosan–graphene oxide aerogel for residue oil removal. Water Environ. Res. 2016, 88, 768–778. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, W.; Bao, M.; Li, Y. Magnetic chitosan-based aerogel decorated with polydimethylsiloxane: A high-performance scavenger for oil in water. J. Appl. Polym. Sci. 2021, 138, 50461. [Google Scholar] [CrossRef]
- Luo, J.; Fan, C.; Zhou, X. Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification. J. Appl. Polym. Sci. 2021, 138, 50065. [Google Scholar] [CrossRef]
- Tabernero, A.; Baldino, L.; Misol, A.; Cardea, S.; Del Valle, E.M.M. Role of rheological properties on physical chitosan aerogels obtained by supercritical drying. Carbohydr. Polym. 2020, 233, 115850. [Google Scholar] [CrossRef]
- Verma, A.; Thakur, S.; Goel, G.; Raj, J.; Gupta, V.K.; Roberts, D.; Thakur, V.K. Bio-based Sustainable Aerogels: New Sensation in CO2 Capture. Curr. Res. Green Sustain. Chem. 2020, 3, 100027. [Google Scholar] [CrossRef]
- Keshavarz, L.; Ghaani, M.R.; MacElroy, J.D.; English, N.J. A Comprehensive Review on the Application of Aerogels in CO2-adsorption: Materials and Characterisation. Chem. Eng. J. 2021, 412, 128604. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Sun, X.F.; Guo, B.B.; He, L.; Xia, P.F.; Wang, S.G. Electrically accelerated removal of organic pollutants by a three-dimensional graphene aerogel. AIChE J. 2016, 62, 2154–2162. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, İ.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038. [Google Scholar] [CrossRef]
- Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Apul, O.G.; Karanfil, T. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Res. 2015, 79, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgolis, G.; Galiotis, C. Graphene aerogels: A review. 2D Mater. 2017, 4, 032001. [Google Scholar] [CrossRef]
- Zhi, D.; Li, T.; Li, J.; Ren, H.; Meng, F. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B Eng. 2021, 211, 108642. [Google Scholar] [CrossRef]
- Hou, X.; Zheng, Y.; Ma, X.; Liu, Y.; Ma, Z. The effects of hydrophobicity and textural properties on hexamethyldisiloxane adsorption in reduced graphene oxide aerogels. Molecules 2021, 26, 1130. [Google Scholar] [CrossRef]
- Jiang, L.; Wen, Y.; Zhu, Z.; Liu, X.; Shao, W. A Double cross-linked strategy to construct graphene aerogels with highly efficient methylene blue adsorption performance. Chemosphere 2021, 265, 129169. [Google Scholar] [CrossRef]
- Jin, T.; Kong, F.-M.; Zhao, P.-W. Graphene oxide aerogel assembled by dimethylaminopropylamine/N-isopropylethylenediamine for the removal of copper ions. Chemosphere 2021, 263, 128273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhu, X.; Chen, B. Stable graphene oxide/poly (ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. Chem. Eng. J. 2018, 334, 1119–1127. [Google Scholar] [CrossRef]
- Huang, H.; Chen, P.; Zhang, X.; Lu, Y.; Zhan, W. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 2013, 9, 1397–1404. [Google Scholar] [CrossRef]
- Gao, C.; Dong, Z.; Hao, X.; Yao, Y.; Guo, S. Preparation of reduced graphene oxide aerogel and its adsorption for Pb (II). ACS Omega 2020, 5, 9903–9911. [Google Scholar] [CrossRef]
- Ren, F.; Zhu, W.; Zhao, J.; Liu, H.; Zhang, X.; Zhang, H.; Zhu, H.; Peng, Y.; Wang, B. Nitrogen-doped graphene oxide aerogel anchored with spinel CoFe2O4 nanoparticles for rapid degradation of tetracycline. Sep. Purif. Technol. 2020, 241, 116690. [Google Scholar] [CrossRef]
- Ren, F.; Wang, T.; Liu, H.; Liu, D.; Zhong, R.; You, C.; Zhang, W.; Lv, S.; Liu, S.; Zhu, H.; et al. CoMn2O4 nanoparticles embed in graphene oxide aerogel with three-dimensional network for practical application prospects of oxytetracycline degradation. Sep. Purif. Technol. 2021, 259, 118179. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.; Yan, Y.; Chen, D.; Huang, L.; Zhang, J.; Ke, Y.; Tan, S. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment. RSC Adv. 2018, 8, 4239–4248. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, S.V.; Pinna, A.; Carbonaro, C.M.; Malfatti, L.; Guardia, P.; Cabot, A.; Casula, M.F. Performance of oil sorbents based on reduced graphene oxide–silica composite aerogels. J. Environ. Chem. Eng. 2020, 8, 103632. [Google Scholar] [CrossRef]
- Tao, E.; Ma, D.; Yang, S.; Hao, X. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. J. Alloys Compd. 2020, 832, 154833. [Google Scholar]
- Zou, W.; Gu, B.; Sun, S.; Wang, S.; Li, X.; Zhao, H.; Yang, P. Preparation of a graphene oxide membrane for air purification. Mater. Res. Express 2019, 6, 105624. [Google Scholar] [CrossRef]
- Chen, H.; Liu, T.; Meng, Y.; Cheng, Y.; Lu, J.; Wang, H. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125281. [Google Scholar] [CrossRef]
