Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist’s Toolbox
Abstract
:1. Introduction
2. Degradation Pathways for Nerve Agents
3. GC-MS as an Important Technique in the Analysis of Nerve Agent Degradation Products
4. Silylation Methods
5. Methylation Methods
6. Additional, Alternate Derivatization Methods
7. Outlook and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
Abbreviations
AChE | acetylcholinesterase |
BSTFA | N,O-bis(trimethylsilyl)trifluoroacetamide |
BChE | butyrylcholinesterase |
BA | benzylic acid |
CDC | Centers for Disease Control and Prevention |
CMPA | cyclohexyl methylphosphonic acid (GF acid) |
CVX | Chinese VX; O-Butyl-S-[2-(diethylamino)ethyl] methylphosphonothioate |
CWA | chemical warfare agent |
DETP | diethyl phosphate |
DM | diazomethane |
DMDTP | diethyl dithiophosphate |
DSTL | Defence Science and Technology Laboratory (UK) |
EA-2192 | S-2-(N,N-diisopropylaminoethyl)methylphosphonothiolate |
EMPA | ethyl methylphosphonic acid (VX acid) |
EPA | ethylphosphonic acid |
FOI | Swedish Defence Research Agency |
FPD | flame photometric detection |
FSC | Forensic Science Center |
GA | Tabun |
GB | Sarin |
GD | Soman |
GF | Cyclosarin |
HS-SPME | headspace solid-phase microextraction |
ICPMS | inductively coupled plasma mass spectrometry |
IMPA | isopropyl methylphosphonic acid (GB acid) |
IBMPA | isobutyl methylphosphonic acid (VR acid) |
LNLL | Lawrence Livermore National Laboratory |
LOD | limit of detection |
MPA | methylphosphonic acid |
MTBSTFA | N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide |
NDRE | National Defence Research Establishment in Sweden |
NICI/GC-MS | negative ion chemical ionization gas chromatography |
nBPA | n-butylphosphonic acid |
nPPA | n-propylphosphonic acid |
OPCW | Organisation for the Prohibition of Chemical Weapons |
OPNA | organophosphorus-based nerve agents |
PFBBr | pentafluorobenzyl bromide |
PMPA | pinacolyl methylphosphonic acid (GD acid) |
PT | proficiency test (OPCW) |
PTC | phase transfer catalysis |
REA | S-2-(N,N-diethylaminoethyl)methylphosphonothiolate |
SIM | single ion monitoring |
TBDMSCl | tert-butyldimethylsilyl chloride |
TMCS | trimethylchlorosilane |
TMO | trimethyloxonium tetrafluoroborate |
TNO | Netherlands Organisation for Applied Scientific Research |
TMS-DM | trimethylsilyldiazomethane |
USAMRICD | US Army Medical Research Institute of Chemical Defense |
VR | Russian VX; O-isobutyl-S-[2-(Diethylamino)ethyl] methylphosphonothioate |
VR-SA | N,N-diethylamino ethanesulfonic acid |
VX | O-ethyl-S-[2-(Diisopropylamino)ethyl] methylphosphonothioate |
VX-SA | N,N-diisopropylamino ethanesulfonic acid |
References
- Ganesan, K.; Raza, S.K.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010, 2, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Szinicz, L. History of chemical and biological warfare agents. Toxicology 2005, 214, 167–181. [Google Scholar] [CrossRef]
- Friboulet, A.; Rieger, F.; Goudou, D.; Amitai, G.; Taylor, P. Interaction of an organophosphate with a peripheral site on acetylcholinesterase. Biochemistry 1990, 29, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.M.; Kan, R.K.; McDonough, J.H. In vivo cholinesterase inhibitory specificity of organophosphorus nerve agents. Chem. Biol. Interact. 2005, 157, 293–303. [Google Scholar] [CrossRef]
- Haines, D.D.; Fox, S.C. Acute and long-term impact of chemical weapons: Lessons from the Iran-Iraq war. Forensic Sci. Rev. 2014, 26, 97–114. [Google Scholar] [PubMed]
- Dolgin, E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013, 19, 1194–1195. [Google Scholar] [CrossRef]
- Okumura, T.; Hisaoka, T.; Yamada, A.; Naito, T.; Isonuma, H.; Okumura, S.; Miura, K.; Sakurada, M.; Maekawa, H.; Ishimatsu, S.; et al. The Tokyo subway sarin attack-lessons learned. Toxicol. Appl. Pharmacol. 2005, 207, 471–476. [Google Scholar] [CrossRef]
