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Abstract: In recent years, nanocarbon materials have attracted the interest of researchers due to
their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced
thermal stability and mechanical properties compared with traditional flame retardant composites.
In this article, the unique structural features of nanocarbon-based materials and their use in flame
retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism
of nanocarbon materials is described. The main discussions include material components such as
graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and
film–matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their
modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant
in composites, but also play an important role in many aspects such as mechanical reinforcement.
Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-
retardant polymeric materials are briefly discussed.

Keywords: graphene; carbon nanotubes; fullerene; flame retardant

1. Introduction

The use of carbon materials has a long history. Many types of carbon materials
have been produced, from cheap graphite to expensive diamond, as well as carbon black,
which is commonly used in the rubber industry. The development history of nano-scale
carbon materials is relatively short, but they have exhibited excellent properties to attract
the research community. Whenever a new nanocarbon material is found, it introduces
revolutionary changes to the field of materials science and technology. In 1985 [1], fullerenes
were first discovered. Fullerene is a kind of 0-D nanocarbon material with free-radical
trapping properties. In 1991 [2], a 1-D tubular carbon nanomaterial called carbon nanotubes
was discovered. In 2004 [3], graphene, a 2-D layered nanomaterial of a single atom in
thickness, was discovered and became relevant due to its excellent properties. All of
these materials can be regarded as allotropes formed by a large number of carbon six-
membered rings [4]. In addition, there are other nanocarbon materials, such as carbon black
and expandable graphite. Both have been used to prepare nanocomposites with strong
mechanical properties, increased thermal stability, thermal conductivity, and electrical
conductivity and flame retardancy [5–8].

Polymer materials are widely used in various fields because of their excellent proper-
ties. As an aspect to highlight, they are basically prepared by polymerization of organic
compounds, so they usually have high flammability, which increases the risk of fire during
their lifetime. Consequently, most of the polymer materials need to add flame retardants
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during the preparation cycle. Most of the traditional flame retardants are required to
be added in higher amounts to achieve optimal flame retardancy properties in the basic
polymer. This fact increases the cost of the resulting polymer materials and also reduces
their mechanical properties. In addition, halogenated flame retardants, typically employed
due to their high flame retardant efficiency, introduce safety concerns, leading to their
being catalogued as a prohibited product by the European Union. In accordance with this,
the preparation of a novel flame-retardant material with high performance, a low load
in dosing, increased safety, and decreased environmental impact has become an urgent
problem. An exploration of nanocarbons, as the most optimal fit to cover the mentioned
conditions, has led the research community to explore innovative ideas for the preparation
of a new and efficient flame retardant.

Flame retardants in polymer materials mainly finish or block the combustion chain
reaction in various ways. Generally speaking, the combustion process requires fuel, oxy-
gen, and an energy source. Flame-retardant materials usually affect one or more of the
mentioned three contributors. There exist two basic mechanisms to explain the flame
retardant property, as illustrated in Figure 1. The first is the mechanism of the gas phase
flame retardant that is related to the large number of active free radicals produced during
polymer matrix combustion. These free radicals are necessary for the combustion chain
reaction as well. Some flame retardants can capture free radicals, leading to the cutting off
of the combustion chain reaction. Other flame retardants can produce inert gases, such as
NH3, when they are decomposed. This fact permits us to dilute the oxygen and active free
radicals, leading to a delay in the development of a flame. The second is the part of the
flame retardant that can catalyze the formation of the carbon layer and strengthen it. The
carbon layer formed on the substrate can block the contact of heat and oxygen with the
underlying matrix material and reduce the diffusion of active free radicals so as to improve
the flame retardancy. Most of the carbon nanomaterials can enhance the carbon layer and
catalyze the formation of carbon, while others, such as fullerenes, also have the ability to
capture free radicals [9].
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With plenty of emerging studies on nano carbon materials in flame retardant materials,
more and more nanosized carbon-based materials have been found to improve the flame
retardancy of polymers. However, in this review, we mainly focus on the applications of
graphene, carbon nanotubes, fullerene, expandable graphite, carbon black, nano carbon dia-
mond, and their nanohybrids in flame-retardant polymer-based materials. Considering the
application scope, nanocarbon materials are considered, among other things, for enhancing
mechanical, thermal, and electrical properties. In relation to the manufacturing processes,
insights are provided in relation to the preparation of multifunctional flame-retardant
nanocomposites. Finally, the development opportunities and challenges of nanocarbon
materials in the field of flame-retardant polymer materials are briefly reviewed.
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2. Graphene
2.1. Synergistic Flame Retardancy of Graphene

Graphene has high thermal stability properties together with physical barrier func-
tions. These characteristics make the graphene have flame retardancy properties to a certain
extent. Pristine graphene cannot make a polymer matrix reach proper standard levels of
flame retardancy [10]. Consequently, it is a common strategy to use graphene as a synergist
in conventional flame retardant systems. We summarize the synergistic flame retardancy
of graphene and its modified products in Table 1.

In recent studies, 2 wt% of graphene and 2 wt% of molybdenum disulfide (MoS2) were
added to an ethylene vinyl acetate (EVA) matrix as a flame retardant synergist of aluminum
hydroxide. As a consequence, the amount of aluminum hydroxide could be reduced to
36% to reach the UL-94 V-0 level. However, the EVA composite only added aluminum
hydroxide and MoS2 can only reach the V-2 level. In this sense, graphene improves the
dispersion of MoS2 in the matrix, leading to an enhancement in the flame retardancy
properties [11]. According to the different amounts of graphene added in the intumescent
flame retardant system, different mechanisms of action should be considered. After adding
0.5 wt% graphene, the peak heat release rate of a PP/IFR sample decreased by 73 kw/m2

compared with the sample without graphene. This result proved that 0.5 wt% graphene
shows a better flame retardant synergistic effect. When increasing the amount of graphene,
the flame retardant performance of the subject composite reduces because of the increasing
viscosity of the polymer at melt that hinders the formation of the expanded carbon layer [12].
In another direction, montmorillonite (MMT) is a kind of inorganic nanomaterial with
excellent thermal stability. It has attracted much attention as an inorganic flame retardant
synergist. MMT tends to agglomerate in polymer matrices, which not only weakens the
flame retardant effect, but also has a negative influence on the mechanical properties in
the matrix material. The limiting oxygen index of composites prepared by polyimide
aerogels with 5 wt% graphene, 10 wt% MMT, and 5 wt% graphene/10 wt% MMT was 46%,
45.4%, and 55%, respectively. The combination of graphene oxide (GO) and MMT showed
excellent synergistic dispersion along the matrix, leading to a significant improvement
compared with montmorillonite alone [13].

Graphene, as a synergist, can be used together with a variety of traditional flame
retardant materials, including layered double hydroxide (LDH) and 9,10-dihydro-9-oxa-10-
phosphaphenan-threne-10-oxide (DOPO). It is to be considered that LDH has difficulties
forming homogeneous products with epoxy resin. The flame retardant property of the
epoxy resin composite can be improved by adding graphene to ameliorate the dispersion
of the layered double hydroxide. Through the synergistic dispersion of graphene and LDH,
the viscosity at melt is increased to inhibit the spread of a flame during the matrix combus-
tion process. The THR of the composite can be reduced from 33.4 KJ/m2 to 24.6 KJ/m2

by adding 2.5 wt% graphene and 2.5 wt% LDH, respectively. The THR value was lower
than with the addition of GNS (27.8 KJ/m2) or LDH (25.7 KJ/m2) alone at the same ad-
dition level, 5 wt%. The results show that LDH and graphene have a better synergistic
flame retardant effect. The peak heat release rate of LDH/DOPO/EP nanocomposites
was reduced by 46% compared with that of neat EP at the loading of 2.5 wt% DOPO and
2.5 wt% graphene, respectively. The THR of ER, ER/GNS 5, ER/DOPO 5, and ER/GNS
2.5/DOPO 2.5 composites was 72.5 MJ/m2, 66.6 MJ/m2, 53.1 MJ/m2, and 48.1 MJ/m2,
respectively. Therefore, DOPO and graphene have a synergistic flame retardant effect
in epoxy resin systems [14]. Guan et al. [15] combined graphene nanosheets modified
by a silane coupling agent (m-GNPs), spherical alumina, and magnesium hydroxide to
prepare flame-retardant and thermally conductive epoxy resin composites. Achieving a
high thermal conductivity requires us to add significant concentrations of alumina. This
leads to an increase in the epoxy resin’s viscosity. Using 7% m-GNPs instead of the same
amount of alumina can not only reduce the processing difficulty of epoxy resin, but also
form a three-dimensional thermal conductivity framework with spherical alumina, which
greatly improves the thermal conductivity. In the same direction, graphene and magne-
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sium hydroxide can form a synergistic flame retardant as well. The epoxy resin composite
with 68% alumina, 7% graphene nanosheets, and 5% magnesium hydroxide has a thermal
conductivity of 2.2 W/(MK), a limiting oxygen index of 39%, and a V-0 rating of UL-94.
In contrast, the epoxy composites with only spherical alumina failed in the UL-94 vertical
burning test. The peak heat release rate decreased by 54% compared with neat EP, showing
the excellent properties of graphene as a kind of nanocarbon material.

