Chemical Composition and Cytotoxic Activity of the Essential Oil and Oleoresins of In Vitro Micropropagated Ansellia africana Lindl: A Vulnerable Medicinal Orchid of Africa
Abstract
:1. Introduction
2. Results
2.1. Plant Tissue Culture of A. africana
2.2. Chemical Composition of the Essential Oil and Oleoresins
2.3. PCA Analysis of the Essential Oil and Oleoresins
2.4. The Cytotoxicity of the Essential Oil and Oleoresins
3. Discussion
4. Material and Methods
4.1. Chemicals
4.2. Micropropagation and Material Generation from A. africana
4.3. Extraction
4.4. Analysis of the Essential Oils
4.5. Cytotoxicity Assay
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dias, M.I.; Sousa, M.J.; Alves, R.C.; Ferreira, I.C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crops Prod. 2016, 82, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Saleh-E-In, M.M.; Van Staden, J. Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review. J. Ethnopharmacol. 2018, 220, 294–320. [Google Scholar] [CrossRef] [PubMed]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Penduka, D.; Mthembu, W.; Cele, K.H.; Mosa, R.A.; Zobolo, A.M.; Opoku, A.R. Extracts of Ansellia africana and Platycarpha glomerata exhibit antibacterial activities against some respiratory tract, skin and soft tissue infections implicated bacteria. S. Afr. J. Bot. 2018, 116, 116–122. [Google Scholar] [CrossRef]
- Hossain, M.M. Therapeutic orchids: Traditional uses and recent advances—An overview. Fitoterapia 2011, 82, 102–140. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Van Staden, J. Ansellia africana (Leopard orchid): A medicinal orchid species with untapped reserves of important biomolecules—A mini review. S. Afr. J. Bot. 2016, 106, 181–185. [Google Scholar] [CrossRef]
- Gelfland, M.; Mavi, S.; Drummond, R.B.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia; Mambo Press: Gweru, Zimbabwe, 1985; ISBN 086922350X. [Google Scholar]
- Hutchings, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996; ISBN 0869808931. [Google Scholar]
- Bhattacharyya, P.; Kumar, V.; Van Staden, J. Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. S. Afr. J. Bot. 2017, 108, 294–302. [Google Scholar] [CrossRef]
- Baskaran, P.; Ncube, B.; Van Staden, J. In vitro propagation and secondary product production by Merwilla plumbea (Lindl.) Speta. Plant Growth Regul. 2012, 67, 235–245. [Google Scholar] [CrossRef]
- Giri, L.; Dhyani, P.; Rawat, S.; Bhatt, I.D.; Nandi, S.K.; Rawal, R.S.; Pande, V. In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Ind. Crops Prod. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Kumar, V.; Grúz, J.; Doležal, K.; Van Staden, J. Deciphering the phenolic acid reserves and antioxidant activity within the protocorm like bodies of Ansellia africana: A vulnerable medicinal orchid. Ind. Crops Prod. 2019, 135, 21–29. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085. [Google Scholar] [CrossRef]