- Kloske, M.; Witkiewicz, Z. Novichoks—The A group of organophosphorus chemical warfare agents. Chemosphere 2019, 221, 672–682. [Google Scholar] [CrossRef]
- Stone, R. U.K. attack puts nerve agent in the spotlight. Science 2018, 359, 1314–1315. [Google Scholar] [CrossRef]
- Howes, L. Novichok compound poisoned Navalny. Chem. Eng. News 2020, 98, 5. [Google Scholar] [CrossRef]
- Höjer-Holmgren, K.; Valdez, C.A.; Magnusson, R.; Vu, A.K.; Lindberg, S.; Williams, A.M.; Alcaraz, A.; Åstot, C.; Hok, S.; Norlin, R. Part 1. Tracing Russian VX to it synthetic routes by multivariate statistics of chemical attribution signatures. Talanta 2018, 186, 586–596. [Google Scholar] [CrossRef]
- Jansson, D.; Wiklund Lindstrom, S.; Norlin, R.; Hok, S.; Valdez, C.A.; Williams, A.M.; Alcaraz, A.; Nilsson, C.; Åstot, C. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta 2018, 186, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Vu, A.K.; Jansson, D.; Mayer, B.P.; Hok, S.; Norlin, R.; Valdez, C.A.; Nilsson, C.; Åstot, C.; Alcaraz, A. Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS. Talanta 2018, 186, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Kalisiak, J.; Ralph, E.C.; Zhang, J.; Cashman, J.R. Amidine-oximes: Reactivators for organophosphate exposure. J. Med. Chem. 2011, 54, 3319–3330. [Google Scholar] [CrossRef]
- Sit, R.K.; Radic, Z.; Gerardi, V.; Zhang, L.; Garcia, E.; Katalinic, M.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; et al. New Structural Scaffolds for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterase. J. Biol. Chem. 2011, 286, 19422–19430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalisiak, J.; Ralph, E.C.; Cashman, J.R. Nonquaternary Reactivators for Organophosphate-Inhibited Cholinesterases. J. Med. Chem. 2012, 55, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Malfatti, M.A.; Enright, H.A.; Be, N.A.; Kuhn, E.A.; Hok, S.; McNerney, M.W.; Lao, V.; Nguyen, T.H.; Lightstone, F.C.; Carpenter, T.S.; et al. The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem. Biol. Interact. 2017, 277, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Bennion, B.J.; Be, N.A.; McNerney, M.W.; Lao, V.; Carlson, E.M.; Valdez, C.A.; Malfatti, M.A.; Enright, H.A.; Nguyen, T.H.; Lightstone, F.C.; et al. Predicting a Drug’s Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data. J. Phys. Chem. B 2017, 121, 5228–5237. [Google Scholar] [CrossRef] [Green Version]
- Stone, R. How to defeat a nerve agent. Science 2018, 359, 23. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, K.; Mahle, J.J.; Wang, H.; Syed, Z.H.; Atilgan, A.; Chen, Y.; Xin, J.H.; Islamoglu, T.; Petereson, G.W.; et al. Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. J. Am. Chem. Soc. 2019, 141, 20016–20021. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Meshot, E.R.; Buchsbaum, S.F.; Herbert, M.; Zhu, R.; Kulikov, O.; McDonald, B.; Bui, N.T.N.; Jue, M.L.; et al. Autonomously Responsive Membranes for Chemical Warfare Protection. Adv. Mat. 2020, 30, 2000258. [Google Scholar] [CrossRef]
- Yang, Y.C.; Baker, J.A.; Ward, J.R. Decontamination of Chemical Warfare Agents. Chem. Rev. 1992, 92, 1729–1743. [Google Scholar] [CrossRef]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Yang, Y.C. Chemical Detoxification of Nerve Agent VX. Acc. Chem. Res. 1999, 32, 109–115. [Google Scholar] [CrossRef]
- Yang, Y.C.; Szafraniec, L.L.; Beaudry, W.T.; Bunton, C.A. Perhydrolysis of nerve agent VX. J. Org. Chem. 1993, 58, 6964–6965. [Google Scholar] [CrossRef]
- Yang, Y.C.; Berg, F.J.; Szafraniec, L.L.; Beaudry, W.T.; Bunton, C.A.; Kumar, A. Peroxyhydrolysis of nerve agent VX and model compounds and related nucleophilic reactions. J. Chem. Soc. Perkin Trans. 2 1997, 607–613. [Google Scholar] [CrossRef]
- Norman, P.R.; Tate, A.; Rich, P. Enhanced hydrolysis of a phosphonate ester by mono-aquo metal cation complexes. Inorg. Chim. Acta 1988, 145, 211–217. [Google Scholar] [CrossRef]