Nowadays, polylactic acid (PLA), as a kind of degradable polymer material, has
become attractive because of its sustainability (mainly it avoids environmental deteriora-
tion and does not require many petroleum resources). However, polylactic acid is highly
flammable and produces serious dropping during combustion. Improving the flammability
requires us to add a phosphorus-based flame retardant into the PLA matrix in relatively
large quantities at a sufficient level to reduce the mechanical properties. When 0.5 wt%
graphene was added into a foamed polylactic acid composite containing a 15 wt% phos-
phorus flame retardant, the LOI increased to 29.2% and reached the V-0 level of UL-94.
The LOI of PLA with a 15 wt% intumescent flame retardant is 27.9%. This proves the
synergistic effect of a small amount of graphene in an intumescent flame retardant system.
The addition of graphene not only improves the flame retardancy of PLA, but also reduces
the effect of the intumescent flame retardant and maintains the cellular structure of the
foamed PLA composite [16].

The flame retardant synergistic effect of original graphene is limited. This is an im-
portant drawback that typically produces difficulties with meeting the flame retardant
demand in most application scenarios. Nonetheless and as previously pointed out, an
improved performance flame retardant can be prepared by combining graphene with other
materials. Leng et al. [17] prepared a α-zirconium phosphate (α-ZrP)/cerium phosphate
(CPO)/graphene oxide (GO) nanocomposite (ZCG) flame retardant. As shown in Figure 2,
α-ZRP links graphene oxide and cerium oxide through hydrogen bonds to form a syner-
gistic effect, which improves the dispersion of the flame retardant. Compared with the
composites with 10 wt% APP, the LOI of the composites increased from 28% to 36% after
replacing the same amount of app with 5 wt% ZCG. At the same time, without adding
graphene oxide, the limiting oxygen index of the composites is lower than 36%, which fully
proves the synergistic effect of graphene on flame retardancy.
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Through the condensation reaction of oxygen-containing functional groups on graphene
oxide and amino groups on ammonium polyphosphate (APP), the final product was de-
fined as I-G2, which is used for improving the flame retardancy of PBT. The addition of
graphene enhances the carbonization performance of ammonium polyphosphate and im-
proves the flame retardancy and mechanical properties. PBT/30 wt% IFR composites failed
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in the vertical combustion test. Surprisingly, PBT/20 wt% IFR/0.3 wt% I-G2 composites
reached the V-0 rating of UL-94 tes. These results indicate that graphene oxide has obvious
synergistic flame retardancy [18].

Bio-based polyphosphate (BPPT) is a new type of environmentally friendly phospho-
rus with promising flame retardant properties. Flame-retardant polylactic acid composites
were prepared by using polyethyleneimine-modified graphene oxide (M-GO) as a syner-
gist. When 2.4 wt% bio-based polyphosphate and 0.6 wt% M-GO were added, the LOI
reached 36% and a UL-94 V-0 rating was obtained. Compared with the PLA composite
with 3 wt% BPPT, the LOI of the composite with M-GO increased from 33.6% to 36.0%.
The droplet behavior of the composites was also restrained in the vertical combustion
experiment. If the loading amount of modified graphene is increased on this basis, the
flame retardancy will deteriorate. This may be due to the fact that, in this flame retardant
system, bio-based polyphosphate mainly plays the role of the gas phase flame retardant. If
the added amount of graphene is too large, the free radical quenching performance of the
bio-based polyphosphate will be affected. Furthermore, the addition of graphene permits
us to enhance the mechanical properties and flame retardancy simultaneously [19].

Yu et al. [20] prepared water-based graphene oxide nanoribbon/montmorillonite/
polyethylene glycol hybrid (PMG) networks by a low-temperature, evaporation-induced
assembly process. This kind of material can achieve a bionic design similar to nacre, and it
can be made into PMG nanocomposite paper materials with high mechanical properties
and flame retardancy. The results show that the material has no obvious curl deformation
after combustion, and the morphology of the carbon residue has no cracks. A PMG layer of
about 200 nm was prepared on the surface of a polyurethane foam by dip coating. Adding
10–30 wt% PMG material could make the composites achieve better flame retardancy
and the peak heat release rate decreased by 46%. As seen in Figure 3, the carbon residue
of the polyurethane foam coated with PMG material was increased greatly after a cone
calorimetry test, and the structure of the polyurethane foam remained after combustion.
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formation of a stable interconnected structure and a compact char surface [20].
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Transition metal elements have the ability of catalytic carbonization. It is very useful to
combine a transition metal with graphene to form a highly efficient flame-retardant syner-
gist that integrates catalytic carbonization and a physical barrier. Chen et al. [21] prepared
an iron-graphene flame retardant synergist by adding iron powder and hydrochloric acid
in a graphene oxide suspension, and used it in flame-retardant thermoplastic polyurethane
materials with melamine pentaerythritol phosphate (MPP) as the flame retardant. The
composite with only 0.25% iron–graphene (IG) obtained excellent flame retardancy with a
limiting oxygen index of 32.75% and a UL-94 grade of V-0, and the peak heat release rate
decreased from 2192.6 kW/m2 of pure TPU to 187.2 kW/m2. The limiting oxygen index
(LOI) of the composites without IG was 30.5%, and these composites only reached the V-1
level in the vertical combustion test. SEM images of the carbon residue surface show that
the carbon residue surface of the samples with the flame retardant was very smooth and
compact, without cracks and holes. During combustion, the high-quality carbon layer can
protect the underlying matrix material from barrier heat and combustible gas and achieves
excellent flame retardant performance.

Natural fiber-reinforced polypropylene has excellent properties, but its high flamma-
bility limits its application. The question of how to enhance its flame retardancy is a very
important subject. Although APP, magnesium hydroxide (MH), and other traditional flame
retardants can provide better flame retardancy, their addition amount is usually large.
By adding exfoliated graphene nanosheets as a flame retardant synergist, the flame retar-
dant performance of traditional flame retardants can be improved. Graphene nanosheets
achieve flame retardancy and a synergistic effect mainly through a physical barrier and the
promotion of carbonization [22].

Ionic liquid is a kind of solvent and material in line with the concept of green chemistry.
It has high thermal stability and low flammability. It is a compound with great potential
to become an excellent flame retardant. Wan et al. [23] used the silane coupling agent
KH550 and the ionic liquid 1-butyl-3-methylimidazole hexafluorophosphate (PF6-ILs)
to modify the surface of graphene oxide (GO). By adding 0.1 wt% PF6, ILs@GO and
14.9 wt% MPP were found to have the best flame retardant properties. The results show
that the total heat release (THR) and total smoke release (TSP) of the EP/MPP/PF6-ILs@GO
composite decreased by 24.3% and 53.4%, respectively. In this study, the silane coupling
agent was very important to the surface modification of graphene oxide. Nano carbon
materials are usually easy to agglomerate. The agglomeration of graphene oxide can be
inhibited by modifying it with a silane coupling agent, which improves the dispersion and
compatibility of nano carbon materials in epoxy resin. This can improve the properties of
flame retardant composites.

Table 1. Synergistic effect of graphene-based nanomaterials and other flame retardant additives on the flame retardant
properties of polymer composites.

Polymer Loading of Graphene Nanomaterials Type and Loading of Other
Flame Retardant Additives Highlights Ref

EVA 2 wt% ATH 36 wt%, MoS2 2 wt% PHRR decreased from 1815 kW/m2 to 377 kW/m2 [11]
PP 0.5 wt% IFR2 4.5 wt% PHRR decreased from 1025 kW/m2 to 140 kW/m2 [12]
PI 5 wt% MMT 10 wt% UL-94: V-0 rating, LOI: 55% [13]
EP 2.5 wt% DOPO 2.5 wt% PHRR reduced from 1194 kW/m2 to 396 kW/m2 [14]
EP 7 wt% Al2O3 68 wt%, MH 5 wt%, UL-94: V-0 rating, LOI: 39% [15]

PLA 0.5 wt% phosphorus-containing flame
retardant 15 wt% UL-94: V-0 rating, LOI: 29.2% [16]

PBT 0.3 wt% IFR 20 wt% UL-94: V-0 rating, LOI: 25.4% [18]
TPU 0.25 wt% MPP 14.75 wt% PHRR decreased from 2192.6 kW/m2 to 187.2 kW/m2 [21]

2.2. Inorganic Hybrid Graphene

Graphene is usually used as a flame retardant synergist in composites, but it is difficult
to use it as a flame retardant alone. However, based on its excellent properties, it would
be useful to prepare a highly efficient flame retardant by the modification of graphene.
Liu et al. [24] successfully prepared copper-doped graphene and applied it to a flame
retardant epoxy resin. According to Figure 4, after adding 3 wt% copper-doped graphene,
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the LOI of the EP composites increased to 26.4% compared with neat EP. On the other
hand, the peak heat release rate of the composites decreased by about 34%, and the smoke
suppression performance also improved. In addition, the thermomechanical properties of
the composites also changed.
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Reduced graphene oxide/aluminum hypophosphite (AHP/RGO) hybrid materials
were prepared by a one-pot method to improve the flame retardancy of aluminum hy-
pophosphite. The cone calorimetric test results of a PBT composite with 20% AHP/RGO
show that the PBT/20 wt% AHP/RGO composites can not only reduce the heat release
rate but also reduce the release of CO and toxic gas when the material is burned compared
with the addition of aluminum hypophosphite alone [25].