- Deng, M.; Huang, Y. The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceram. Int. 2020, 46, 2565–2570. [Google Scholar] [CrossRef]
- Liang, Q.; Luo, H.; Geng, J.; Chen, J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI). Chem. Eng. J. 2018, 338, 62–71. [Google Scholar] [CrossRef]
- Pan, N.; Wei, Y.; Ren, X.; Huang, T.-S. Quaternary ammonium salts induced flocculation of graphene oxide for the fabrication of multifunctional aerogel. J. Mater. Sci. 2020, 55, 13751–13766. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, C.; Guo, R.; Lan, J.; Lin, S.; Jiang, S.; Lai, X.; Zhang, Y.; Xiao, H. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J. Mater. Sci. 2019, 54, 1872–1883. [Google Scholar] [CrossRef]
- Bessa, A.; Henriques, B.; Gonçalves, G.; Irurueta, G.; Pereira, E.; Marques, P.A. Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chem. Eng. J. 2020, 398, 125587. [Google Scholar] [CrossRef]
- Kovtun, A.; Campodoni, E.; Favaretto, L.; Zambianchi, M.; Salatino, A.; Amalfitano, S.; Navacchia, M.L.; Casentini, B.; Palermo, V.; Sandri, M. Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere 2020, 259, 127501. [Google Scholar] [CrossRef]
- Wei, C.; Xiang, C.; Ren, E.; Cui, C.; Zhou, M.; Xiao, H.; Jiang, S.; Yao, G.; Shen, H.; Guo, R. Synthesis of 3D lotus biochar/reduced graphene oxide aerogel as a green adsorbent for Cr (VI). Mater. Chem. Phys. 2020, 253, 123271. [Google Scholar] [CrossRef]
- Xu, J.; Du, P.; Bi, W.; Yao, G.; Li, S.; Liu, H. Graphene oxide aerogels co-functionalized with polydopamine and polyethylenimine for the adsorption of anionic dyes and organic solvents. Chem. Eng. Res. Des. 2020, 154, 192–202. [Google Scholar] [CrossRef]
- Nawaz, M.; Miran, W.; Jang, J.; Lee, D.S. One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B 2017, 203, 85–95. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Xie, J. Self-Assembled Nano-Fe3C Embedded in Reduced Graphene Oxide Aerogel with Efficient Fenton-Like Catalysis. Nanomaterials 2020, 10, 2348. [Google Scholar] [CrossRef]
- Yao, T.; Qi, Y.; Mei, Y.; Yang, Y.; Aleisa, R.; Tong, X.; Wu, J. One-step preparation of reduced graphene oxide aerogel loaded with mesoporous copper ferrite nanocubes: A highly efficient catalyst in microwave-assisted Fenton reaction. J. Hazard. Mater. 2019, 378, 120712. [Google Scholar] [CrossRef]
- Kang, W.; Cui, Y.; Yang, Y.; Zhao, Z.; Wang, X.; Liu, X. An acid induction strategy to construct an ultralight and durable amino-functionalized graphene oxide aerogel for enhanced quinoline pollutants extraction from coking wastewater. Chem. Eng. J. 2021, 412, 128686. [Google Scholar] [CrossRef]
- Jiao, C.; Li, T.; Wang, J.; Wang, H.; Zhang, X.; Han, X.; Du, Z.; Shang, Y.; Chen, Y. Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J. Polym. Environ. 2020, 28, 1492–1502. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J.; Li, Y.; Zhang, P.; Li, M.; Zheng, H.; Zhang, X.; Li, H.; Du, Q. Methylene blue adsorption by activated carbon, nickel alginate/activated carbon aerogel, and nickel alginate/graphene oxide aerogel: A comparison study. J. Mater. Res. Technol. 2020, 9, 12443–12460. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Huang, L.; Lin, F.; Liu, S.; Wu, T.; Alharbi, N.S.; Rabah, S.O.; Lu, Y.; Wang, X. Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chem. Eng. J. 2020, 396, 125272. [Google Scholar] [CrossRef]
- Wang, D.; Jin, Z.; Pang, X.; Jiang, X.; Lu, Y.; Shen, L. Fabrication and functionalization of biological graphene aerogel by reusing microorganism in activated sludge and ionic dyes. Chem. Eng. J. 2020, 392, 124823. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.-F.; Yao, J. Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J. Phys. Chem. Solids 2021, 150, 109839. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, W.; Shan, X.; Li, Z. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. Int. J. Biol. Macromol. 2020, 143, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kong, L.; Liu, J. Removal of mercury and fluoride from aqueous solutions by three-dimensional reduced-graphene oxide aerogel. Res. Chem. Intermed. 2016, 42, 4513–4530. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, D.; Lin, H.; Chen, Y. Amphiprotic cellulose mediated graphene oxide magnetic aerogels for water remediation. Chem. Eng. J. 2020, 400, 125890. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, R.; Ren, S.; Chen, C.; Chen, Z.; Yang, X. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Liao, J. Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Appl. Surf. Sci. 2020, 504, 144377. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Fang, G.; Huang, C.; Wu, T. Directionally-Grown Carboxymethyl Cellulose/Reduced Graphene Oxide Aerogel with Excellent Structure Stability and Adsorption Capacity. Polymers 2020, 12, 2219. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Cui, S.; Yang, F.; Nie, Z.; Li, Q.; Wei, Q. Preparation of silica aerogels by ambient pressure drying without causing equipment corrosion. Molecules 2018, 23, 1935. [Google Scholar] [CrossRef] [Green Version]