- Hay, R.W.; Govan, N. The [Cu(tmen) (OH) (OH2)]+ promoted hydrolysis of 2,4-dinitrophenyl diethyl phosphate and O-isopropyl methylphosphonofluoridate (Sarin) (tmen = N,N,N′,N′-tetramethyl-1,2-diaminoethane). Polyhedron 1998, 17, 2079–2085. [Google Scholar] [CrossRef]
- Hay, R.W.; Govan, N. Kinetic and mechanistic studies of the reaction of a range of bases and metal-hydroxo complexes with the phosphonate ester 2,4-dinitrophenyl ethyl methylphosphonate in aqueous solution. Transit. Met. Chem. 1998, 23, 133–138. [Google Scholar] [CrossRef]
- Lewis, R.E.; Neverov, A.A.; Brown, R.S. Mechanistic studies of La3+ and Zn2+-catalyzed methanolysis of O-ethyl O-aryl methylphosphonate esters. An effective solvolytic method for the catalytic destruction of phosphonate CW simulants. Org. Biomol. Chem. 2005, 3, 4082–4088. [Google Scholar] [CrossRef]
- Melnychuk, S.A.; Neverov, A.A.; Brown, R.S. Catalytic Decomposition of Simulants for Chemical Warfare V Agents: Highly Efficient Catalysis of the Methanolysis of Phosphonothioate Esters. Angew. Chem. Int. Ed. 2006, 45, 1767–1770. [Google Scholar] [CrossRef]
- Kuo, L.Y.; Adint, T.T.; Akagi, A.E.; Zakharov, L. Degradation of a VX Analogue: First Organometallic Reagent to Promote Phosphonothioate Hydrolysis Through Selective P−S Bond Scission. Organometallics 2008, 27, 2560–2564. [Google Scholar] [CrossRef]
- Mayer, B.P.; Valdez, C.A.; Hok, S.; Chinn, S.C.; Hart, B.R. 31P-edited diffusion-ordered 1H-NMR spectroscopy for the spectral isolation and identification of organophosphorus compounds related to chemical weapons agents and their degradation products. Anal. Chem. 2012, 84, 10478–10484. [Google Scholar] [CrossRef]
- Kennedy, D.J.; Mayer, B.P.; Baker, S.E.; Valdez, C.A. Kinetics and speciation of paraoxon hydrolysis by zinc(II)–azamacrocyclic catalysts. Inorg. Chim. Acta 2015, 436, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.; Demek, M.M.; Rosenblatt, D.H. Notes—Reaction of Paraoxon with Hydrogen Peroxide in Dilute Aqueous Solution. J. Org. Chem. 1956, 21, 796–797. [Google Scholar] [CrossRef]
- Wagner, G.W.; Yang, Y.C. Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents. Ind. Eng. Chem. Res. 2002, 41, 1925–1928. [Google Scholar] [CrossRef]
- Hopkins, F.B.; Gravett, M.R.; Self, A.J.; Wang, M.; Hoe-Chee, C.; Sim, N.L.H.; Jones, J.T.A.; Timperley, C.M.; Riches, J.R. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). Anal. Bioanal. Chem. 2014, 406, 5111–5119. [Google Scholar] [CrossRef]
- Templeton, M.K.; Weinberg, W.H. Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides. J. Am. Chem. Soc. 1985, 107, 97–108. [Google Scholar] [CrossRef]
- Henderson, M.A.; Jin, T.; White, J.M. A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (.alpha.-Fe2O3) and silicon dioxide. J. Phys. Chem. 1986, 90, 4607–4611. [Google Scholar] [CrossRef]
- Li, Y.X.; Klabunde, K.J. Nano-scale metal oxide particles as chemical reagents. Destructive adsorption of a chemical agent simulant, dimethyl methylphosphonate, on heat-treated magnesium oxide. Langmuir 1991, 7, 1388–1393. [Google Scholar] [CrossRef]
- Li, Y.X.; Schlup, J.R.; Klabunde, K.J. Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxide. Langmuir 1991, 7, 1394–1399. [Google Scholar] [CrossRef]
- Islamoglu, T.; Ortuno, M.A.; Proussaloglou, E.; Howarth, A.J.; Vermeulen, N.A.; Atilgan, A.; Asiri, A.; Cramer, C.J.; Farha, O.K. Presence versus proximity: The role of pendant amines in the catalytic hydrolysis of a nerve agent simulant. Angew. Chem. Int. Ed. 2018, 57, 1949–1953. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Jang, J.K.; Kim, S.-Y.; Ha, J.-W.; Moon, D.; Kang, I.-N.; Bae, Y.-S.; Kim, S.; Hwang, D.-H. Synthesis of a Zr-based metal-organic framework with spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg. Chem. 2017, 56, 12098–12101. [Google Scholar] [CrossRef]
