Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenol and Flavonoid Contents in Iris tuberosa Extract (ITE)
2.2. Synthesis and Characterization of Biogenic-AgNPs
2.2.1. Synthesis and UV-vis Characterization of Biogenic-AgNP
2.2.2. DLS Measures of Biogenic-AgNPs
2.2.3. TEM Images of Biogenic-AgNPs
2.3. Antimicrobial Activity of Biogenic-AgNPs
2.4. Antioxidant Properties of Biogenic-AgNPs
2.5. Preservative Efficacy of Biogenic-AgNPs into Formulated Cream
3. Materials and Methods
3.1. Plant Extract Preparation
3.2. Content of Flavonoids and Polyphenols in Iris tuberosa Extract
3.3. Synthesis of Biogenic-Silver Nanoparticles
3.4. Nanoparticles Characterization
3.5. Antimicrobial Assay
3.6. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
3.7. Moisturizing Cream Formulation
3.8. Preservative Activity of AgNPs in Formulated Cream
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bilal, M.; Mehmood, S.; Iqbal, H.M.N. The beast of beauty: Environmental and health concerns of toxic components in cosmetics. Cosmetics 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics preservation: A review on present strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalek, I.M.; John, S.M.; Caetano dos Santos, F.L. Microbiological contamination of cosmetic products—observations from Europe, 2005–2018. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2151–2157. [Google Scholar] [CrossRef]
- Shaman, F.; Garcá, J.A.; Palacios, S. Prevalence of cosmetic sensitivity among beauticians. Allergol. Immunopathol. 1995, 23, 148–152. [Google Scholar]
- Alvarez-Rivera, G.; Llompart, M.; Lores, M.; Garcia-Jares, C. Preservatives in Cosmetics: Regulatory Aspects and Analytical Methods; Elsevier B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780444635167. [Google Scholar]
- TOLER, J.C. Preservative stability and preservative systems. Int. J. Cosmet. Sci. 1985, 7, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Yang, T.; Ye, X.; Calafat, A.M.; Hauser, R. Urinary Concentrations of Parabens and Serum Hormone Levels. Environ. Health Perspet. 2011, 252, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morisseau, C.; Hammock, B.D. Impact of Soluble Epoxide Hydrolase and Epoxyeicosanoids on Human Health. Annu. Rev. Pharmacol. Toxicol. 2014, 53, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.T.B.; Yoo, Y.; Choi, K.; Jeung, E. Potential estrogenic effect (s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod. Toxicol. 2010, 29, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Karpuzoglu, E.; Holladay, S.D.; Gogal, R.M.G., Jr. Critical Reviews Parabens: Potential impact of Low-Affinity Estrogen receptor Binding chemicals on Human health. J. Toxicol. Environ. Health Part B 2013, 16, 37–41. [Google Scholar]
- De Groot, A.C.; Veenstra, M. Formaldehyde-releasers in cosmetics in the USA. Contact Dermat. 2010, 62, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Domingues, I. Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. 2009, 16, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chakraborty, A.; Raj, M.; Roy, P. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 2009, 27, 177–185. [Google Scholar] [CrossRef]
- Cl, A.; Panchal, A.; Rahman, N.; Pereira-silva, M. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials 2019, 9, 903. [Google Scholar]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Committee, S.; Sccs, C.S. Scientific Committee on Consumer Safety Colloidal Silver (nano); European Commission: Luxembourg, 2018. [Google Scholar]
- Alves, T.; De Souza, J.; Rodrigues, L.; Souza, R.; Pereira, L. Ecotoxicology and Environmental Safety Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 2019, 171, 691–700. [Google Scholar]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef] [PubMed]
- Gardea-torresdey, J.L.; Gomez, E.; Peralta-videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-yacaman, M. Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir 2003, 19, 1357–1361. [Google Scholar] [CrossRef]
- Shivaji, S.; Madhu, S.; Singh, S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 2011, 46, 1800–1807. [Google Scholar] [CrossRef]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [Green Version]
- Swilam, N.; Nematallah, K.A. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Sci. Rep. 2021, 10, 1–11. [Google Scholar]