In another direction, black phosphorene (BP) has a unique two-dimensional structure
and is a phosphorus-containing compound that has the potential to become a highly effi-
cient flame retardant. However, the mechanical properties of the polymer will deteriorate
when black phosphorene is added to the polymer matrix. Ren et al. [26] added a mixture of
black phosphorene and graphene into a high-pressure nano homogenizer to prepare black
phosphorene/graphene/waterborne polyurethane (WPU) composite materials. It was
shown that a phosphorus–carbon bond formed between the edge of the black phosphorene
nanosheet and the graphene nanosheet. The results show not only an improvement in
the flame retardancy of the composite materials, but also a 7-fold increase in the Young’s
modulus of the BP/G/WPU compared with the BP/WPU.

The flame retardancy of fabrics and fiber materials has become an important research
topic with interesting implications. Most flame retardants added to the fiber will affect
the fiber’s color and reduce the mechanical properties. Xiao et al. [27] prepared nanofiber
composites with red phosphorus hybrid graphene as the core and nylon as the shell by
electrospinning. In this way, the flame retardant composite fiber can maintain its color
and improve the flame retardant and mechanical properties. When red phosphorus is
burned, it produces phosphorous compounds to promote the formation of carbon, while
graphene can strengthen the carbon layer and prevent combustion, forming a synergistic
flame retardant effect.

MXene is a two-dimensional transition metal carbide, nitride, or nitrogen carbide.
MXene has two-dimensional lamellar structure similar to that of graphene and high thermal
conductivity. Consequently, it is considered to be a material with promising thermal
conductivity and flame retardant properties. Liu et al. [28] prepared MXene/graphene
nanocomposite films by reduction and thermal welding at a suitable temperature. Figure 5a



Molecules 2021, 26, 4670 8 of 32

shows a model of the interaction between MXene and graphene. Figure 5b,c indicate the
interesting performances of the MXene/graphene nanocomposite as a heat dissipation
material for electronic components. According to the test results on a micro-combustion
calorimeter, the peak heat release rate is only 10 wg−1. Indeed, this indicates that the
MXene/graphene nanocomposite film is an excellent flame retardant.
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corresponding IR thermal image. (c) Application of the GM paper as an ultra-thin heat sink for LED
and the corresponding IR thermal image [28].

Layered double hydroxides are a kind of nano filler that have a high aspect ratio.
The natural agglomeration phenomenon requires us to study the surface modification of
layered double hydroxides to improve their dispersion. Edenharter et al. [29] modified
the surface of layered double hydroxides and graphene oxide at the same time in order
to prepare PS/LDH-DBP-5 wt%/GO-DDA-0.5 wt% composites. The LOI did not change
significantly, but the peak heat release rate of the composites decreased by 47% compared
with neat PS. Moreover, the combustion time was prolonged.

Mesoporous zinc ferrate (MZF) is a material with high flame retardant potential
because of its porous structure and the fact that it contains iron and zinc. Yang et al. [30]
synthesized a mesoporous zinc ferrate hybrid graphene oxide (MZF-GO) composite by
a hydrothermal method. By combining the catalytic performance of mesoporous zinc
ferrate with the physical barrier function of graphene, improved flame retardancy behavior
was obtained. When the addition amount of MZF-GO was 3 wt%, the peak heat release
rate of the composite was reduced by 39%. This fact provides a new perspective for the
application of an efficient environmental flame retardant.

Pan et al. [31] developed a flame-retardant insulation epoxy resin composite that can
rapidly dissipate heat. These properties come from the preparation of nickel–cobalt bimetal-
lic layered hydroxides (NiCo-LDH). As shown in Figure 6, the acid-sensitive bimetallic
organic frameworks are used as sacrificial precursors to form NiCo-LDH on graphene.
According to the results of cone calorimetry, the pHRR of the EP/2%wt rGO@LDH com-
posites was lower than that of EP/2 wt% LDH composites and neat EP. As pointed out
above, graphene promotes heat transfer and catalytic carbonization, which is the main
reason for the rapid heat dissipation and high flame retardancy properties.
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(c,d) TEM images of the as-synthesized products obtained at different time intervals (10 min (c),
20 min (d)); (e) Schematic illustration of the synthesis of rGO@LDH and the preparation of
EP/rGO@LDH nanocomposites [31].

Traditional intumescent flame retardants consist of an acid source, a gas source, and a
carbon source. Chavali et al. [32] synthesized potassium carbonate hybrid graphene by a
hydrothermal method to produce a highly efficient intumescent flame retardant. Note that
graphene can be used as a carbon source, and it can catalyze the formation of carbon during
combustion. In addition, potassium carbonate will release carbon dioxide as a foaming
agent at high temperatures. This material was used to prepare a flame-retardant fabric.

Aluminum hydroxide (AH) is an important traditional flame retardant; nonetheless,
it is added in large amounts (usually 50%), affecting greatly the mechanical properties of
pristine materials. Jeon et al. [33] prepared heavy aluminum hybrid graphene nanosheets
(AlGnP) by physical blending with aluminum content of more than 30%. Through a large



Molecules 2021, 26, 4670 10 of 32

number of characterization trials, a covalent bond between the aluminum and the graphene
was proven to exist. The thin films were prepared by adding heavy aluminum graphene
nanosheets to polyvinyl alcohol (the content of AlGnP was 25 wt%). The pure polyvinyl
alcohol burned out after 12 s, while the modified polyvinyl alcohol did not burn under the
same conditions, but had a certain amount of deformation. The results show that the heavy
aluminum graphene nanoflakes have excellent flame retardancy properties.

In the same direction, a hierarchical nanohybrid (GO@MCM-41) was prepared by
the covalent assembly of mesoporous MCM-41 nanospheres on graphene oxide (GO)
nanosheets to improve the flame retardancy of epoxy resin (EP). Figure 7 shows the CCT
results of the EP/GO@MCM-41 composites. The pHRR and SPR of the EP/GO@MCM-41
composites were remarkably reduced compared with neat EP. In this study, the content
of all the flame-retardant additives was 2 wt%. The flame retardancy of the epoxy resin
composites was enhanced and attributed to GO@MCM-41. The dispersion of MCM-
41 was improved due to the existence of graphene nanoflakes, and synergistic catalytic
carbonization was produced [34].
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41 [34].

Red phosphorus hybrid graphene nanocomposites were prepared by means of one-
step ball milling, leading to a flame-retardant polyimide foam. The composite foam is
characterized by a light weight, good mechanical properties, and strong flame retardancy.
During the physical hybridization process, red phosphorus forms a phosphate group on the
edge of the graphene and forms nanoparticles on the same graphene surface. This makes
the red phosphorus hybrid graphene have good dispersion in the polymer matrix and
high phosphorus content, which is the basis of its flame retardant properties [5]. Bimetallic
metal–organic framework (MOF) and graphene oxide (GO) nano-hybrids (MOF@GO) have
been used as the synergist in intumescent fire retardants (IFRs). According to Figure 8,
these nano-hybrids have a novel alternative dynamic carbonization phenomenon in the
accumulated char layer of epoxy resin (EP) composites, and the second heat release rate
peak of the EP/0.5 wt%MOF@GO-9.5 wt% IFR was reduced by 59% compared with the
EP/10 wt% IFR [35].
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9.5IFR). (A colored version of this figure can be viewed online) [35].