- Stein, S. Mas Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification. Anal. Chem. 2012, 84, 7274–7282. [Google Scholar] [CrossRef] [PubMed]
- Mallard, G.W. AMDIS in the Chemical Weapons Convention. Anal. Bioanal. Chem. 2014, 406, 5075–5086. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Hok, S.; Alcaraz, A. Assessing the reliability of the NIST library during routine GC-MS analyses: Structure and spectral data corroboration for 5,5-diphenyl-1,3-dioxolan-4-one during a recent OPCW proficiency test. J. Mass Spectrom. 2018, 53, 419–422. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Hok, S.; Hart, B.R. Analysis of chemical warfare agents by gas chromatography-mass spectrometry: Methods for their direct detection and derivatization approaches for the analysis of their degradation products. Rev. Anal. Chem. 2018, 37, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Witkiewicz, Z.; Neffe, S. Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. TrAC Trend. Anal. Chem. 2020, 130, 115960. [Google Scholar] [CrossRef]
- Witkiewicz, Z.; Neffe, S.; Sliwka, E.; Quagliano, J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit. Rev. Anal. Chem. 2018, 48, 337–371. [Google Scholar] [CrossRef]
- Blum, M.-M.; Murty, M.R.V.S. Analytical chemistry and the Chemical Weapons Convention. Anal. Bioanal. Chem. 2014, 406, 5067–5069. [Google Scholar] [CrossRef] [Green Version]
- Üzümcü, A. The Chemical Weapons Convention—Disarmament, science and technology. Anal. Bioanal. Chem. 2014, 406, 5071–5073. [Google Scholar] [CrossRef] [PubMed]
- Murty, M.R.V.S.; Prasada Raju, N.; Prabhakar, S.; Vairamani, M. Chemical ionization mass spectral analysis of pinacolyl alcohol and development of derivatization method using p-tolyl isocyanate. Anal. Methods 2010, 2, 1599–1605. [Google Scholar] [CrossRef]
- Konopski, L.; Liu, P.; Wuryani, W.; Sliwakowski, M. OPCW Proficiency Test: A Practical Approach Also for Interlaboratory Test on Detection and Identification of Pesticides in Environmental Matrices. Sci. World J. 2014, 542357. [Google Scholar] [CrossRef] [PubMed]
- Valdez, C.A.; Corzett, T.H.; Leif, R.N.; Fisher, C.L.; Hok, S.; Koester, C.J.; Alcaraz, A. Acylation as a successful derivatization strategy for the analysis of pinacolyl alcohol in a glycerol-rich matrix by GC-MS: Application during an OPCW Proficiency Test. Anal. Bioanal. Chem. 2021, 413, 3145–3151. [Google Scholar] [CrossRef] [PubMed]
- Halket, J.M.; Zaikin, V.G. Review: Derivatization in mass spectrometry—1. Silylation. Eur. J. Mass Spectrom. 2003, 9, 1–21. [Google Scholar] [CrossRef]
- Poole, C.F. Alkylsilyl derivatives for gas chromatography. J. Chromatogr. A 2013, 1296, 2–14. [Google Scholar] [CrossRef]
- Junker, J.; Chong, I.; Kamp, F.; Steiner, H.; Giera, M.; Müller, C.; Bracher, F. Comparison of Strategies for the Determination of Sterol Sulfates via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol. Molecules 2019, 24, 2353. [Google Scholar] [CrossRef] [Green Version]
- Fine, D.D.; Breidenbach, G.P.; Price, T.L.; Hutchins, S.R. Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry. J. Chromatogr. A 2003, 1017, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Schummer, C.; Delhomme, O.; Appenzeller, B.M.R.; Wennig, R.; Millet, M. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 2009, 77, 1473–1482. [Google Scholar] [CrossRef]
- Garland, S.; Goheen, S.; Donald, P.; McDonald, L.; Campbell, J. Application of Derivatization Gas Chromatography/Mass Spectrometry for the Identification and Quantitation of Pinitol in Plant Roots. Anal. Lett. 2009, 42, 2096–2105. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Hart, B.R. Rapid and mild silylation of β-amino alcohols at room temperature mediated by N-methylimidazole for enhanced detectability by gas chromatography/electron ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 2217–2221. [Google Scholar] [CrossRef]