- Rocha, L.D.; Monteiro, M.C.; Teodoro, A.J. Anticancer properties of hydroxycinnamic acids—A Review. Cancer Clin. Oncol. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Chinsamy, M.; Finnie, J.F.; Van Staden, J. The ethnobotany of South African medicinal orchids. S. Afr. J. Bot. 2011, 77, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Lalthafamkimi, L.; Bhattacharyya, P.; Bhau, B.S.; Wann, S.B.; Banik, D. Direct organogenesis mediated improvised mass propagation of Pogostemon cablin: A natural reserve of pharmaceutical biomolecules. S. Afr. J. Bot. 2020. [Google Scholar] [CrossRef]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Sood, H.; Chauhan, R.S. Biosynthesis and accumulation of a medicinal compound, Picroside-I, in cultures of Picrorhiza kurroa Royle ex Benth. Plant Cell Tissue Organ Cult. 2010, 100, 113–117. [Google Scholar] [CrossRef]
- Zielińska, S.; Piątczak, E.; Kalemba, D.; Matkowski, A. Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & CA Meyer) O. Kuntze. Plant Cell Tissue Organ Cult. 2011, 107, 161–167. [Google Scholar]
- Tisserat, B.; Vaughn, S.F. Growth, morphogenesis, and essential oil production in Mentha spicata L. plantlets in vitro. Vitro Cell. Dev. Biol.-Plant 2008, 44, 40–50. [Google Scholar] [CrossRef]
- Sudriá, C.; Pinol, M.T.; Palazón, J.; Cusidó, R.M.; Vila, R.; Morales, C.; Bonfill, M.; Canigueral, S. Influence of plant growth regulators on the growth and essential oil content of cultured Lavandula dentata plantlets. Plant Cell Tissue Organ Cult. 1999, 58, 177–184. [Google Scholar] [CrossRef]
- Ali, H.; Khan, M.A.; Kayani, W.K.; Khan, T.; Khan, R.S. Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Ind. Crops Prod. 2018, 121, 418–427. [Google Scholar] [CrossRef]
- Erişen, S.; Kurt-Gür, G.; Servi, H. In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Ind. Crops Prod. 2020, 157, 112892. [Google Scholar] [CrossRef]
- Semnani, K.M.; Akbarzadeh, M.; Changizi, S. Essential oils composition of Stachys byzantina, S. inflata, S. lavandulifolia and S. laxa from Iran. Flavour Fragr. J. 2006, 21, 300–303. [Google Scholar] [CrossRef]
- Öztürk, M.; Kolak, U.; Duru, M.E.; Harmandar, M. GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity. Nat. Prod. Commun. 2009, 4, 1934578X0900400923. [Google Scholar] [CrossRef] [Green Version]
- Umaru, I.J.; Badruddin, F.A.; Umaru, H.A. Phytochemical screening of essential oils and antibacterial activity and antioxidant properties of Barringtonia asiatica (L) leaf extract. Biochem. Res. Int. 2019, 2019, 7143989. [Google Scholar] [CrossRef]
- Luczkiewicz, M.; Jesionek, A.; Kokotkiewicz, A.; Migas, P.; Mardarowicz, M.; Szreniawa-Sztajnert, A.; Zabiegala, B.; Bucinski, A. Production of essential oils from in vitro cultures of Caryopteris species and comparison of their concentrations with in vivo plants. Acta Physiol. Plant. 2015, 37, 58. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jian, S.; Nan, P.; Liu, J.; Zhong, Y. Chemotypical variability of leaf oils in Elephantopus scaber from 12 locations in China. Chem. Nat. Compd. 2005, 41, 491–493. [Google Scholar] [CrossRef]
- Fragnière, C.; Aebischer, J.-N.; Dudler, V.; Sager, F. A short study on the formation of styrene in cinnamon. Mitteilungen Leb. Hyg. 2003, 94, 609–620. [Google Scholar]
- Steele, D.H.; Thornburg, M.J.; Stanley, J.S.; Miller, R.R.; Brooke, R.; Cushman, J.R.; Cruzan, G. Determination of styrene in selected foods. J. Agric. Food Chem. 1994, 42, 1661–1665. [Google Scholar] [CrossRef]
- Huo, X.; Gao, Y.; Yang, N.; Liu, W.; Liu, J. Chemical Composition of the Essential Oil of Herba taxilli. Biotechnology 2008, 2. [Google Scholar]
- Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.; Perichet, C.; Delbecque, C.; Arnaudo, J. Chemical composition of the essential oils from Turkish and Honduras Styrax. Flavour Fragr. J. 2005, 20, 70–73. [Google Scholar] [CrossRef]
- Faridi, P.; Ghasemi, Y.; Mohagheghzadeh, A. Chemical composition of Peganum harmala smoke and volatile oil. J. Essent. Oil Bear. Plants 2013, 16, 469–473. [Google Scholar] [CrossRef]
- Sieniawska, E.; Baj, T.; Kowalski, R.; Skalicka-Wozniak, K.; Glowniak, K. Chemical composition and in vitro antioxidant activity of Mutellina purpurea Thell. flowers essential oil. Rec. Nat. Prod. 2014, 8, 203. [Google Scholar]
- Yeon, B.; Sowndhararajan, K.; Jung, J.; Jhoo, J.; Kim, S. Comparison of Volatile Composition of Supercritical Carbon Dioxide Extract from Rhizomes of Korean Medicinal Plant ‘Chun-Kung’ (Cnidium Officinale Makino) by Direct-And SPME-GC/MS. Int. J. Pharm. Pharm. Sci. 2014, 6, 355–358. [Google Scholar]
- Boik, J. Natural Compounds in Cancer Therapy; Oregon Medical Press: Princeton, MN, USA, 2001; ISBN 0964828014. [Google Scholar]
- Kim, D.H.; Park, M.H.; Choi, Y.J.; Chung, K.W.; Park, C.H.; Jang, E.J.; An, H.J.; Yu, B.P.; Chung, H.Y. Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PLoS ONE 2013, 8, e59316. [Google Scholar] [CrossRef]
- Vats, S.; Gupta, T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol. Mol. Biol. Plants 2017, 23, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, B.; Malmfors, T. The cytotoxicity of some organic solvents. Environ. Res. 1974, 7, 183–192. [Google Scholar] [CrossRef]
- Cruzan, G.; Carlson, G.P.; Johnson, K.A.; Andrews, L.S.; Banton, M.I.; Bevan, C.; Cushman, J.R. Styrene respiratory tract toxicity and mouse lung tumors are mediated by CYP2F-generated metabolites. Regul. Toxicol. Pharmacol. 2002, 35, 308–319. [Google Scholar] [CrossRef] [Green Version]
- De Meester, C.; Poncelet, F.; Roberfroid, M.; Rondelet, J.; Mercier, M. Mutagenicity of styrene and styrene oxide. Mutat. Res. Mol. Mech. Mutagen. 1977, 56, 147–152. [Google Scholar] [CrossRef]
- Grayson, M.H.; Gill, S.S. Effect of in vitro exposure to styrene, styrene oxide, and other structurally related compounds on murine cell-mediated immunity. Immunopharmacology 1986, 11, 165–173. [Google Scholar] [CrossRef]
- Leavens, T.L.; Farris, G.M.; James, R.A.; Shah, R.; Wong, V.A.; Marshall, M.W.; Bond, J.A. Genotoxicity and cytotoxicity in male B6C3F1 mice following exposure to mixtures of 1, 3-butadiene and styrene. Environ. Mol. Mutagen. 1997, 29, 335–345. [Google Scholar] [CrossRef]
- Brocca, A.; Virzì, G.M.; de Cal, M.; Cantaluppi, V.; Ronco, C. Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purif. 2013, 36, 219–225. [Google Scholar] [CrossRef]
- Chang, M.C.; Chang, H.H.; Chan, C.P.; Yeung, S.Y.; Hsien, H.C.; Lin, B.R.; Yeh, C.Y.; Tseng, W.Y.; Tseng, S.K.; Jeng, J.-H. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS ONE 2014, 9, e114446. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. Inhibitory effects of p-cresol and p-hydroxy anisole dimers on expression of the cyclooxygenase-2 gene and lipopolysaccharide-stimulated activation of nuclear factor-κB in RAW264. 7 Cells. Vivo 2014, 28, 719–725. [Google Scholar]