2.3. Layered Coating of Modified Grapheme

Polyurethane foam is a material with excellent properties; nonetheless, its high flamma-
bility may induce limitations towards applications. In addition, many flame retardants
will affect the foaming process of polyurethane or reduce the mechanical properties.
Kim et al. [36] used an aqueous liquid crystalline (LC) graphene oxide (GO) scaffold
and polydopamine to form a PDA/GO nanocoating on the surface of flexible polyurethane
(PU) foam (Figure 9). The PDA/GO-coated PU foam showed significant flame retardant
performance, reflected by a 65% reduction in the PHRR at a 5 wt% PDA/GO loading.
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Figure 9. (a) Scheme for preparing the PDA/GO FR nanocoating on the PU foam assisted by the LC
phase of an aqueous GO dispersion. (b) Polarized optical texture of a concentrated GO dispersion
(20 mg mL−1). (c) Photograph of the GO LC after extrusion through a pipet into a dopamine solution
(2 mg of dopamine mL−1 in Tris-HCl buffer, pH 8.5). (d) SEM image of dried (2.5/2.5 wt%) PDA/GO-
coated PU foam. The inset is a photograph of the same foam. (e) Cross-sectional SEM image of the
PDA/GO-coated PU foam [36].

Polydopamine is particularly interesting as it has excellent adhesion and free-radical
absorption properties. Using the layer-by-layer self-assembly procedure with the men-
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tioned flame retardants, different coatings can be firmly bonded together and play the role
of a gas phase flame retardant. The smoke release rate and the total smoke emissions of the
polyurethane foam decreased by 50.2% and 58.7%, respectively, indicating that the smoke
suppression performance of the polyurethane foam was outstanding [37].

Jing et al. [38] used organic solvent-free self-assembly to synthesize a bio-based flame
retardant/graphene oxide hybrid (GOH). Figure 10 shows the mechanism of self-assembly
by electrostatic interaction. This modification method improved polylactic acid composites
with 15 wt% GOH to the V-0 level of vertical combustion, increased the tensile strength by
6 times, and increased the impact strength by 86.7%. Graphene is the basis of these effects.
It provides an adhesion point for the bio-based flame retardant and improves the contact
area between the flame retardant and the matrix due to its large specific surface area.
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Tannic acid (TA) is a kind of biomass material that can be extracted from a variety
of trees. It has a large number of phenolic hydroxyl groups in its structure, so it has
a strong chelating ability. Nam Kim et al. [39] prepared tannic-acid-coated graphene
oxide (TA@RGO) by a simple method and used it to prepare polyurethane nanofibers
by electrospinning. The cone calorimeter test data related to the modified polyurethane
nanofibers show that the pHRR of the PU/5 wt%TA@RGO composite decreased by 30.96%
compared with neat PU. In addition, the mechanical properties and antibacterial properties
of the modified PU were also improved. Finally, Kim et al. [39] provided some ideas for
the preparation of multifunctional composites.

The preparation of natural flame retardants and flame-retardant composites from
biomass has become an attractive research topic. Zabihi et al. [40] used fish sperm as a raw
material and natural graphite to prepare DNA-functionalized grapheme (GnPD) by a ball
milling method. The addition of DNA can prevent the aggregation of graphene and play
the role of an intumescent flame retardant. The epoxy resin composite with 10 wt% GnPD

reached the V-0 level in a UL-94 test.
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There are many reports on the preparation of graphene-based flame retardants through
various modifications, but the preparation of graphene-based composites with graphene as
the matrix remains a rare idea. Hu et al. [41] prepared phosphorus- and nitrogen-modified
graphene foams by a freeze-drying-assisted method and a simple heat treatment. The
nitrogen and phosphorus mainly come from hexachlorocyclotriphosphate (HCTP). The
graphene foams have high flame retardancy, compressibility, and microwave absorption
properties and are expected to be applied in the aerospace field.

In recent years, the use of dopamine has gradually become a safe and efficient surface
modification method. Luo et al. [42] prepared polydopamine (PDA)-coated reduced
graphene oxide thin films based on the reduction and self-polymerization ability of
dopamine. The film material has high thermal conductivity and excellent flame retar-
dancy. The peak value heat release rate of the tested films was decreased to near zero
according to micro-combustion calorimetry tests.

Moreover, it is very meaningful to graft many long-chain polymer molecules onto the
surface of graphene. Surface-coated grapheme (PFR-fRGO) was prepared by using poly
(4,4′-diaminodiphenylmethane phenyl dichlorophosphate). PFR-fRGO can prevent the
deposition of alumina, leading to the formation of a three-dimensional heat conduction
channel with such alumina. According to Figure 11, the phosphorus and nitrogen elements
in the modifier play the role of a flame retardant in the vapor phase and the condensed
phase. When the addition amount of PFR-fRGO was 1 wt%, an epoxy resin composite with
high thermal conductivity and high flame retardancy was successfully prepared [43].
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epoxy-based composites [43].

The phosphorylation of graphene through the polymerization of aniline, pyrrole, and
phosphoric acid permits us to improve the dispersion and flame retardancy of graphene.
This modification method brings a large number of nitrogen and phosphorus-containing
functional groups to the surface of the graphene, which can play the role of an intumescent
flame retardant and catalyze the formation of an expanded carbon layer in the combustion
process [44].

In addition, chitosan was used as a charring agent to deposit multiple layers on
the surface of graphene. Pure polyurethane foam is highly inflammable and produces
droplets. Polyurethane foam coated with multiple layers of chitosan-deposited graphene
coatings showed excellent flame retardancy. The six pairs of chitosan and graphene layered
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materials showed excellent flame retardancy due to almost no combustion in the cone
calorimetry test [45].

2.4. Surface Decoration of Graphene

The surface modification of graphene by various methods is also a very effective
process that has attracted the attention of researchers and produced numerous studies.
Depending on the different modification methods and modifiers, graphene-based compos-
ites with different properties can be obtained. Zinc hydroxystannate boxes (ZHS) are a
kind of inorganic flame retardant that acts as a smoke suppressor. Li et al. [46] prepared
a new flame retardant called GNS-ZHS-M2070 by covalent grafting of polyether amine
(M2070) onto the surface of zinc hydroxystannate box-decorated graphene nanosheets
(GNS).The GNS-ZHS-M2070/EP-12% composites show excellent flame retardancy. In
addition, zinc-hydroxystannate-modified graphene composites were prepared by the hy-
drothermal reaction of zinc hydroxystannate and graphene oxide in an autoclave. The
pHRR of the GNS-ZHS-M2070/EP-12% composite was obviously lower than that of pure
epoxy resin. The combination of zinc hydroxystannate and graphene can significantly
reduce the amount of smoke emitted during polymer combustion [47].

Through a variety of components capable of modifying graphene’s surface, it is possi-
ble to increase the matrix’s material performance up to a level that complies with different
demands mainly related to flame retardancy, mechanical properties, and smoke emissions.
For instance, graphene was modified by hexachlorocyclotriphosphate (HCCP) and nickel
hydroxide to improve the flame retardant properties in both the gas and condensed phases.
In virtue of the low addition amount (3 wt%), the loss of mechanical properties is usually
small. Furthermore, some researchers have used polyaniline and nickel hydroxide to
perform surface modification in the same line as described above to increase the flame
retardant properties. Compared with others, composites with these two flame retardants
have better smoke suppression performance, which is mainly due to the excellent flame
retardancy of nickel hydroxide and grapheme [48,49].

Another important method for modifying the surface of graphene is based on a
hydrothermal process. This method is easy to implement and permits us to prepare
phosphorus and nitrogen-modified graphene by the hydrothermal reaction of compounds
containing phosphorus and nitrogen. Feng et al. [50] used phosphoric acid and urea
as phosphorus and nitrogen sources, respectively. Phosphorus and nitrogen-modified
reduced graphene oxide (PN-rGO) was prepared by hydrothermal reaction and micro-
blog reduction methods and used in epoxy matrix composites. The peak heat release
rate of EP/5 wt% PN-rGO decreased by 30.9%, and this composite reached the V-0 level
in the vertical combustion test. In addition, the cited researchers prepared magnesium-
phosphate-modified graphene oxide by using magnesium chloride and amino Sanya
methyl phosphonic acid as reducing agents. Afterwards, this was applied to a phenolic
foam, which not only improved the flame retardancy but also improved the toughness [51].

In addition to the above-mentioned surface modification, ZIF-8 was prepared on the
surface of graphene oxide by a hydrothermal method. ZIF-8 can catalyze the formation
of carbon, which can further improve the barrier effect of graphene, reducing the amount
of smoke released as well. The results show that the epoxy resin composite with 2 wt%
ZIF-8/RGO can reach the V-1 level in the vertical combustion test. The composite prepared
by adding the same content of ZIF-8 or RGO in epoxy resin cannot reach the V-1 level [52].
Cai et al. [53] modified the surface of graphene by covalent binding of sodium lignosul-
fonate and iron ions to form flame-retardant-functionalized graphene sheets (FGNS). Due
to the high carbonization performance of lignin and the catalytic performance of iron, the
flame retardancy of the graphene was further improved. Through adding 2 wt% FGNS,
the pHRR of TPU composites decreased by more than half compared with neat TPU.