- Kaya, G.G.; Deveci, H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review. J. Ind. Eng. Chem. 2020, 89, 13–27. [Google Scholar] [CrossRef]
- Scherer, G.W.; Smith, D.M. Cavitation during drying of a gel. J. Non-Cryst. Solids 1995, 189, 197–211. [Google Scholar] [CrossRef]
- Tewari, P.H.; Hunt, A.J.; Lofftus, K.D. Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 1985, 3, 363–367. [Google Scholar] [CrossRef]
- Prakash, S.S.; Brinker, C.J.; Hurd, A.J. Silica aerogel films at ambient pressure. J. Non-Cryst. Solids 1995, 190, 264–275. [Google Scholar] [CrossRef]
- Pajonk, G.; Repellin-Lacroix, M.; Abouarnadasse, S.; Chaouki, J.; Klavana, D. From sol-gel to aerogels and cryogels. J. Non-Cryst. Solids 1990, 121, 66–67. [Google Scholar] [CrossRef]
- Gurav, J.L.; Jung, I.-K.; Park, H.-H.; Kang, E.S.; Nadargi, D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010, 2010, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.V.; Hegde, N.D.; Hirashima, H. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 2007, 305, 124–132. [Google Scholar] [CrossRef]
- Li, Y.K.; Yang, D.-K.; Chen, Y.-C.; Su, H.-J.; Wu, J.-C.; Chen-Yang, Y.W. A novel three-dimensional aerogel biochip for molecular recognition of nucleotide acids. Acta Biomater. 2010, 6, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Reim, M.; Körner, W.; Manara, J.; Korder, S.; Arduini-Schuster, M.; Ebert, H.-P.; Fricke, J. Silica aerogel granulate material for thermal insulation and daylighting. Sol. Energy 2005, 79, 131–139. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Li, K.; Zhao, S.; Fei, Z.; Zhang, Z. A flexible silica aerogel with good thermal and acoustic insulation prepared via water solvent system. J. Sol-Gel Sci. Technol. 2019, 92, 652–661. [Google Scholar] [CrossRef]
- Franco, P.; Sacco, O.; Vaiano, V.; De Marco, I. Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules 2021, 26, 2640. [Google Scholar] [CrossRef]
- Han, H.; Wei, W.; Jiang, Z.; Lu, J.; Zhu, J.; Xie, J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 539–549. [Google Scholar] [CrossRef]
- Linneen, N.N.; Pfeffer, R.; Lin, Y. Amine distribution and carbon dioxide sorption performance of amine coated silica aerogel sorbents: Effect of synthesis methods. Ind. Eng. Chem. Res. 2013, 52, 14671–14679. [Google Scholar] [CrossRef]
- Štandeker, S.; Novak, Z.; Knez, Ž. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. J. Hazard. Mater. 2009, 165, 1114–1118. [Google Scholar] [CrossRef]
- Štandeker, S.; Novak, Z.; Knez, Ž. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J. Colloid Interface Sci. 2007, 310, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hu, H.; Ji, X.; Yan, Z.; Sun, W.; Xie, J. Selective adsorption of organic dyes by porous hydrophilic silica aerogels from aqueous system. Water Sci. Technol. 2018, 78, 402–414. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Torres, R.B.; Vareda, J.P.; Lopes, D.; Ferreira, M.; Valente, V.; Girão, A.V.; Valente, A.J.; Durães, L. Amine modification of silica aerogels/xerogels for removal of relevant environmental pollutants. Molecules 2019, 24, 3701. [Google Scholar] [CrossRef] [Green Version]
- Yaqubzadeh, A.; Ahmadpour, A.; Bastami, T.R.; Hataminia, M. Low-cost preparation of silica aerogel for optimized adsorptive removal of naphthalene from aqueous solution with central composite design (CCD). J. Non-Cryst. Solids 2016, 447, 307–314. [Google Scholar] [CrossRef]
- Yi, Z.; Tang, Q.; Jiang, T.; Cheng, Y. Adsorption performance of hydrophobic/hydrophilic silica aerogel for low concentration organic pollutant in aqueous solution. Nanotechnol. Rev. 2019, 8, 266–274. [Google Scholar] [CrossRef]
- Malinowska, B.; Walendziewski, J.; Robert, D.; Weber, J.; Stolarski, M. The study of photocatalytic activities of titania and titania–silica aerogels. Appl. Catal. B 2003, 46, 441–451. [Google Scholar] [CrossRef]
- Ji, H.; Liu, W.; Sun, F.; Huang, T.; Chen, L.; Liu, Y.; Qi, J.; Xie, C.; Zhao, D. Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution. Chem. Eng. J. 2021, 419, 129605. [Google Scholar] [CrossRef]
- Yi, Z.; Jiang, T.; Cheng, Y.; Tang, Q. Effect of SiO2 aerogels loading on photocatalytic degradation of nitrobenzene using composites with tetrapod-like ZnO. Nanotechnol. Rev. 2020, 9, 1009–1016. [Google Scholar] [CrossRef]