- Albo, R.L.F.; Valdez, C.A.; Leif, R.N.; Mulcahy, H.A.; Koester, C. Derivatization of pinacolyl alcohol with phenyldimethylchlorosilane for enhanced detection by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 5231–5234. [Google Scholar] [CrossRef]
- Greene, T.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1991; pp. 68–87. [Google Scholar]
- Davies, G.S.; Higginbotham, L.C.L.; Tremeer, E.J.; Brown, C.; Treadgold, R.C. Protection of hydroxy groups by silylation: Use in peptide synthesis and as lipophilicity modifiers for peptides. J. Chem. Soc. Perkin Trans. 1 1992, 3043–3048. [Google Scholar] [CrossRef]
- Purdon, J.; Pagotto, J.; Miller, R. Preparation, stability and quantitative-analysis by gas-chromatography and gas-chromatography electron-impact mass-spectrometry of tert-butyldimethylsilyl derivatives of some alkylphosphonic and alkyl methylphosphonic acids. J. Chromatogr. 1989, 475, 261–272. [Google Scholar] [CrossRef]
- Richardson, D.D.; Caruso, J.A. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection. Anal. Bioanal. Chem. 2007, 388, 809–823. [Google Scholar] [CrossRef]
- Subramaniam, R.; Åstot, C.; Nilsson, C.; Ostin, A. Combination of solid phase extraction and in vial solid phase derivatization using a strong anion exchange disk for the determination of nerve agent markers. J. Chromatogr. A 2009, 1216, 8452–8459. [Google Scholar] [CrossRef]
- Subramaniam, R.; Åstot, C.; Juhlin, L.; Nilsson, C.; Ostin, A. Determination of S-2-(N,N-diisopropylaminoethyl)- and S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis. J. Chromatogr. A 2012, 1229, 86–94. [Google Scholar] [CrossRef]
- Pardasani, D.; Purohit, A.; Mazumder, A.; Dubey, D.K. Gas chromatography-mass spectrometric analysis of trimethylsilyl derivatives of toxic hydrolyzed products of nerve agent VX and its analogues for verification of Chemical Weapons Convention. Anal. Methods 2010, 2, 661–667. [Google Scholar] [CrossRef]
- Black, R.M.; Muir, B. Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J. Chromatogr. A 2003, 1000, 253–281. [Google Scholar] [CrossRef]
- Creasy, W.R.; Stuff, J.R.; Williams, B.; Morrissey, K.; Mays, J.; Duevel, R.; Durst, H.D. Identification of chemical-weapons-related compounds in decontamination solutions and other matrices by multiple chromatographic techniques. J. Chromatogr. A 1997, 774, 253–263. [Google Scholar] [CrossRef]
- Kim, H.; Cho, Y.; Lee, B.S.; Choi, I.S. In-situ derivatization and headspace solid-phase microextraction for gas chromatography-mass spectrometry analysis of alkyl methylphosphonic acids following solid-phase extraction using thin film. J. Chromatogr. A 2019, 1599, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.R. Handbook of Analytical Derivatization Reactions; John Wiley & Sons, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Halket, J.M.; Zaikin, V.G. Derivatization in Mass Spectrometry—3. Alkylation (Arylation). Eur. J. Mass Spectrom. 2004, 10, 1–19. [Google Scholar] [CrossRef]
- Green, S.P.; Wheelhouse, K.M.; Payne, A.D.; Hallett, J.P.; Miller, P.W.; Bull, J.A. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org. Process. Res. Dev. 2020, 24, 67–84. [Google Scholar] [CrossRef]
- Kadoum, A.M. Extraction and cleanup methods to determine malathion and its hydrolytic products in stored grains by gas-liquid chromatography. J. Agric. Food Chem. 1969, 17, 1178–1180. [Google Scholar] [CrossRef]
- Verweij, A.; Degenhardt, C.E.A.M.; Boter, H.L. The occurrence and determination of PCH3-containing compounds in surface water. Chemosphere 1979, 8, 115–124. [Google Scholar] [CrossRef]
- Van’t Erve, T.J.; Rautianen, R.H.; Robertson, L.W.; Luthe, G. Trimethylsilyldiazomethane: A safe non-explosive, cost effective and less-toxic reagent for phenol derivatization in GC applications. Environ. Int. 2010, 36, 835–884. [Google Scholar] [CrossRef] [Green Version]