The environmental risk of this preparation method is relatively high. Attia et al. [54]
used diphosphate maleate as a dispersant and a modifier to exfoliate and coat graphene
in one step under ultrasonic conditions, forming graphene oxide coated with the remain-
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ing diphosphate maleate (GRP). Afterwards, the surface of the exfoliated graphene was
modified with titanium dioxide nanosheets with an average size of about 21 nm to form
binary modified graphene nanosheets (GRP-MDP-TiO2NP). These were added to ABS
materials to prepare flame retardant composites. The advantage of this method lies in the
simultaneous exfoliation and modification of graphene nanosheets, and it shows excellent
performance in inhibiting toxic gas emissions. The peak heat release rate of the ABS/5 wt%
GRP-MDP-TIO2 NP composite decreased by 49% compared with pure ABS.

Graphene can be directly used as a base material for the modification of a flame
retardant. Nie et al. [55] modified a certain amount of graphene oxide on the surface
of organic zirconium phosphonate layered materials (GO-Zr(AE)3P). This idea is mainly
based on the high proportion of oxygen in different functional groups located on the
surface of the graphene oxide, which can react with zirconium organophosphate. This
process can form a new nano flame retardant. When adding a small amount of GO-
Zr(AE)3P(≤2 wt%), the peak heat release rate of PP/GO-Zr(AE)3P decreased obviously and
displayed superior smoke suppression performance. Table 2 summarizes the application
of partially modified graphene materials directly as flame retardants in polymer materials
mentioned in this paper.

Table 2. Application of modified graphene nanomaterials as flame retardants in polymer composites.

Polymer Loading of Modified Graphene Nanomaterials Flame Retardant Performance Ref

EP graphenite-Cu3 wt% LOI value: 26.4%, PHRR decreased from 1193 kW/m2 (neat
EP) to 786 kW/m2 [24]

EP 2 wt% rGO@LDH 65.9% and 16.7% reduction in PHRR and SPR, respectively [31]
EP 2 wt% GO@MCM-41 40.0% reduction in the peak heat release rate (pHRR) [34]

PU 5 wt% PDA/GO coating 65% reduction in the peak heat release rate (pHRR)
compared with neat PU [36]

EP 5 wt% PN-rGO 30.9% and 29.3% reduction in PHRR and THR, respectively [50]
ABS 5 wt%GRP-MDP-TIO2NP PHRR and THR both dropped by 49%. [54]

2.5. Organic Phosphorus-Containing Flame Retardant Grafted onto Graphene

The preparation of organophosphorus-modified graphene-based flame retardants by
the graft reaction of phosphorus-containing compounds and graphene containing oxidation
energy groups on its surface has gradually become an attractive research topic [56]. Table 3
summarizes the flame retardant performance of some polymer nanocomposites based
on DOPO-modified graphene. DOPO is an intermediate of a phosphorus-containing
flame retardant. DOPO contains very active P-H bonds, so it can react with a variety
of groups. At the same time, the surface of graphene oxide contains oxygen-containing
functional groups, mainly but not limited to hydroxyls and carboxyls. It is common
to connect both of them by various bridging agents. Wang et al. [57] modified DOPO
with vinyltriethoxysilane and reacted it with graphene oxide modified by isocyanate
to prepare a DOPO-VTES-GO flame retardant. Through adding 3 wt% DOPO-VTES-
GO, the BDM/DBA composites reached the V-0 level in the vertical combustion test.
Qian et al. [58] prepared DOPO-VTS by the reaction of vinyltrimethoxysilane and DOPO.
As a surface modifier, DOPO-VTS reacted with oxygen-containing functional groups on
the surface of the graphene. Graphene grafted onto the surface of organophosphorus
was prepared for the flame retardant modification of polyurea. The peak heat release
rate of PUA composites with only 1 wt% functional graphene decreased significantly. In
addition to the above methods, DOPO-HQ has also been used to modify the surface of
graphene oxide to form DOPO-modified graphene materials (FGO-HQ) with high thermal
stability. A PLA/6 wt%FGO-HQ composite reached a V-0 rating in the vertical combustion
test [59]. Sun et al. [60] used formaldehyde as a DOPO modifier to prepare DOPO-modified
graphene, which was used to achieve a good dispersion of DOPO and graphene in a carbon
fiber/epoxy resin (CF/ER) composite. The peak heat release rate of CF/ER/3%graphene–
DOPO composites decreased obviously compared with CF/ER composites. Dai et al. [61]
modified DOPO with formaldehyde and phosphorus oxychloride, grafted it to graphene,
and finally copolymerized it with styrene to obtain a PS-fGO composite. Chen et al. [62]
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prepared long-chain phosphaphenanthrene (DPP) by a silane coupling agent and used it
to modify graphene (DPP-GO). Long-chain compounds were grafted onto the graphene
surface to improve the dispersion while introducing an organophosphorus flame retardant.
The thermal stability of the composites was improved by the above two modification
methods, which displayed excellent performance in LOI, UL-94, and cone calorimetry tests.
The epoxy resin composite prepared by adding 3 wt% DPP-GO reached the V-0 level in
the vertical combustion test, and the LOI was 25.3%. These results were mainly due to the
free radical quenching effect of DOPO during combustion and the physical barrier effect of
graphene that was used to form the gas and condensed phases.

Table 3. DOPO-modified graphene for different matrix materials.

Matrix Types of Grafting Reaction Main Performance Ref.

4,4-bismaleimidophenylmethane/2, 2-diallyl
bisphenol A (BDM/DBA) resins

Vinyl trie-thoxy silane and
(3-isocyanatopropyl)-triethoxysilane

as bridging agents
UL-94: V-0 rating, LOI: 32.8% [57]

PUA
vinyltrimethoxy silane and

(3-Isocyanatopropyl)-triethoxysilane
as bridging agents

49% reduction in PHRR observed in
cone calorimetry [58]

PLA Reaction of 2,5-dihydroxyphenol with
an acyl chloride bond

83% reduction in TSR observed in cone
calorimetry compared with neat PLA [59]

CF/EP Reaction of formaldehyde-modified
DOPO with an acyl chloride bond

PHRR of composites
reduced by 38.9% compared with neat CF/EP [60]

PS Paraformaldehyde, hydroxyethyl
acrylate, and POCl3 as bridging agents

39.1% reduction in PHRR observed in
cone calorimetry [61]

Polyhedral silsesquioxane (POSS) contains a silicon–oxygen bond in its chemical
structure. The eight vertices of the POSS cage structure are usually reactive and can be
used for grafting and polymerization. POSS itself functions as a flame retardant and a
smoke suppressant. POSS-functionalized graphene oxide was prepared by grafting octa
(propyl glycidyl ether) POSS (og-POSS) and KH550-modified amino graphene. It is also
considered in studies on flame-retardant epoxy resin. The flame retardant properties of
EP can be improved obviously by adding 0.7 wt% POSS-functionalized grapheme [63].
Because of the high reactivity of POSS, some researchers have tried to combine organophos-
phorus flame retardants with POSS and graphene oxide to prepare ternary graft flame
retardants. Yuan et al. [64] prepared an oapPOSS-graft-GO-graft-DOPO(P-G-D) flame retar-
dant through the reaction of aminopropylene-modified POSS (oap-p-poss) with DOPO and
graphene oxide, and used it as a flame retardant for PP. When the content of P-G-D reached
25 wt%, the PP composites obtained better flame retardancy. Figure 12 shows the flame
retardant mechanism of oapPOSS-graft-GO-graft-DOPO. In addition, Zhang et al. [65]
polymerized methacryloyloxy butyl POSS, bisdopoma, and glycidyl methacrylate (GMA)
as monomers to prepare a flame retardant containing phosphorus, nitrogen, and silicon,
which was chemically bonded with graphene oxide to form a hybrid flame retardant (GO-
MD-MP). The flame retardant prepared by this method usually contains more than two
kinds of flame retardant units and can form a synergistic effect, with the physical barrier
property of graphene promoting notable improvements in several properties, including
flame retardancy. When 4 wt% go-md-mp is added, the epoxy resin composite can reach
the V-0 level in the vertical combustion test.
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Similar to DOPO, hexachlorocyclotriphosphate (HCCP) is also a flame-retardant
intermediate. It has very active phosphorus–chlorine bonds in its structure and can react
with many substances. This property is very beneficial to the surface modification of
graphene. Dong et al. [66] realized the combination of graphene oxide and HCCP by an
evaporation-induced self-assembly method. The cross-linking effect induced by stacking
can form GO-HCCP paper, which can also be used as a flame retardant to add other fibers,
leading to acceptable levels of flame retardancy. Cai et al. [67] found a kind of HCCP-
modified product that can exfoliate and prepare flame-retardant graphene sheets by an
electrochemical method. The modification of thermally conductive epoxy materials with a
flame retardant has always been an important topic. The preparation of flame-retardant
and thermally conductive epoxy resin by HCCP-modified graphene-oxide-coated alumina
microspheres has also been reported [68].