- Dou, B.; Li, J.; Wang, Y.; Wang, H.; Ma, C.; Hao, Z. Adsorption and desorption performance of benzene over hierarchically structured carbon–silica aerogel composites. J. Hazard. Mater. 2011, 196, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Hanu, A.M.; Kareth, S.; Puls, A.; Ivanova, M.; Mallick, B.; Mudring, A.V.; Petermann, M. Influence of scCO2, Ultrasound, and Quaternary Ammonium Salt on Gelation Time and Structural Characteristics of Silica. Chem. Eng. Technol. 2014, 37, 1873–1878. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Z.; Chen, H.; Du, Q.; Yu, L.; Zhang, R.; Zhou, Y. A Facile Preparation of Ambient Pressure–Dried Hydrophilic Silica Aerogels and Their Application in Aqueous Dye Removal. Front. Mater. 2020, 7, 152. [Google Scholar] [CrossRef]
- Liu, M.; Gan, L.; Pang, Y.; Xu, Z.; Hao, Z.; Chen, L. Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 490–495. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, P.; Wang, L.; Jiang, Z.; Zhao, S. Structural characteristics and photocatalytic activity of ambient pressure dried SiO2/TiO2 aerogel composites by one-step solvent exchange/surface modification. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 80–86. [Google Scholar] [CrossRef]
- Najafidoust, A.; Haghighi, M.; Asl, E.A.; Bananifard, H. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes. Sep. Purif. Technol. 2019, 221, 101–113. [Google Scholar] [CrossRef]
- Vareda, J.P.; Durães, L. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. Environ. Technol. 2019, 40, 529–541. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.; Durães, L. Silica Aerogels/Xerogels Modified with Nitrogen-Containing Groups for Heavy Metal Adsorption. Molecules 2020, 25, 2788. [Google Scholar] [CrossRef]
- Shariatinia, Z.; Esmaeilzadeh, A. Hybrid silica aerogel nanocomposite adsorbents designed for Cd (II) removal from aqueous solution. Water Environ. Res. 2019, 91, 1624–1637. [Google Scholar] [CrossRef]
- Coleman, S.J.; Coronado, P.R.; Maxwell, R.S.; Reynolds, J.G. Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions. Environ. Sci. Technol. 2003, 37, 2286–2290. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Salimian, S.; Khoddami, A.; Shams-Ghahfarokhi, F. Sodium silicate based aerogel for absorbing oil from water: The impact of surface energy on the oil/water separation. Mater. Res. Express 2019, 6, 085059. [Google Scholar] [CrossRef]
- Mahani, A.A.; Motahari, S.; Mohebbi, A. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil. Mar. Pollut. Bull. 2018, 129, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, J.; Yuan, J.; Wang, S.; Ding, Y.; Wu, Y.; Gao, C. A type of thiophene-bridged silica aerogel with a high adsorption capacity for organic solvents and oil pollutants. Inorg. Chem. Front. 2018, 5, 1894–1901. [Google Scholar] [CrossRef]
- Bu, Y.; Feng, J.; Tian, Y.; Wang, X.; Sun, M.; Luo, C. An organically modified silica aerogel for online in-tube solid-phase microextraction. J. Chromatogr. A 2017, 1517, 203–208. [Google Scholar] [CrossRef]
Materials | Process | Characteristics | Application | Ref. |
---|---|---|---|---|
NFC + amine | Freeze-drying | SSA: 7.1 m2/g Adsorb: 1.39 mmol CO2/g | CO2 adsorbent | [46] |
NFC + CNT + metal NP | Freeze-drying | SSA: 10 m2/g Adsorb: 97–100% | Gas adsorbent | [6] |
BCA modified | Freeze-drying | SSA > 169 m2/g Adsorb: up to 185 g/g | Oil and solvent removal | [47] |
BCA + SiO2 | Freeze-drying | Superleastic high quality adsorption (up to 14) | Oil and solvent removal | [25] |
RCA | Freeze-drying | Adsorb: 49–95 g/g | Oil removal | [48] |
RCA | Freeze-drying | Porosity: 97.3% Adsorb: 13.9–24.4 g/g | Oil removal | [49] |
RCA | Freeze-drying | Porosity: 98.7% Adsorb: 34.5 g/g | Oil removal | [50] |
NC | Freeze-drying | Porosity: 98% SSA: 85–147 m2/g Adsorb: 45–127 mg/g | Dye and metal removal | [51] |
NC | Freeze-drying | Adsorb: 90% vol/vol 20–40% (wt/wt) | Oil removal | [52] |
NC | Freeze-drying | Porosity > 99% SSA: 95–196 m2/g Adsorb: 159–260 mg/g | Oil and solvent removal | [24] |
NC | Freeze-drying | Porosity > 99% SSA: 11 m2/g Adsorb: 200–375 g/g | Oil and solvent removal | [53] |
NC | Freeze-drying | Adsorb: 150 mg/g | Dye removal | [54] |
NFC + GO | Lyophilization | SSA: 128–581 m2/g Versatile adsorption | Oil and dye removal | [55] |
NFC + PANI | Freeze-drying | Adsorb: 600 mg/g 1363 mg/g | Dye removal | [22] |
CE | Freeze-drying SC-drying | SSA: 105–152 m2/g Adsorb: 9.63–18.38 mmol/g | Dye removal | [56] |
NFC + TA | Freeze-drying | SSA: 76–151 m2/g Adsorb: up to 108 g/g | Solvent removal | [57] |
Materials | Characteristics SSA (m2/g) | Aerogel Preparation | Improvement | Ref. |
---|---|---|---|---|
Alginate/Chitosan/Melamine | SSA: - Pb(II) (1331.6 mg/g) | Alginate crosslinking with CaCl2; freeze-drying | Complexation of alginate; improve adsorption due to amino groups | [27] |
Chitosan/Bacterial Cellulose/MOF | SSA: 268.7 Cu2+ (206.6 mg/g) Cr6+ (152.1 mg/g) Organic Dye (almost 100% adsorption) | Hydrogels by mixing bacterial cellulose and chitosan; freeze-drying | Bacterial cellulose enhanced mechanical properties; MOF increases the surface area | [67] |