- Pagliano, E. Versatile derivatization for GC-MS and LC-MS: Alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis. Anal. Bioanal. Chem. 2020, 412, 1963–1971. [Google Scholar] [CrossRef]
- Driskell, W.; Shih, M.; Needham, L.; Barr, D. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography tandem mass spectrometry. J. Anal. Toxicol. 2002, 26, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Barr, J.R.; Driskell, W.J.; Aston, L.S.; Martinez, R.A. Quantitation of Metabolites of the Nerve Agents Sarin, Soman, Cyclohexylsarin, VX and Russian VX in Human Urine Using Isotope-Dilution Gas Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2004, 28, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Amphaisri, K.; Palit, M.; Mallard, G. Thermally assisted methylation and subsequent silylation of scheduled acids of chemical weapon convention for on-site analysis and its comparison with the other methods of methylation. J. Chromatogr. A 2011, 1218, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Byrd, G.D.; Paule, R.C.; Sander, L.C.; Sniegoski, L.T.; White, V.E.; Bausum, H.T. Determination of 3-Quinuclidinyl Benzilate (QNB) and Its Major Metabolites in Urine by Isotope Dilution Gas Chromatography/Mass Spectrometry. J. Anal. Toxicol. 1992, 16, 182–187. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Salazar, E.P.; Vu, A.K. Trocylation of 3-quinuclidinol, a key marker for the chemical warfare agent BZ, for its enhanced detection at low levels in complex soil matrices by Electron Ionization Gas Chromatography-Mass Spectrometry. Rapid Commun. Mass Spectrom. 2021, 35, e9123. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Alcaraz, A. Effective methylation and identification of phosphonic acids relevant to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection by gas chromatography-mass spectrometry. Anal. Chim. Acta 2016, 933, 134–143. [Google Scholar] [CrossRef]
- Valdez, C.A.; Marchioretto, M.K.; Leif, R.N.; Hok, S. Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously via methylation employing trimethyloxonium tetrafluoroborate for their detection and identification in soils by EI-GC-MS and GC-FPD. Forensic Sci. Int. 2018, 288, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Valdez, C.A.; Leif, R.N.; Hok, S.; Vu, A.K.; Salazar, E.P.; Alcaraz, A. Methylation Protocol for the Retrospective Detection of Isopropyl-, Pinacolyl- and Cyclohexylmethylphosphonic Acids, Indicative Markers for the Nerve Agents Sarin, Soman and Cyclosarin, at Low Levels in Soils Using EI-GC-MS. Sci. Total Environ. 2019, 683, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Rein, K.; Goicoechea-Pappas, M.; Anklekar, T.V.; Hart, G.C.; Smith, G.A.; Gawley, R.E. Chiral dipole-stabilized anions: Experiment and theory in benzylic and allylic systems. Stereoselective deprotonations, pyramidal inversions, and stereoselective alkylations of lithiated (tetrahydroisoquinolyl)oxazolines. J. Am. Chem. Soc. 1989, 111, 2211–2217. [Google Scholar] [CrossRef]
- Trzoss, L.; Xu, J.; Lacoske, M.H.; Theodorakis, E.A. Synthesis of the tetracyclic core of Illicium sesquiterpenes using an organocatalyzed asymmetric Robinson annulation. Beilstein J. Org. Chem. 2013, 9, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Milite, C.; Feoli, A.; Horton, J.R.; Rescigno, D.; Cipriano, A.; Pisapia, V.; Viviano, M.; Pepe, G.; Amendola, G.; Novellino, E.; et al. Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. J. Med. Chem. 2019, 62, 2666–2689. [Google Scholar] [CrossRef]
- Raber, D.J.; Gariano Jr., P.; Brod, A.O.; Gariano, A.; Guida, W.C.; Guida, A.R.; Herbst, M.D. Esterification of carboxylic acids with trialkyloxonium salts. J. Org. Chem. 1979, 44, 1149–1154. [Google Scholar] [CrossRef]
- Hansen, D.W., Jr.; Pilipauskas, D. Chemoselective N-ethylation of Boc amino acids without racemization. J. Org. Chem. 1985, 50, 945–950. [Google Scholar] [CrossRef]