- Shen, Y.; West, C.; Hutchins, S.R. In vitro cytotoxicity of aromatic aerobic biotransformation products in bluegill sunfish BF-2 cells. Ecotoxicol. Environ. Saf. 2000, 45, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, H.; Ma, Q.; Shen, S.; Das, U.N. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids Health Dis. 2010, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokoohinia, Y.; Bahrami, G.; Taherabadi, F.; Jaffari, F.; Hosseinzadeh, L. Apoptosis cell death effect of linoleic acid from Nigella sativa on human ovary cancer cells through mitochondrial intrinsic pathway. J. Rep. Pharm. Sci. 2018, 7, 20–26. [Google Scholar]
- Trimborn, M.; Iwig, M.; Glanz, D.; Gruner, M.; Glaesser, D. Linoleic acid cytotoxicity to bovine lens epithelial cells: Influence of albumin on linoleic acid uptake and cytotoxicity. Ophthalmic Res. 2000, 32, 87–93. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, M.; Ma, D.W.L. Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Rawat, A.K.; Sammi, S.R.; Devi, U.; Singh, M.; Gautam, S.; Yadav, R.K.; Rawat, J.K.; Singh, L.; Ansari, M.N. Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget 2017, 8, 70049. [Google Scholar] [CrossRef] [Green Version]
- Scheim, D.E. Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: Concentration thresholds and implications for clinical efficacy. Lipids Health Dis. 2009, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Botzki, A.; Rigden, D.J.; Braun, S.; Nukui, M.; Salmen, S.; Hoechstetter, J.; Bernhardt, G.; Dove, S.; Jedrzejas, M.J.; Buschauer, A. l-Ascorbic Acid 6-Hexadecanoate, a potent hyaluronidase inhibitor X-ray structure and molecular modeling of enzyme-inhibitor complexes. J. Biol. Chem. 2004, 279, 45990–45997. [Google Scholar] [CrossRef] [Green Version]
- Sethupathy, S.; Vigneshwari, L.; Valliammai, A.; Balamurugan, K.; Pandian, S.K. L-Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv. 2017, 7, 23392–23406. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Uzair, B.; Hameed, A.; Khayam, A.U.; Irum, S.; Shahzad, K.; Khan, B.A.; Ismail, M.; Ahmad, N.; Abbasi, R. In Vitro Cytotoxicity of Secondary Metabolites Extracted from Pseudomonas aeruginosa BS25 Strain. Arab. J. Sci. Eng. 2020, 45, 81–94. [Google Scholar] [CrossRef]
- Begum, S.M.F.M.; Priya, S.; Sundararajan, R.; Hemalatha, S. Novel anticancerous compounds from Sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. J. Adv. Pharm. Educ. Res. 2017, 7, 273–277. [Google Scholar]
- Orrenius, S.; Nicotera, P.; Zhivotovsky, B. Cell death mechanisms and their implications in toxicology. Toxicol. Sci. 2011, 119, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Doležal, K.; Popa, I.; Kryštof, V.; Spíchal, L.; Fojtíková, M.; Holub, J.; Lenobel, R.; Schmülling, T.; Strnad, M. Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg. Med. Chem. 2006, 14, 875–884. [Google Scholar] [CrossRef]
- Doležal, K.; Popa, I.; Hauserová, E.; Spíchal, L.; Chakrabarty, K.; Novák, O.; Kryštof, V.; Voller, J.; Holub, J.; Strnad, M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg. Med. Chem. 2007, 15, 3737–3747. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Vasudevan, R.; Van Staden, J. In vitro asymbiotic seed germination and seedling growth of Ansellia africana Lindl. Sci. Hortic. 2010, 123, 496–504. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Omokhua, A.G.; McGaw, L.J.; Chukwujekwu, J.C.; Finnie, J.F.; Van Staden, J. A comparison of the antimicrobial activity and in vitro toxicity of a medicinally useful biotype of invasive Chromolaena odorata (Asteraceae) with a biotype not used in traditional medicine. S. Afr. J. Bot. 2017, 108, 200–208. [Google Scholar] [CrossRef]
- Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 1990, 82, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
Composition (%) | ||||
---|---|---|---|---|
Compounds | RI | Essential Oil | Acetone Ext. | EtOAc Ext. |
Aliphatic hydrocarbons | ||||
(1) 2,4,4-Trimethyl-1-hexene | 799 | 0.50 | ||
(2) 2-Hexene, 2,5,5-trimethyl | 816 | 2.12 | ||
(3) 2-Hexene, 3,4,4-trimethyl | 816 | 0.40 | ||
(4) 2,3-Dimethyl-2-heptene | 878 | 0.46 | ||
(5) Cyclopentane, 1,2,3,4,5-pentamethyl | 905 | 0.82 | ||
(6) Nonane, 4,5-dimethyl- | 986 | 0.30 | ||
(7) Octane, 5-ethyl-2-methyl | 986 | 0.63 | ||
(8) n-Decane | 1015 | 0.70 | ||
(9) 1-Undecene, 4-methyl | 1140 | 0.63 | ||
(10) Dodecane | 1214 | 0.55 | 0.60 | |
(11) Cyclohexane, (1,2,2-trimethylbutyl) | 1228 | 1.75 | ||
(12) Dodecane, 2,6,11-trimethyl- | 1320 | 1.53 | ||
(13) Tetradecane | 1413 | 6.60 | 3.83 | |
(14) Pentadecane | 1512 | 0.42 | ||
(15) Hexadecane, 4-methyl | 1647 | 0.35 | ||
(16) Heptadecane | 1711 | 1.17 | 16.48 | 9.40 |
(17) Heptadecane, 7-methyl | 1746 | 0.21 | ||
(18) Octadecane, 4-methyl | 1846 | 0.40 | ||
(19) Nonadecane, 2,3-dimethyl | 1980 | 0.22 | ||
(20) Eicosane | 2009 | 3.89 | 26.34 | 6.40 |
(21) Heneicosane | 2109 | 9.45 | ||
(22) 2-methyltetracosane | 2442 | 1.00 | ||
Aliphatic alcohols | ||||
(23) 2-Pentanone,4-hydroxy-4-methyl | 845 | 11.13 | 4.79 | |
(24) cis-4-Hexen-1-ol | 868 | 0.30 | ||
(25) 4,4,6-Trimethyl-cyclohex-2-en-1-ol | 1085 | 0.35 | ||
(26) Spiro[2.4]heptane-5-methanol, 5-hydroxy | 1208 | 0.49 | ||
(27) Pentadecanol | 1755 | 1.12 | ||
(28) 2-Pentadecyn-1-ol | 1772 | 3.77 | ||
(29) Nonadecanol | 2153 | 1.57 | 0.82 | |
(30) Lignoceric alcohol | 2650 | 1.15 | ||
Aliphatic aldehyde | ||||
(31) n-Hexanal | 806 | 0.88 | ||
(32) trans-2-Decenal | 1212 | 0.49 | ||
(33) Mesityl oxide | 739 | 2.34 | ||
Aliphatic acids and esters | ||||
(34) n-Butyl acetate | 785 | - | 21.13 | 14.34 |
(35) 4-Heptenoic acid, 3,3-dimethyl-6-oxo-methyl ester | 1242 | 0.49 | ||
(36) Myristic acid | 1769 | 0.46 | ||
(37) Pentadecanoic acid | 1869 | 1.31 | ||
(38) Palmitoleic acid | 1976 | 1.42 | ||
(39) Succinic acid, 3,7-dimethyloct-6-en-1-yl pentyl ester | 2165 | 0.68 | ||
(40) Linoleic acid | 2183 | 18.42 | 2.17 | |
(41) Linolenic acid | 2191 | 10.98 | ||
(42) l-Ascorbyl 2,6-Dipalmitate | 4765 | 11.50 | 0.46 | 1.28 |
Aromatic hydrocarbons | ||||
(43) Toluene | 794 | 2.54 | ||
(44) Ethylbenzene | 893 | 0.51 | 0.47 | 1.34 |
(45) p-Xylene | 907 | 1.53 | 2.28 | 5.24 |
(46) o-Xylene | 907 | 0.70 | ||
(47) 1-Triazene, 1-methyl-3-(4-methylphenyl) | 907 | 0.65 | ||
(48) Mesitylene | 1020 | 0.34 | 0.20 | 2.98 |
(49) o-Ethyltoluene | 1006 | 0.78 | ||
(50) m-Propyltoluene | 1106 | 0.62 | ||
(51) p-Diethylbenzene | 1106 | 1.07 | ||
(52) Benzene, 1-ethyl-2,4-dimethyl | 1119 | 0.93 | ||
(53) Benzene, 1-ethyl-3,5-dimethyl- | 1119 | 1.15 | ||
(54) Durene | 1133 | 1.84 | ||
Aromatic alcohols | ||||
(55) p-Cresol | 1014 | 9.99 | ||
(56) Erythro-1-Phenylpropane-1,2-diol | 1317 | 2.54 | ||
Aromatic aldehydes | ||||
(57) Styrene | 883 | 4.64 | 22.20 | |
(58) Benzaldehyde | 982 | 0.39 | ||
Aromatic ketones | ||||