Chitosan/PDA | SSA: 77.3 (freeze-drying), SSA: 4.3 (vacuum-drying) Cr(VI) (374.4 mg/g) Pb(II) (441.2 mg/g) | Crosslinking with glutaraldehyde; freeze- or vacuum-drying | Adsorption improvement; enhanced stability and acidic water resistance | [68] |
Chitosan/Waste Paper Office | SSA: - Cu(II) (156.3 mg/g) | Hydrogel with NaOH and urea; freeze-drying | Increasing mechanical strength and adsorption capacity | [69] |
β-CD/Chitosan/ Hexamethylenetetramine | SSA: - Cr(VI) (333.8 mg/g) MB (395.7 mg/g) RhB (364.3 mg/g) ARS (261.0 mg/g) AO7 (134.1 mg/g) | Physical via pH modification and glutaraldehyde crosslinking; freeze-drying | Stability and adsorption properties | [70] |
Chitosan/Carboxylated Carbon Nanotubes | SSA: 106.4 U(VI) (307.5 mg/g) | Crosslinking with epichlorohydrin; freeze-drying | Improve mechanical strength and adsorption of uranyl; improve the CNT dispersion | [71] |
Chitosan/Cellulose Sulfate | SSA: 0.78 Pb(II) (137.8 mg/g) | Crosslinking with glutaraldehyde; freeze-drying | No problems with cellulose sulfate particles cohesiveness | [72] |
Chitosan/GO | SSA: 345 Cu(II) (25.4 mg/g) | Hydrogel formation; freeze-drying | Improve GO removal and compound adsorption | [73] |
Chitosan/GO | SSA: - Dye (430.99 mg/g) | Hydrogel formation; ice templating and freeze-drying | Improve GO removal and compound adsorption | [61] |
Chitosan/GO | SSA: - Indigo Carmine (534.4 mg/g) MB (168.6 mg/g) | Crosslinking with glutaraldehyde; freeze-drying at different times | Improve dye adsorption and increase the mechanical strength | [74] |
Chitosan Grafted with GO | SSA: 33 CO2 (0.26 mmol/g) | Physical gelation; freeze-drying | Improve CO2 capture | [75] |
Chitosan/Reduced GO/Silica/PDMS | SSA: - Oil/Water separation (18.45 g/g) | Hydrogel formation; directional freeze-drying | Hydrophobic properties; thermal stability; mechanical resistance | [7] |
Chitosan | SSA: - Cu(II) (108.14 mg/g) Pb(II) (143.73 mg/g) Cd(II) (84.62 mg/g) | Immersion method after producing the aerogel; freeze-drying | Improving adsorption | [66] |
Chitosan/GO/Lignosulphonate | SSA: 74.8 MB (1023.9 mg/g) | Hydrogel formation; freeze-drying | Improve adsorption and regeneration | [76] |
Chitosan/Microalgae Biomass | SSA: 6.48 U(VI) (571 mg/g) | Hydrogel formation; dried at room temperature | Possible biomass separation. | [77] |
Chitosan/Cellulose/MOF | SSA: 457.75 MB (526.3 mg/g) | Crosslinking with epichlorohydrin; freeze-drying | Improve mechanical resistance and SSA | [65] |
Chitosan/Cellulose Nanofibers | SSA: - Oil/Water separation (253.3 g/g) | Crosslinking with glutaraldehyde; directional freeze-drying | Improve mechanical resistance and anisotropic thermal insulation properties | [78] |
Chitosan/Cellulose Nanofibers | SSA: - Pb(II) (252.6 mg/g) | Hydrogel formation; directional freeze-drying | Improve adsorption | [62] |
Chitosan/Polybenzoxazyne/Sodium Montmorillonite | SSA: - | Gelation with benzoxazine polymer; freeze-drying | Subsequent ring polymerization to increase thermal stability and hydrophilicity | [79] |
Chitosan/PDA/GO | SSA: - Cr(VI) (312.05 mg/g) | Gelation due to the interactions; freeze-drying | Increase adsorption due to the addition of active adsorption sites | [80] |
Chitosan/Silica | SSA: 237.4 Cd(II) (98.49%) | Sol–gel technique; drying at 80 °C | Increase surface area | [81] |
Chitosan/Soot | SSA: 11 MB (250 mg/g) Indigo Carmine (275 mg/g) Naphthalene (7 mg/g) | Crosslinking with glutaraldehyde; freeze-drying | Increase mechanical resistance; reduce adsorption of anionic dyes but increase adsorption of cationic dyes; improve soot dispersion | [82] |
Chitosan/titanium | SSA: - Cr(VI) (171 mg/g) | Metal-binding and crosslinking with glutaraldehyde; drying at 40 °C | Improve adsorption; mechanism of adsorption, reduction, and re-adsorption | [83] |
Chitosan/Lanthanum Hydroxide | SSA: 172.74 Phosphorus (148.33 mg/g) | Hydrogel formation; ScCO2 | Increase phosphorus adsorption | [84] |
CMCh/Magnetite/PDA | SSA: 106.7 MB (217.43 mg/g) CV (262.27 mg/g) MO (83.47 mg/g) CR (92.83 mg/g) | Crosslinking with glutaraldehyde; freeze-drying | Increase water solubility; possible magnetic separation; improve adsorption and avoid aggregation of magnetic particles | [63] |
CMCh/GO | SSA: - Ag(I) (151.30 mg/g) Pb(II) (249.38 mg/g) Cu(II) (95.37 mg/g) | Crosslinking with TPP or glutaraldehyde; freeze-drying | Increase mechanical resistance and prevent GO stacking and increase adsorption | [85] |
CMCh /Nanobentonite/Oxidized Cellulose | SSA: - Cr(VI) (98.90%) Co(III) (97.45%) Cu(II) (99.01%) | Hydrogel formation; freeze-drying | Increase stability and adsorption efficiency | [86] |