Hu et al. [69] used a self-made hyperbranched phosphorus-containing flame retardant
to graft graphene oxide, which brought about a higher nitrogen and phosphorus loading
on the graphene. At the same time, due to the steric hindrance effect of the hyperbranched
flame retardant, the agglomeration of graphene oxide was prevented. A highly dispersed
graphene-based flame retardant was formed in a polystyrene matrix. The peak heat re-
lease rate of PS composites with a 2 wt% hyperbranched flame retardant grafted onto the
graphene oxide had decreased by 39% compared with neat PS. The flame retardant modifi-
cation was obtained from the two aspects of the condensed phase and the gas phase, which
greatly reduced the amount of smoke emitted from the polystyrene during combustion.

3. Carbon Nanotubes
3.1. Pristine Carbon Nanotubes

In accordance with carbon nanotubes’ diameter, two categories can be distinguished:
single-walled carbon nanotubes and multi-walled carbon nanotubes (MWCNTs). Multi-
walled carbon nanotubes are widely used in composites [70]. Carbon nanotubes have
excellent mechanical and electrical properties and have been studied in many fields, partic-
ularly as a mechanical reinforcing filler for polymer materials. The synergistic effects of
CNTs in different flame retardant systems are summarized in Table 4.

Epoxy resin composites filled with thermally oxidized carbon nanotubes were pre-
pared by a casting method, and their flame retardancy was studied by cone calorimetry.
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In the case of the addition of 1 wt%, compared with the original carbon nanotubes, the
thermal-oxidation-treated carbon nanotubes have better flame retardancy properties [71].
The synergistic effect of CNTs on polystyrene electromagnetic shielding material with an
intumescent flame retardant was also investigated [72]. The results show that the addition
of carbon nanotubes can improve the efficiency of the intumescent flame retardant. Note
that when the amount of intumescent flame retardant is greater than 10 wt%, the addition of
1 wt% carbon nanotubes induces better flame retardant performance. The effect of carbon
nanotubes on the flame retardancy of thermoplastic polyurethane electromagnetic shield-
ing materials with intumescent flame retardants was also investigated [73]. It was found
that the thermoplastic polyurethane composite with 1 wt% carbon nanotubes and 10 wt%
intumescent flame retardants had the best flame retardancy. Moreover, the TPU/IFR/CNT
system had higher conductivity than TPU with only carbon nanotubes. This may be due to
the better dispersion of carbon nanotubes under the friction between and collision of IFR
particles and the formation of a conductive network.

The flame retardant modification of a nylon fabric with carbon nanotubes and an
intumescent flame retardant has also been reported. The addition of 0.5 wt% carbon
nanotubes improved the flame retardancy of the nylon fiber. Compared with the fiber to
which only the intumescent flame retardant was added, the heat release rate decreased.
This can be explained by the fact that CNTs can improve the quality of the expanded carbon
layer, preventing cracks [74]. The synergistic flame retardancy effect of carbon nanotubes
and ammonium polyphosphate has also been investigated [75]. The addition of 0.25 wt%
CNTs can improve the flame retardancy of APP-modified nylon 6 fiber. However, with
the increase in the CNT content, the flame retardancy of nylon 6 fiber gradually becomes
worse. This may be due to the excess CNTs that increase the viscosity at melt, which makes
the material difficult to foam and reduces the flame retardancy of APP.

Oxidized carbon nanotubes have better dispersion in the matrix. Some researchers
have studied the synergistic effect of oxidized carbon nanotubes and a self-made high
phosphorus content flame retardant on silicone rubber. When the content of oxidized
carbon nanotubes was 1 wt%, the peak heat release rate decreased slightly, but this silicone
rubber specimen reached the V-0 level in the vertical combustion test. This was mainly
due to the enhancement of the carbon layer by the carbon nanotubes. The mechanical
properties of the composites were also improved by adding a small amount of oxidized
carbon nanotubes [76].

Chen et al. [77] explored the flame retardant mechanism of carbon nanotubes and
montmorillonite nanoparticles in epoxy resin by establishing models that provide a refer-
ence for the design of flame retardant formulas and high-performance flame retardants.
The flame retardancy of carbon nanotubes and titanium dioxide nanoparticles in PP was
also investigated. The addition of titanium dioxide and carbon nanotubes improved the
conductivity of polypropylene. It was found that the carbon residue rate of the polypropy-
lene composite with 10 wt% TiO2/CNTs was 91.9% after cone calorimetry. This result
shows that carbon nanotubes promote the formation of carbon residue [78]. The synergistic
flame retardant effect of expandable graphite and carbon nanotubes was also reported.
The polyketide was modified by expandable graphite and a small number of carbon nan-
otubes. When only 1 wt% carbon nanotubes were added, the peak value of the heat release
rate decreased significantly compared with polyketide composites with only expandable
graphite, which proved the synergistic effect of carbon nanotubes on the flame retardancy
of expandable graphite [79]. Novel nitrogen (CNx) and oxygen (COx)-doped CNTs were
synthesized by the chemical vapor deposition (CVD) method. From Figure 13, we can see
the morphological changes in carbon nanotubes after CVD. Meanwhile, 2 wt% CNx and
COx carbon nanotubes were added to epoxy resin to prepare the composite. The epoxy
resin modified by COx carbon nanotubes had a limiting oxygen index of 35% and the
lowest pHRR. The limiting oxygen index (LOI) of the EP/CNTs composite was only 33.5%
at the same addition level. It was proven that the improvement in the flame retardancy of
carbon nanotubes doped with oxygen was very significant [80].
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Research on the preparation of coatings by carbon nanotubes and the preparation
of flame-retardant-modified films has also been reported. This is a modification method
for the preparation of carbon nanotube films directly without dependence on a polymer
matrix [81]. Carbon nanotubes were oxidized by concentrated sulfuric acid, and then
the oxidized carbon nanotubes (oCNTs) were spheroidized to prepare carbon nanotubes
rich in carbon-centered free radicals (coCNTs) whose flame retardancy and mechanical
properties in epoxy matrix materials were investigated. Figures 14 and 15 show the change
in morphology of the CNTs after modification and the flame retardant mechanism of
coCNTs, respectively. The LOI of epoxy resin composites with 3 wt% coCNTs was 28.4%,
while that of pure EP is only 21.9%. The modified CNTs were found to have a stronger
ability to capture free radicals and less of an effect on the viscosity at melt. The mechanical
properties were also improved [82].
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Table 4. Synergistic effect of carbon nanotubes on different flame retardant systems.

Matrix Flame Retardant System Flame Retardant Performance Ref

PA66 intumescent fire retardant (IFR) pHRR and THR were reduced by 76.4% and 76.5%, respectively [59]
PS intumescent fire retardant (IFR) pHRR decreased by 30% and LOI: 34.1% [72]

TPU intumescent fire retardant (IFR) UL-94: V-0 rating, LOI: 30.1%, pHRR and THR were reduced by
92% and 76%, respectively [73]

PA6 APP UL-94: V-0 rating, pHRR decreased by more than 30% [75]

silicone rubber (SR) DHCP-PA (a high phosphorus content
flame retardant system) UL-94: V-0 rating, LOI: 28.4% [76]

3.2. Surface-Functionalized Carbon Nanotubes

The combination of carbon nanotubes and inorganic flame retardants has also at-
tracted research interest. A zinc–aluminum layered double hydroxide/carbon nanotube
hybrid (CNT/ZnAl-LDH) was prepared by the coprecipitation method. Transmission
electron microscopy (TEM) showed that the CNTs were embedded between the piles of
layered double hydroxides. When the amount of CNT/ZnAl-LDH was 2.1 wt%, the flame
retardancy of the PU foam was better. The quality of the carbon residue was improved and
the flame retardancy was enhanced by the insertion of carbon nanotubes [83].

The hybridization of organic Fe–Ni layered double hydroxides and carbon nanotubes
also yields an effective flame retardant. The dispersion of layered double hydroxides and
the carbonization performance of matrix materials can be improved by their hybridization.
The results show that the heat release rate and the smoke release rate of composites with
only 4 wt% nano fillers had greatly decreased [84]. Multi-walled carbon nanotubes (MWC-
NTs) were treated with phosphoric acid, and phosphorus was introduced onto the surface
of the CNTs to prepare a new type of phosphorus carbon nanotube (P-MWCNT) flame re-
tardant. A polystyrene system was found to have better flame retardancy by compounding
10 wt% P-MWCNTs into the polystyrene. This may be related to the dispersion of carbon
nanotubes [85].