- Hung, K.; Condakes, M.L.; Morikawa, T.; Maimome, T.J. Oxidative Entry into the Illicium Sesquiterpenes: Enantiospecific Synthesis of (+)-Pseudoanisatin. J. Am. Chem. Soc. 2016, 138, 16616–16619. [Google Scholar] [CrossRef] [Green Version]
- Shih, M.L.; Smith, J.R.; McMonagle, J.D.; Dolzine, T.W.; Gresham, V.C. Detection of Metabolites of Toxic Alkylmethylphosphonates in Biological Samples. Biol. Mass Spectrom. 1991, 20, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, S.-Å.; Hammarström, L.-G.; Henriksson, L.; Lakso, H.-Å. Trace Determination of Alkyl Methylphosphonic Acids in Environmental and Biological Samples Using Gas Chromatography/Negative-ion Chemical Ionization Mass Spectrometry and Tandem Mass Spectrometry. J. Mass Spectrom. 1995, 30, 1133–1134. [Google Scholar] [CrossRef]
- Miki, A.; Katagi, M.; Tsuchihashi, H.; Yamashita, M. Gas chromatographic determination and gas chromatographic-mass spectrometric determination of dialkyl phopphates via extractive pentafluorobenzylation sing a polymeric phase-transfer catalyst. J. Chromatogr. A 1995, 718, 383–389. [Google Scholar] [CrossRef]
- Polhuijs, M.; Langenberg, J.P.; Benschop, H.P. New method for retrospective detection of exposure to organophosphorus anticholinesterases: Application to alleged sarin victims of Japanese terrorists. Toxicol. Appl. Pharmacol. 1997, 146, 156–161. [Google Scholar] [CrossRef]
- Miki, A.; Katagi, M.; Tsuchihashi, H.; Yamashita, M. Determination of alkylmethylphosphonic acids, the main metabolites of organophosphorus nerve agents, in biofluids by Gas Chromatography-Mass Spectrometry and Liquid-Liquid-Solid-Phase-Transfer-Catalyzed Pentafluorobenzylation. J. Anal. Toxicol. 1999, 23, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Riches, J.; Morton, I.; Read, R.W.; Black, R.M. The trace analysis of alkyl alkylphosphonic acids in urine using gas chromatography-ion trap negative ion tandem mass spectrometry. J. Chromatogr. B 2005, 816, 251–258. [Google Scholar] [CrossRef]
- Subramaniam, R.; Åstot, C.; Juhlin, L.; Nilsson, C.; Ostin, A. Direct Derivatization and Rapid GC-MS Screening of Nerve Agent Markers in Aqueous Samples. Anal. Chem. 2010, 82, 7452–7459. [Google Scholar] [CrossRef]
- Nyholm, J.R.; Gustafsson, T.; Ostin, A. Structural determination of nerve agent markers using gas chromatography mass spectrometry after derivatization with 3-pyridyldiazomethane. J. Mass Spectrom. 2013, 48, 813–822. [Google Scholar] [CrossRef]
- Subramaniam, R.; Ostin, A.; Nilsson, C.; Åstot, C. Direct derivatization and gas chromatography–tandem mass spectrometry identification of nerve agent biomarkers in urine samples. J. Chromatogr. B 2013, 928, 98–105. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, J.; Yan, L.; Guo, L.; Wu, B.; Li, C.; Feng, J.; Liu, Q.; Xie, J. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization. Anal. Bioanal. Chem. 2014, 406, 52113–55220. [Google Scholar] [CrossRef] [PubMed]
Derivatizing Agent | Analytes | Matrix | GC-MS Method | Method’s Performance | Ref. |
---|---|---|---|---|---|
MTBSTFA, MTBSTFA (with 1% TBDMSCl) and TBDMSCl:imidazole (1:2.5) in DMF | MPA, ethylphosphonic acid (EPA), n-propylphosphonic acid (nPPA), n-butylphosphonic (nBPA), EMPA, IMPA and PMPA | Aqueous sample | GC-MS/ICPMS | Quantitation down to 500 pg by GC-FPD. Quantitation for EI-GC-MS (300–500 pg (full scan mode) and 30–60 pg (SIM)). | [65] |
MTBSTFA (with 1% TBDMSCl) | EMPA, IMPA, EDPA, IBMPA, PMPA, CMPA and MPA | Aqueous (river water) and soil | GC-MS/ICPMS | GC run total run time = 10 min. LOD < 5 pg | [66] |
BSTFA | Nine phosphonic acids that included OPNA-related acids MPA, IMPA and PMPA. | Aqueous (OPCW PT) | GC-MS-SIM | LOD~0.14 ppb (SIM). Detection of IMPA, MPA, PMPA in aqueous OPCW PT sample (19th) present in the range 5–8 μg·mL−1. | [67] |