Reduced GO/Chitosan/PDA | SSA: 51.76 Oil/Water separation (adsorption efficiency between 90 and 97%) | Crosslinking with glutaraldehyde; freeze-drying | Superhydrophobic and stable aerogel under water | [87] |
Silylated Chitosan | SSA: 27.10 Oil/Water sep. (63 g/g) | Hydrogel formation; directional freeze-drying | Superhydrophobic aerogel with enhanced mechanical resistance | [88] |
CMCh /Nanocellulose | SSA: - MB (785 mg/g) | Crosslinking between the materials; freeze-drying | Increase adsorption | [89] |
CMCh/Gallic Acid/FeIII | SSA: - Pb(II) (97.15 mg/g) Cd(II) (99.75 mg/g) Cu(II) (98.50 mg/g) | Crosslinking, electrostatic interactions, and metal coordination; freeze-drying | Mechanical resistance and increase adsorption | [90] |
Chitosan/Zeolite | SSA: 561 CO2 (4.23 mmol/g) | Hydrogel formation; freeze-drying | Increase surface area and mechanical resistance; improve CO2 capture, and it is possible to reuse it. | [91] |
Chitosan/Agarose with Fe and Al Nanocomposites | SSA: 384.14 Dyes (95% rejection) As(V) (102.45 mg/g) F (81.56 mg/g) | Hydrogel formation; freeze-drying | Increase aerogel stability due to the addition of agarose; increase As (V) and F removal due to the addition of Fe and Al | [92] |
Chitosan/Agarose | SSA: - Oil/Water separation (99% pure water) | Crosslinking with genipin; freeze-drying | Increase macroporosity as well as stability due to the addition of agarose | [93] |
Chitosan with Anchored MoS2 | SSA: 32.46 Gold recovery by gold reduction from Au(I) to Au(0) | Crosslinking with glutaraldehyde; freeze-drying | Improve thiosulfate leaching, and can produce metal ion photoreduction; increase mechanical resistance | [94] |
Chitosan/GO/CMC | SSA: - Organic dye (3190 mg/g) Cr(VI) (127.4 mg/g) | Crosslinking between the polymer functional groups; freeze-drying | Increase GO water stability by protecting it with a core-shell structure (chitosan as shell and CMC and GO in the core) | [95] |
Chitosan/GO | SSA: - Pb(II) (747.5 mg/g) Cr(VI) (292.8 mg/g) Cr(VI) (457.5 mg/g) MB (584.6 mg/g) RhB (492.8 mg/g) MO (189.4 mg/g) Eosin Y (124.8 mg/g) Phenol (73.1 mg/g) | Crosslinking with glutaraldehyde; electrospraying with freeze-drying | Structure with microchannels to achieve a faster máximum equilibrium adsorption rate. | [96] |
Chitosan/Cellulose Nanofibers | SSA: 315.10 Anionic dye (1428.7 mg/g) | Crosslinking with epichlorohydrin; freeze-drying | Increase surface area and adsorption capacity. | [23] |
Quaternized Chitosan/PVA | SSA: - CO2 capture (4.23 mmol/g) | Crosslinking with PVA and glutaraldehyde; freeze-drying | Quaternary ammonium groups for moisture swing CO2 capture; increase CO2 capture by reducing the adsorption half-time. | [64] |
Chitosan Aerogel coated with Chitosan Hydrogel | SSA: - Oil/Water separation (oil purity 99.8%) | Hydrogel formation; freeze-drying | Superhydrophilicity and superoleophobicity | [97] |
Chitosan/GO/PDA | SSA: - U(VI) (415.9 mg/g) | Electrostatic interactions; freeze-drying | Improve GO recovery and increase U(VI) adsorption due to the PDA functional groups | [98] |
Succinyl Chitosan/Sodium Alginate | SSA: - Oil/Water separation (99% efficiency) | The obtained aerogel was crosslinked with calcium chloride/aluminum chloride, and then with glutaraldehyde; freeze-drying | Improve chitosan water solubility (succinyl chitosan); improved mechanical properties due to the preparation technique | [99] |
Sulfhydril Chitosan/Sodium Alginate | SSA: - Cu(II) (81.15 mg/g) Pb(II) (38.87 mg/g) Cd(II) (38.15 mg/g) MO (57.75 mg/L) MB (51.62 mg/L) RhB (58.65 mg/L) Sudan I (48.37 mg/L) | Crosslinking with glutaraldehyde; freeze-drying | Increase of adsorption capacity for different compounds | [100] |
Chitosan/GO | SSA: 641.6 Oil/Water separation (Oil 12.45 g/g) | Crosslinking with glutaraldehyde; freeze-drying | Decrease water adsorption | [101] |
Chitosan/PDMS/Magnetite | SSA: - Oil/Water separation (Oil 22.38 g/g) | Hydrogel formation; freeze-drying and dip-coating | Increase hydrophobicity; magnetic properties | [102] |
CMCh/GO/PDA | SSA: - Cu(II) (170.3 mg/g) Ni(II) (186.8 mg/g) Pb(II) (312.8 mg/g) | Use of PDA as a crosslinker with the GO and self-assembled with the CMCh; freeze-drying | Increase mechanical resistance and improve recovery of the material; increase water solubility and stability as well as adsorption of pollutants. | [103] |
PROS | CONS |
---|---|
|
|
Aerogel Materials | Preparation Technique | SSA (m2/g) | Pollutant/Application | Ref. |
---|---|---|---|---|
GO/PEI | Simple stirring, freeze-drying | 61.9 | Mercury in natural waters | [133] |
GO/Aminated Lignin | Modified Hummers’ method, sonication, UV-initiation, freeze-drying | 8.1–16.1 | Malachite green (a fishery dye) in wastewater | [128] |
Peanut Shell/GO | Modified Hummers’ method, sonication, freeze-drying | 12.1–64.2 | Norfloxacin (an antibiotic) in wastewater | [20] |