A new type of flame retardant was prepared by the polymerization of hexachlorophos-
phine cyanogen and p-phenylenediamine and coating with the resulting polymer the
surface of carbon nanotubes (PCP-CNT), which were used to modify the flame retardancy
of PBT. The results show that the samples with 15 wt% PCP-CNT provide optimal prop-
erties, which can be attributed to the carbon-forming ability of the P-N polymer and the
enhancement of the carbon layer by carbon nanotubes [86].
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APP was modified with a silane coupling agent, coated by carbon nanotubes, and
named CAPP. It was also used for the flame retardant modification of PBS. The content
of CNTs in PBS composites with the best flame retardancy was only 1 wt%. This flame
retardant not only has the many advantages of intumescent flame retardants, but also
overcomes the disadvantages of reduced mechanical properties and improves the smoke
suppression performance. This is mainly due to the formation of a carbon-nanotube-coated
APP network, which improves the compatibility of the flame retardant and the matrix. In
addition, the quality of the carbon residue was enhanced [87].

Flame-retardant cotton fibers were prepared by sequential self-assembly of polyethylen-
imine, ammonium polyphosphate, and carbon nanotubes on the surface of cotton fibers
(Figure 16) [88]. In the vertical combustion test, cotton fibers with 10 wt% bPEI/CNTs
showed the characteristics of self-extinguishment. After burning, the cotton fiber showed
almost no changes. The fiber also exhibited acid and alkaline resistance, superhydrophilic-
ity, and wear resistance. Carbon nanotubes play an important role in enhancing the
carbon layer.
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After oxidation, carbon nanotubes form many oxygen-containing functional groups,
which are very active and can carry out a variety of reactions. MWCNT-ODOPB prepared
by acylation oxidation of carbon nanotubes and reaction with DOPO has been reported
to be a flame retardant synergist of aluminum alkyl hypophosphite. By adding 1 wt%
MWCNT-ODOPB, the vertical combustion grade of epoxy resin can be improved to V-1.
The main function of modified carbon nanotubes is to promote the formation of carbon
and improve the strength of the carbon layer [89]. In addition to the above methods,
acetaldehyde was used as DOPO modifier to prepare a flame-retardant intermediate,
which was then reacted with carbon nanotubes to prepare a composite flame retardant
(DOPO-CNTs). The results show that the peak heat release rate of the composites prepared
by adding 1.5 wt% DOPO and 1.5 wt% CNTs is 689 ± 10 kW/m2. When 3 wt% DOPO-
CNTs was added, the peak heat release rate of PA6 composites decreased to 493 ± 10
kW/m2. This indicates that the grafting modification is necessary and successful. The
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possible flame retardant mechanism of DOPO-modified CNTs is briefly summarized in
Figure 17 [90].
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Other researchers have reported different oxidation states of phosphorus-containing
reagents in order to graft amino carbon nanotubes and have explored their role in the flame
retardant process of materials. The results show that composites modified by diphenylphos-
phoryl chloride have the best mechanical properties compared with other PBT specimens,
which may be due to the improvement in the interface connection between the carbon nan-
otubes and the composites. Carbon nanotubes modified by diphenylphosphine chloride
improved the flame retardancy of the composites to the greatest extent [91]. A lignin-
modified graphene/carbon nanotube hybrid coating was prepared by the Meyer rod
method. Paper with a 4 wt% carbon nano hybrid coating was found to have good flame
retardancy and a self-extinguishing capability. Lignin can be used as a carbon source, while
graphene and carbon nanotubes can enhance the carbon layer and form an effective heat
conduction network [92].

Some researchers grafted melamine pentaerythritol phosphate (PPMS) onto the surface
of carbon nanotubes, which is a one-component intumescent flame retardant. It was used
for the flame retardant modification of epoxy resin. Through limiting oxygen index and
UL-94 test results, it was found that the addition of 15 wt% PPMS-CNT improved the
flame retardancy of the epoxy resin, and the peak heat release rate of the composite was
observed to have a very obvious decline in the cone calorimetric test [93]. Zhang et al. [94]
prepared a novel type of Fe-CNT on a large scale. The Fe-CNTs were used as a flame
retardant in epoxy resin (EP). Figure 18 shows the modification route of Fe-CNTs. Iron
carbon nanotubes form a three-dimensional network of well-dispersed carbon nanotubes
in the polymer matrix, which can promote the cross-linking of free radicals and the epoxy
resin matrix during combustion so as to form a carbon layer with a good structure. The
effect of Fe-CNTs on the smoke suppression performance of the epoxy resin was proved by
the results of cone calorimetry (Figure 19).
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4. Fullerene and Other Nanocarbons

Fullerene is an allotrope of carbon. It has a hollow sphere structure, which is usually
composed of six-membered rings at a number ranging from five to seven. The free radical
trapping effect of fullerenes can improve the flame retardancy of materials and has attracted
the attention of many researchers [95]. In addition, other types of carbon nanomaterials,
such as expandable graphite and carbon black, have been a source of research as well.

Song et al. [96] prepared a low nitrogen and phosphorus content intumescent flame re-
tardant (PDBPP) and grafted it onto fullerene spheres to prepare a c60-d-PDBPP integrated
flame retardant, which was used for the flame retardant modification of PP. The intention
was to provide functions related to free radical quenching and an intumescent carbon layer
flame retardant. The results show that the flame retardancy and thermal stability of the
composites were greatly improved by adding 2 wt% PDBPP.

As pointed out above, fullerenes can capture free radicals. For instance, when alu-
minum hydroxide decomposes to form an aluminum oxide protective shell, fullerenes
capture the free radicals produced by the matrix’s combustion. Adding 60 wt% aluminum
hydroxide to SBS can make the composites achieve a V-0 grade in the vertical combustion
test. When 3 wt% fullerene and 53 wt% aluminum hydroxide were added, the composite
reached the V-0 grade. A good synergistic effect of the flame retardant was formed [97].
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Fullerenes are also used in brominated flame retardant systems with high safety. The
cited study reports that the addition of bromine and fullerenes has a great influence on
the flame retardant performance. HDPE composites with 2 wt% fullerenes were found to
have the best flame retardancy. In addition, fullerenes can capture bromine radicals during
the combustion process; however, too much fullerene will lead to a decrease in the flame
retardancy of a bromine flame retardant [98].

Fullerene may affect the cross-linking of high-temperature vulcanized materials, such
as silicone rubber, resulting in a decline in the material’s performance. A modified fullerene
was prepared by the combination of polymethylphenylsiloxane and fullerene by the stack-
ing effect (PMPS-d-C60). By adding 4 phr pmps-d-c60 to the silicone rubber, the LOI
reached 29.0%, showing excellent flame retardancy [99]. The combination of DOPO and
fullerene is also an important flame retardant modification method. Following this ap-
proach, it is possible to enhance the free radical capture ability of fullerenes and prolong
the ignition time. By adding 3 wt% DOPO-d-C60, the peak of the heat release rate of PP
composites was decreased slightly [100].

Expandable graphite (EG) is a low-cost, one-component intumescent flame retardant
and also a kind of nano carbon material. When the content of expandable graphite, huntite,
and hydromagnesite is 25 wt%, the TPU composite reaches the V-0 level in the vertical
combustion test and the highest limiting oxygen index. With the increase in the expandable
graphite content, the mechanical properties of TPU composites are improved, which
overcomes the disadvantage of the mechanical properties of TPU composites due to the
addition of the inorganic flame retardant [101]. Expandable graphite modified by an ionic
liquid containing phosphorus and a phosphorus and nitrogen intumescent flame retardant
were synthesized to form a synergistic flame retardant system named IL-EG/DPES. In
addition, they were used for the flame retardant modification of rigid polyurethane foams
(RPUFs). When the content of both IL-EG and DPES was 10 phpp, RPUFs had the best
flame retardancy. Due to the simultaneous effect of the intumescent flame retardant and the
ionic-liquid-modified expandable graphite, a strong expanded carbon layer was formed.
By observing the carbon residue after cone calorimetry, a reinforcing effect of the modified
expandable graphite on the carbon layer was found (Figure 20). The results also show that
the total amount of smoke emitted decreased significantly [102].
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Figure 20. Digital photos of carbon residue after the burning of the RPUF samples [102]. P0:
pure RPUF; P1: 20phppDPES/RPUFs; P2: 5phppIL-EG/15phppDPES/RPUFs; P3: 10phppIL-
EG/10phppDPES/RPUFs; P4: 15phppIL-EG/5phppDPES/RPUFs; P5: 20phppIL-EG/RPUFs (phpp:
per hundred of polyether polyol by weight.).

Yun et al. [103] studied the synergistic effect of expandable graphite and phosphorus-
based flame retardants. They introduced iron phosphate coordination network to the
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surface of microcrystalline cellulose through PDA. It is used as flame retardant synergistic
agent for expandable graphite/polyurethane foam composite. The appearance of an
expanded carbon layer can protect the matrix material.