BSTFA (with 1% TBDMSCl) | EA-2192, REA | Organic (ACN) | GC-MS-SIM | LOD = 10 ng·mL−1 (SIM); 100 ng·mL−1 (full scan mode). | [68] |
BSTFA | EMPA, IMPA, CMPA and PMPA | Organic (DCM) | EI-GC-MS | LOD = 10–20 pg·mL−1. Detection of PMPA in glycerol-rich matrix OPCW PT sample (35th) present at a 5 μg·mL−1. | [69] |
DM | Sarin, Soman, Tabun, Cyclosarin and VX | Urine | GC-MS-MS (Isotope dilution). | LOD < 4 μg·mL−1, with the exception of Tabun acid for which the LOD was determined to be < 20 μg·mL−1 in urine. | [80] |
DM | IMPA, PMPA, CMPA, EMPA, IBMPA | Urine | GC-MS-MS (Isotope dilution). | LOD < 1 μg·L−1. | [81] |
DM and TMPAH (TAM) followed by BSTFA | EMPA, PMPA, MPA, EPA and BA | Various organic solvents | EI-GC-MS and GC-FPD | Silylation followed TAM to obtain yet another set of derivatives. LOD (TMAPH) < 0.5 ng. | [82] |
TMO·BF4 | EMPA, CMPA and PMPA | Organic (DCM). | EI-GC-MS | All three acids detected when spiked in fatty acid-rich matrix from OPCW PT (38th). | [85] |
TMO·BF4 | EMPA, CMPA, PMPA, VX-SA and VR-SA | Soils (Ottawa sand, Nebraska, and Virginia Type A). | EI-GC-MS | All five acids detected when spiked in all three soils at a 10 μg·g−1 concentration. | [86] |
TMO·BF4 | EMPA, CMPA and PMPA | Soils (Ottawa and Baker sands, Nebraska, Virginia Type A, and Georgia soils and silt). | EI-GC-MS | All three acids detected when spiked in all six soils at a 10 μg·g−1 concentration. PMPA detected in soil matrix from OPCW PT (44th) present at a 5 μg·g−1 concentration. | [87] |
PFBBr | EMPA, IMPA, BMPA, PMPA and MPA | Serum, urine, aqueous and soil. | NICI/GC-MS and NICI/GC-MS-MS | Low femtograms levels detected. | [95] |
PFBBr w/PTC | DMP, DEP, DMTP, DETP, DMDTP and DEDTP | River water and urine | GC-MS coupled to Flame Ionization and Electron Capture detection | Five PTCs were evaluated 45 °Cfor thiophosphates 90 °C for non-thiophosphate | [96] |
Fluoride Regeneration | Sarin from BChE | Blood from Japan Subway attack victims | SIM-GC-MS and GC-MS | Sarin concentration detected < 4.1 ng·mL−1 of plasma | [97] |
PFBBr w/PTC | EMPA, IMPA and PMPA | Urine, serum, and saliva | EI-GC-MS andNICI/GC-MS | Detection limits of 50 ng·mL−1 (full scan mode), 2.5–10 ng·mL−1 (SIM mode), and 60 pg·mL−1 for NICI/GC-MS mode. | [98] |
PFBBr | IMPA, IBMPA, PMPA, CMPA and EMPA | Urine sample | NICI/GC-MS | SPE on urine sample, followed by GC-MS analysis, LOD = 0.1 ng·mL−1 for all acids except for EMPA (0.5 ng·mL−1). | [99] |
1-(diazomethyl)-3,5-bis(trifluoromethyl)benzene | PMPA, 1-methylpentyl-MPA, 4-methylpentyl-MPA and MPA | Spiked Aqueous OPCW PT (19th) sample. | NICI/GC-MS; EI-GC-MS | LOD = 5–10 ng·mL−1) using NICI-SIM; 100 ng·mL−1using (full scan mode. | [100] |
3-pyridyldiazomethane | EMPA, IMPA, BMPA, IBMPA, PMPA and others | Aqueous OPCW PT (19th) sample. | EI-GC-MS; CI-GC-MS (+/– mode). | MPA (at 5 μg·mL−1) and PMPA (at 6 μg·mL−1) in OPCW sample. | [101] |
1-(diazomethyl)-3,5-bis(trifluoromethyl)benzene | EMPA, IMPA, CMPA, PMPA and MPA | Urine (OPCW Biomedical Sample) | NICI/GC-MS-MS | LOD = 0.5–1 ng·mL−1. | [102] |
PFBBr | EMPA, IMPA, IBMPA and PMPA | Urine | NICI/GC-MS | LOD = 0.02 ng·mL−1 (using 0.2 mL urine) | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdez, C.A.; Leif, R.N. Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist’s Toolbox. Molecules 2021, 26, 4631. https://doi.org/10.3390/molecules26154631
Valdez CA, Leif RN. Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist’s Toolbox. Molecules. 2021; 26(15):4631. https://doi.org/10.3390/molecules26154631
Chicago/Turabian StyleValdez, Carlos A., and Roald N. Leif. 2021. "Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist’s Toolbox" Molecules 26, no. 15: 4631. https://doi.org/10.3390/molecules26154631
APA StyleValdez, C. A., & Leif, R. N. (2021). Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist’s Toolbox. Molecules, 26(15), 4631. https://doi.org/10.3390/molecules26154631