Ag3PO4/GO | Modified Hummers’ method, sonication, freeze-drying | 125.6–169.4 | MB dye in wastewater | [129] |
rGO | Hydrothermal reduction assembly method | 136.7 | Pb(II) ions in wastewater | [121] |
PVA/GO | Crosslinking method, freeze-drying | - | Sr(II) (a radionuclide) in wastewater | [28] |
Chitosan/GO | Hummers’ method, crosslinking method, freeze-drying | 4.85 | 4-NP (an estrogen-mimicking compound) in wastewater | [3] |
Lysine/EDA/GO | Double crosslinking, chemical reduction method | - | MB dye in wastewater | [117] |
SA/Gelatin/GO | “Hydrophilic assembly-sustained release gelation” two-step method | - | MB and CR dyes in wastewater | [141] |
DMPDA/IPEDA/GO | Hydrothermal method, cross-linking, freeze-drying | - | Cu(II) ions in wastewater | [118] |
Amino-Functionalized GO | Acid induction method | 667.4–736.3 | Quinoline in coking wastewater | [140] |
Chitosan/Gelatin/GO | Embedding technique, freeze-drying, dehydrothermal treatment | - | Microcontaminants in drinking water; antibiotics (ofloxacin, ciprofloxacin), Pb(II) ions | [134] |
PB NPs into PVP/rGO | γ-Irradiation | - | Dyes (MB), oils (n-hexadecane), radionuclides (Cs+ ions) in wastewater | [29] |
GO | Modified Hummers’ method, sonication, freeze-drying | 16.9–330.7 | Fe(III) ions in wastewater | [5] |
Chitosan/PDA/GO | modified Hummers’ method, crosslinking, freeze-drying | - | Cr(VI) ions in wastewater | [80] |
N-Doped GO | Hydrothermal self-assembly method, freeze-drying | - | Cr(VI) ions in wastewater | [130] |
Silver Phosphate/GO | Hummers’ method, electro-spraying, freeze-drying | - | RhB and bisphenol A in wastewater | [4] |
rGO-TiO2/SA | Hydrothermal method, freeze-drying | - | Drugs (ibuprofen, sulfamethoxazole) in wastewater | [8] |
rGO/TiO2 | Sonication, hydrothermal method, freeze-drying | 65.0–209.0 | Carbamazepine (a drug) in wastewater | [137] |
GO/QAS | Modified Hummers’ method, “spray-penetration-flocculation” method, freeze-drying | - | Dyes (MB), organic solvents (toluene, n-dodecane, cyclohexane, hexane, petroleum ether, dichloromethane, chloroform), oils (gasoline, soybean oil), bacteria (S. aureus, E. coli) in wastewater | [131] |
N-Doped rGO | Modified Hummers’ method, hydrothermal and thermal annealing methods | 340.0 | Oils, organic solvents in wastewater | [26] |
CoFe2O4 into N-Doped PDA/rGO | Ultrasound, hydrothermal method, freeze-drying | 97.7 | Tetracycline (an antibiotic) in wastewater | [122] |
CoMn2O4 NPs into N-Doped rGO | Hummers’ method, hydrothermal method, freeze-drying | - | Oxytetracycline (an antibiotic) in wastewater | [123] |
GO | Modified Hummers’ method, chemical reduction method | 211.5 | Dyes (MB, Acid Red 88, Orange II) in wastewater | [109] |
GO-MMT/SA | Crosslinking, freeze-drying | 85.2–266.3 | Dyes (MB, RhB) in wastewater | [126] |
rGO/Silica | Modified Hummers’ method, sol-gel method | 391.0–596.0 | Oils (M1180, oil blue N) in wastewater | [125] |
Nickel Alginate/GO | Modified Hummers’ method, ionic gelation method, freeze-drying | 5.1 | MB dye in wastewater | [142] |
Phytic Acid/GO | Modified Hummers’ method, hydrothermal method, freeze-drying | 41.8–258.1 | Uranium in water | [143] |
rGO | Improved Hummers’ method, gelation, freeze-drying | - | Microorganisms in activated sludge and dyes (MB, CR, MO) in wastewater | [144] |
Fe3C NPs into rGO | Hydrothermal synthesis, freeze-drying, high-temperature treatment | 324.8 | MO dye in wastewater | [138] |
GO/Nanocellulose | Modified Hummers’ method, blending, freeze-drying | 18.0–35.0 | MB dye and tetracycline (drug) in wastewater | [145] |
Biochar/rGO | Ultrasonication, hydrothermal reduction, freeze-drying | - | Cr(VI) ions in wastewater | [135] |
GO/Alkali Lignin | Hummers’ method, ultrasonication, lyophilization | 24.8–41.5 | MB dye in wastewater | [146] |
rGO | Modified Hummers’ method, hydrothermal method, freeze-drying | - | Mercury and fluoride in wastewater | [147] |
CMC/rGO | Hydrothermal method | - | Organic solvents (acetone, DMAC, DMF, DMSO, methanol, ethanol) and dyes (RhB) in wastewater | [132] |
Fe3O4 Nanoaggregates/ Cellulose/GO | Improved Hummers’ method, self-assembled gelation | - | Dyes (CR, MB) and metal ions (Cu2+, Pb2+, Cd2+, Cr3+) in wastewater | [148] |
PDA/ PEI/GO | Modified Hummers’ method dopamine self-polymerization, ultrasound, freeze-drying | - | Dyes (MO, Amaranth) and organic solvents (hexane, toluene, dichloromethane, trichloromethane, tetrachloromethane) in wastewater | [136] |
GO/Lignosulfonate | Hummers’ method, sonication, freeze-drying | 74.8 | MB dye in wastewater | [76] |
rGO/ZIF-67 | Modified Hummers’ method, in situ assembly of ZIF-67, freeze-drying | 70.0–491.0 | Dyes (crystal violet and MO) in wastewater | [149] |