Carbon black (CB) is also an important nano carbon material. In most cases, carbon
black appears as a reinforcing modifier of rubber. However, carbon black can be used as
a synergist to improve the flame retardant efficiency of other flame retardant materials,
especially magnesium hydroxide. The addition of 0.5 wt% carbon black can make EVA/MH
composites reach the V-0 level in the vertical combustion test and improve the mechanical
properties of the matrix material to a certain extent [104]. It is also very meaningful to graft
carbon black. When the one-component intumescent flame retardant named pentaerythritol
phosphate melamine salt (PPMS) was grafted onto carbon black and added to epoxy resin
as a flame retardant and smoke suppressant, the EP/15 wt% PPMS-CB composite had
excellent performance in cone calorimetry, and the peak heat release rate and smoke release
were greatly reduced [105].

Nanodiamond (ND) was modified with P species, Cu species, and (2,2,6,6-tetramethyl
piperidin-1-yl)oxyl (TEMPO) step by step in order to prepare a flame retardant and
strengthen the mechanical properties of nano carbon materials for epoxy composites.
Nanodiamond was used as a carrier to connect copper, tempo resin, and epoxy resin. The
mechanical properties and flame retardancy of the composites were further enhanced by
forming an interconnected network with the epoxy resin matrix during the curing process.
Figure 21 shows that the coupling agent on the surface of the nanodiamond participates in
the curing process of epoxy resin. The nanodiamond can form a reinforcing network in the
epoxy resin matrix [106].
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DOPO (9,10-dihydro-9-oxy-10-phosphazene-10-oxide) is an effective phosphorus-
containing flame retardant. However, DOPO easily migrates to the polymer matrix material,
which reduces the flame retardant’s efficiency. By introducing carbon black as the basis
of a modification, DOPO was grafted onto the surface of hydroxylated carbon black to
prepare hybrid materials (CB-g-DOPO) with a high grafting rate. The PLA/8 wt% CB-g-
DOPO composite not only has strong flame retardancy but also shows a certain degree of
conductivity. As shown in Figure 22, the CB-g-DOPO reacted with maleic anhydride in
PLA-MA. This reaction realizes the combination of the modifier and the matrix, hinders the
diffusion of the flame retardant, and improves the dispersion of the flame retardant [107].
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Figure 22. Schematic illustration of the chemical reaction between CB-g-DOPO and PLA-MA to form
a reactive network in the PLA matrix [107].

Zhang et al. [108] fabricated porous submicron nickel oxide (NiO) fibers via an electro-
spinning and subsequent pyrolysis process. Carbon black (CB) can also be combined with
NiO to form a reticulated flame retardant system and plays the part of a connection point
in this system. The presence of carbon black enhances the carbonization ability of NiO.
CB/NiOf mainly plays the role of a condensed-phase flame retardant in PLA’s combustion
(Figure 23).
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MXene can not only be combined with other nano carbon materials to prepare flame
retardant materials, but also has the potential to become a flame retardant. However,
MXene is easily oxidized in air and easily agglomerates when applied to polymer materials.
Ning et al. [109] deposited nano silica onto the surface of MXene by in situ hydrolysis
of tetraethyl orthosilicate. Then, functional MXene (m-MXene) was prepared by a silane
coupling agent modification. Flame-retardant composites were prepared by compounding
with polyvinyl alcohol. The PHRR of m-MXene/PVA composites prepared with only
2 wt% m-MXene was reduced by 34.9% and 16.9%, respectively, compared with pure
PVA and PVA composites prepared with 2 wt% unmodified MXene. These results show
that surface modification can improve the dispersion of MXene in the matrix material
and improve the flame retardant performance. In addition, the mechanical properties of
m-MXene/PVA composites were also improved. Compared with pure PVA, the tensile
strength and elongation at break of the composites were increased by 32.9% and 97%,
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respectively. Because MXene itself has electrical conductivity, the electrical conductivity of
the composites was also improved. The surface modification of MXene is very important to
the improvement of flame retardants and the mechanical properties of composites. Through
surface modification, the dispersion can be improved and the interfacial compatibility
between additives and matrix materials can be improved.

5. Summary and Perspective

In recent years, nano carbon-based materials have been widely used to modify poly-
mers with flame retardants. Compared with traditional flame retardants, nano carbon-
based materials can significantly improve the flame retardancy, mechanical properties,
and thermal and electrical conductivities of multi-functional flame-retardant nanocom-
posites. Most carbon nanomaterials have special shapes, which are closely related to their
excellent properties. Moreover, nano carbon-based materials can be used in a variety of
matrix materials or directly made into single-component materials with certain physical
properties. Some researchers [81] used carbon nanotubes as the matrix to prepare paper,
which provides a new idea for the preparation of novel nanocomposites.

The mechanism of nano carbon materials as flame retardants in different polymer
matrices is similar to that of traditional flame retardants. There are two main ways to delay
the combustion of the polymer matrix:

(I) The addition of nano carbon material, which helps to form a dense protective
carbon layer. Adding nano carbon materials leads to a more compact carbon layer formed
by combustion (with fewer cracks and holes). These carbon layers can protect the polymer
material at the bottom and block the combustible gas generated so as to protect the matrix
material.

(II) Some nano carbon materials, such as fullerenes, have the ability to capture free
radicals. They absorb the active free radicals produced during combustion and terminate
the chain reaction.

Due to their limited function as a flame retardant, in most cases pristine nano carbon
materials are used as synergists together with traditional flame retardants. Moreover,
obtaining a good dispersion of pristine carbon nanomaterials in the polymer matrix remains
challenging. A poor dispersion of carbon nanomaterials may lead to a deterioration of the
mechanical properties. In order to avoid these shortcomings, the surface modification of
carbon nanomaterials can be performed. There are two goals in this modification: (i) to
reduce the interaction between the carbon nanomaterials and improve their dispersion in
the polymer matrix; and (ii) to introduce functional groups in the molecular chains with
flame retardancy.

Although some nano carbon materials have excellent properties, the development of
low-cost preparation methods for most of the carbon nanomaterial remains challenging.
These facts make nano carbon materials difficult to apply on a large scale. We expect
that more and more researchers will contribute to low-cost production methods for nano
carbon materials. Moreover, the surface functionalization of carbon nanomaterials is quite
important to flame retardant applications and will be one of the main research topics in
the future. In addition, to date, few researchers have focused on the recyclability of carbon
nanocomposites. With the increasing awareness of environmental protection and energy
conservation, it would be very important to improve the recyclability of materials and, in
particular, develop a new strategy for recycling thermoset-based carbon nanocomposites.
An interesting approach would be the use of waste thermoset-based carbon nanocomposites
to prepare high-value-added carbon materials.
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Abbreviations

polymers and other compounds POSS, Polyhedral silsesquioxane;
MoS2,molybdenum disulfide; GMA, glycidyl methacrylate;

EVA, ethylene vinyl acetate;
BDM/DBA,
4,4-bismaleimidophenylmethane/2,
2-diallyl bi-sphenol A resins;

MMT, Montmorillonite; PUA, Polyurethane acrylate;
GO, Graphene oxide; PS, polystyrene;
LDH, layered double hydroxide; PK, polyketone;
DOPO, 9,10-dihydro-9-oxa-10-
phosphaphenan-threne-10-oxide;

CNTs, carbon nanotubes;

EP, epoxy resin; PA66, Polyamide66;
PLA, Polylactide; SR, silicone rubber;

α-ZrP, α-zirconium phosphate;
PPMS, melamine
pentaerythritol phosphate;

CPO, cerium phosphate; IFRs, intumescent flame retardants,
APP, Ammonium polyphosphate; MWCNT: multi-walled carbon nanotube;
BPPT, Bio-based polyphosphate; EG, Expandable graphite;
IG, iron–graphene; CB, Carbon black;
TPU, thermoplastic polyurethane; ND, Nanodiamond
MH, magnesium hydroxide; parameters and characterization
PBT, polybutylene terephthalate; Tig, ignition temperature;
AHP, aluminum hypophosphite; HRR, heat release rate;
BP, Black phosphorene; PHRR, peak heat release rate;
MZF, Mesoporous zinc ferrate; MLR, mass loss rate;
MOF, metal–organic framework; TSP, total smoke product;
AH, Aluminum hydroxide; THR, total heat release;
RP, Red phosphorus; EHC, effective heat of combustion;
LBL, layer-by-layer; FGI, fire growth index;
TA, Tannic acid; D, thermal diffusivity;
PDA, polydopamine; SEM, scanning electron microscope;
PFR, polymeric flame retardant; CCT, Cone calorimeter test;
ZH, Zinc hydroxystannate H-TRIS, heat-transfer rate inducing system;
HCCP, hexachlorocyclotriphosphate; TGA, thermogravimetric analysis;
ABS, acrylonitrile–butadiene–styrene; LOI, limit oxygen index;
DPP, phosphaphenanthrene; TEM, transmission electron microscope
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