(59) Hyacinthin | 1081 | 1.26 | ||
(60) Benzyl methyl ketone | 1128 | 1.64 | ||
Aromatic acids and esters | ||||
(61) 2-Ethylbutyric acid, 3-methylbenzyl ester | 1606 | 0.51 | ||
Aromatic acids and esters | ||||
(62) Phthalic acid, diisobutyl ester | 1908 | 1.03 | ||
(63) Cyclohexanecarboxylic acid, 4-nitrophenyl ester | 2016 | 0.40 | ||
(64) Phthalic acid, dibutyl ester | 2037 | 0.79 | 0.44 | |
(65) Cyclopropanecarboxylic acid, 1-(phenylmethyl)-, 2,6-bis(1,1-dimethylethyl)-4-methylphenyl ester | 2775 | 0.37 | ||
Monoterpenoides | ||||
(66) Eucalyptol | 1059 | 1.38 | ||
(67) β-Linalool | 1082 | 2.26 | ||
(68) 1,7,7-Trimethyl-2-vinylbicyclo[2.2.1]hept-2-ene | 1111 | 0.68 | ||
(69) p-Menth-1-en-4-ol | 1137 | 0.31 | ||
(70) α-Terpineol | 1143 | 1.11 | ||
(71) Dihydroedulan I | 1342 | 0.31 | ||
(72) Dihydroactinidiolide | 1426 | 0.72 | ||
(73) Trans-5-Isopropyl-6,7-epoxy-8-hydroxy-8-methyl | 1465 | 0.34 | ||
Oxygenated norisoprenoids | ||||
(74) Theaspirane | 1370 | 0.38 | ||
Sesquiterpenoides | ||||
(75) Cadalene | 1706 | 0.66 | ||
(76) 3-Isopropyl-6,7-dimethyltricyclo [4.4.0.0(2,8)] decane-9,10-diol | 1710 | 0.52 | ||
(77) Hexahydrofarnesyl acetone | 1754 | 0.30 | 0.30 | |
Azulene molecules | ||||
(78) Ethanone, 1-(1,3a,4,5,6,7-hexahydro-4-hydroxy-3,8-dimethyl-5-azulenyl) | 1758 | 0.36 | ||
Diterpenoids | ||||
(79) Phytol | 2045 | 0.78 | ||
(80) Phytol, acetate | 2168 | 1.16 | ||
(81) Cyclotetrasiloxane, octamethyl | 827 | 0.35 | 0.91 | |
(82) Cyclopentasiloxane, decamethyl | 1034 | 0.94 | 2.97 | |
(83) 2,5-Pyrrolidinedione, 3-ethyl-1,3-dimethyl | 1326 | 0.44 | ||
(84) 1,8 (2H,5H)-Naphthalenedione, hexahydro-8a-methyl-, cis | 1517 | 0.46 | ||
Total (%) | 100 | 100 | 100 | |
Total (number of compounds) | 55 | 26 | 26 |
Extract | Extraction Yield (mg/100g) | Cytotoxicity Using Vero Cell Line a (LC50 μg/mL) |
---|---|---|
Essential oil | 10 | 52.53 ± 0.69 |
Ethyl acetate extract | 5.3 | 60.05 ± 1.46 |
Acetone extract | 3770 | 25.64 ± 0.78 |
Doxorubicin hydrochloride | 3.46 ± 0.18 or (5.97 μM/mL) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh-E-In, M.M.; Bhattacharyya, P.; Van Staden, J. Chemical Composition and Cytotoxic Activity of the Essential Oil and Oleoresins of In Vitro Micropropagated Ansellia africana Lindl: A Vulnerable Medicinal Orchid of Africa. Molecules 2021, 26, 4556. https://doi.org/10.3390/molecules26154556
Saleh-E-In MM, Bhattacharyya P, Van Staden J. Chemical Composition and Cytotoxic Activity of the Essential Oil and Oleoresins of In Vitro Micropropagated Ansellia africana Lindl: A Vulnerable Medicinal Orchid of Africa. Molecules. 2021; 26(15):4556. https://doi.org/10.3390/molecules26154556
Chicago/Turabian StyleSaleh-E-In, Md. Moshfekus, Paromik Bhattacharyya, and Johannes Van Staden. 2021. "Chemical Composition and Cytotoxic Activity of the Essential Oil and Oleoresins of In Vitro Micropropagated Ansellia africana Lindl: A Vulnerable Medicinal Orchid of Africa" Molecules 26, no. 15: 4556. https://doi.org/10.3390/molecules26154556
APA StyleSaleh-E-In, M. M., Bhattacharyya, P., & Van Staden, J. (2021). Chemical Composition and Cytotoxic Activity of the Essential Oil and Oleoresins of In Vitro Micropropagated Ansellia africana Lindl: A Vulnerable Medicinal Orchid of Africa. Molecules, 26(15), 4556. https://doi.org/10.3390/molecules26154556