Copper Ferrite/rGO | Hummers’ method, hydrothermal method, freeze-drying | 11.4 | RhB dye in wastewater | [139] |
rGO/Montmorillonite | Modified Hummers’ method, sol-gel method, freeze-drying | - | MB dye, Cr(VI) ions, bacteria (S. aureus, E. coli) in wastewater | [124] |
GO, rGO/Nd2O3, rGO/Pr2O3, rGO/Ce2O3 | Hydrothermal method, freeze-drying | 57.3–385.2 | RhB dye in wastewater | [150] |
GO/PEI | Sol-gel method, freeze-drying | 453.4–599.8 | MO and MB dyes in wastewater | [119] |
CMC/rGO | Ultrasonication, crosslinking, freeze-drying reduction | - | MB dye in wastewater | [151] |
Material | Preparation Technique | Precursor/Surface Modification Agent | SSA (m2/g) | Pollutant | Ref. |
---|---|---|---|---|---|
Adsorption of MAHs and PAHs | |||||
SA | Sol-gel process + ambient drying and then 130 °C | NaSi and TMCS | 823 | Naphthalene from WW | [171] |
SA | Sol-gel process + supercritical drying | TMOS, MTMS, and TMES | 112–872 | VOCs from WW | [168] |
SA | Sol-gel process + supercritical drying | TMOS, MTMS, and TMES | 112–812 | BTEX from air | [167] |
SA | Sol-gel process + ambient pressure drying at 60 °C | TEOS | 902–928 | Nitrobenzene, phenol and MB from WW | [172] |
Amine-Functionalized SA | Sol-gel process + drying at 60 °C and then 100 °C | MTMS and APTMS | 72–458 | Benzene and phenol | [170] |
SA/TiO2 | Sol-gel process + supercritical drying | TEOS and TIOT | 320–357 | p-chlorophenol, p-nitrophenol, 4-hydroxybenzoic acid | [173] |
SA/TiO2 | Sol-gel process + oven drying | TBOT | 424–644 | Phenanthrene | [174] |
SA/T-ZnO | Sol-gel process + drying at 60 °C | TEOS and TMCS | 86.8 | Nitrobenzene | [175] |
Carbon-SA | Sol-gel process + ambient pressure oven drying | Cheap water glass | 710–758 | Benzene | [176] |
Adsorption of dyes | |||||
SA | Sol-gel process + oven drying at 60 °C and then 100 °C or supercritical drying | TMOS and APTMS | 191–817 | RL and MB | [170] |
SA | Sol-gel process + ambient pressure oven drying at 70 °C or supercritical drying | TMOS and TEOS | 581–731 | RhB | [177] |
SA | Sol-gel process + ambient pressure drying at 60 °C and then 100 °C | TEOS | 468–855 | MB and RhB | [178] |
SA | Sol-gel process + ambient pressure oven drying at 60 °C and then 180 °C | TEOS | 889 | MB, CV, AO7, and RhB | [169] |
SA | Sol-gel process + ambient pressure drying | TEOS and HMDZ | 629–880 | MB and RhB | [165] |
SA | Sol-gel process + vacuum oven drying at 80 °C | NaSi | 736 | MB and CR | [33] |
SA/TiO2 | Sol-gel process + ambient pressure drying at 70 °C | TIS | 415 | MB | [179] |
SA/TiO2 | Sol-gel process + ambient pressure drying at 60 °C | TiCl4 and TMCS | 605 | MO | [180] |
BiOI/SA | Sono-solvothermal method | BNP and TEOS | 206 | MB, AO7, and RhB | [181] |
Adsorption of heavy metals | |||||
SA | Sol-gel process + oven drying at 60 °C or supercritical drying | MTES, TEOS, and APTMS | 28–759 | Copper and lead | [170] |
Mercapto and Amine-Mercapto-Functionalized SA | Sol-gel process + oven drying at 60 °C and then 100 °C or supercritical drying | TEOS, MTES, MPTMS, and APTMS | Up to 702 | Copper, lead, chromium, cadmium, nickel, and zinc | [182] |
Amines, Urea, and Isocyanurate-Functionalized SA | Sol-gel process + ambient pressure oven drying at 60 °C or supercritical drying | MTES, TEOS, APTMS, AAAPTMS, TTMSI, and UPTMS | 3–1006 | Copper, lead, cadmium, and nickel | [183] |
SA, SA/Fe3O4, SA/Fe3O4/Chitosan | Sol-gel process + ambient pressure drying at 50 °C | TEOS and APTMS | / | Cadmium | [184] |
Carbon-SA | Sol-gel process + supercritical drying | TMOS | 579–978 | Uranium | [185] |
Adsorption of other substances | |||||
SA | Sol-gel process + ambient pressure oven drying at 80 °C and then 200 °C | TMCS | 870 | Oil | [186] |
SA | Sol-gel process + ambient pressure oven drying at 80 °C, then 100 °C and then 180 °C | MTMS | 447–712 | Crude oil | [187] |
Thiophene-Bridged SA | Sol-gel process + ambient pressure drying | TEOS and DVTHP | 834 | Benzene and oil | [188] |
Trimethylsilyloxy-Modified SA | / | / | 729 | Doxorubicin, paclitaxel, diethyl phthalate, and RhB | [21] |
SA/Basalt Fibers Filled into a PEEK Tube | Sol-gel process + drying at 80 °C | APTMS | / | Estrogens | [189] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. https://doi.org/10.3390/molecules26154440
Franco P, Cardea S, Tabernero A, De Marco I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules. 2021; 26(15):4440. https://doi.org/10.3390/molecules26154440
Chicago/Turabian StyleFranco, Paola, Stefano Cardea, Antonio Tabernero, and Iolanda De Marco. 2021. "Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review" Molecules 26, no. 15: 4440. https://doi.org/10.3390/molecules26154440
APA StyleFranco, P., Cardea, S., Tabernero, A., & De Marco, I. (2021). Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules, 26(15), 4440. https://doi.org/10.3390/molecules26154440