- Garibo, D.; Nuñez, H.A.B.; De León, J.N.D.; Mendoza, E.G.; Estrada, I.; Magaña, Y.T.; Tiznado, H.; Marroquin, M.O.; Ramos, A.G.S.; Blanco, A.; et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high—Antimicrobial activity. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Colloids and Surfaces B: Biointerfaces Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Niza, E.; Nieto-Jiménez, C.; Noblejas-López, M.D.M.; Bravo, I.; Castro-Osma, J.A.; de la Cruz-Martínez, F.; de Buchaca, M.M.S.; Posadas, I.; Canales-Vázquez, J.; Lara-Sanchez, A.; et al. Poly(Cyclohexene phthalate) nanoparticles for controlled dasatinib delivery in breast cancer therapy. Nanomaterials 2019, 9, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chand, K.; Abro, M.I.; Aftab, U.; Shah, H. activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and. RSC Adv. 2019, 9, 17002–17015. [Google Scholar] [CrossRef] [Green Version]
- Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 2019, 124, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Oberdörster, G.; Elder, A.; Gelein, R.; Mercer, P.; Biswas, P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2008, 2, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Chapter 3—Lipid-Based Nanoparticles for Drug Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128140314. [Google Scholar]
- Gogoi, S.K.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S.S.; Chattopadhyay, A. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 2006, 22, 9322–9328. [Google Scholar] [CrossRef]
- He, Y.; Wei, F.; Ma, Z.; Zhang, H.; Yang, Q.; Yao, B.; Huang, Z.; Li, J.; Zeng, C.; Zhang, Q. Green synthesis of silver nanoparticles using seed extract of: Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 2017, 7, 39842–39851. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, X.; Zheng, Y.; Wang, Z.; Ma, Z.; Yang, Q.; Yao, B.; Zhao, Y.; Zhang, H. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New J. Chem. 2018, 42, 2882–2888. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Rahimi, Z.; Ghafori, V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett. 2014, 137, 1–4. [Google Scholar] [CrossRef]
- Omran, B.A.; Nassar, H.N.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J. Appl. Microbiol. 2018, 125, 370–382. [Google Scholar] [CrossRef]
- Sarabandi, K.; Jafari, S.M.; Mohammadi, M.; Akbarbaglu, Z.; Pezeshki, A.; Heshmati, M.K. Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocoll. 2019, 96, 442–450. [Google Scholar] [CrossRef]
- Nair, B. Final Report on the Safety Assessment of Benzyl. Int. J. Toxicol. 2001, 20, 23–50. [Google Scholar] [PubMed]
- Aerts, O.; Verhulst, L.; Goossens, A. Ethylhexylglycerin: A low-risk, but highly relevant, sensitizer in ‘hypo-allergenic’ cosmetics. Contact Dermat. 2016, 74, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tang, C. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Qidwai, A.; Kumar, R.; Dikshit, A. synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chem. Lett. Rev. 2018, 11, 8253. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Moraga, Á.; Argandoña, J.; Mota, B.; Pérez, J.; Verde, A.; Fajardo, J.; Gómez-Navarro, J.; Castillo-López, R.; Ahrazem, O.; Gómez-Gómez, L. Screening for polyphenols, antioxidant and antimicrobial activitiesof extracts from eleven Helianthemum taxa (Cistaceae) used in folk medicine in south-eastern Spain. J. Ethnopharmacol. 2013, 148, 287–296. [Google Scholar] [CrossRef]
Formulation | Average Size (nm) | PDI | Z-Value (mV) |
---|---|---|---|
Biogenic-AgNPs | 116.4 ± 4.10 | 0.3 ± 0.02 | −27.5 ± 0.83 |
Microorganism | Control MIC (µg/mL) | Biogenic-AgNP MIC (µg/mL) |
---|---|---|
E. coli | * 1111.0 ± 7.3 | 44.4 ± 2.5 |
P. aeruginosa | * 1111.0 ± 7.8 | 14.1 ± 2.6 |
S. aureus | * 3333.0 ± 19.1 | 14.1 ± 2.7 |
C. albicans | ** 185.0 ± 7.6 | 66.7 ± 0.4 |
A. brasiliensis | ** 185.0 ± 9.8 | 14.1 ± 0.8 |
Ingredient | Control-Cream (%) | AgNP-Cream (%) |
---|---|---|
Water (A) | 56.3 | 57.3 |
Vegetable glycerin (A) | 4.2 | 4.2 |
Macadamia ternifolia seed oil (B) | 12.5 | 12.5 |
Orbingnya oleifera seed oil (B) | 10 | 10 |
Helianthus annus seed oil (B) | 5 | 5 |
Montanov 68 (B) | 5 | 5 |
Argania spinosa kernel oil (B) | 2 | 2 |
Biosaccharide gum-1 © | 2 | 2 |
Malva silvestris flower extract © | 1.27 | 1.27 |
Vitamin E (C) | 0.5 | 0.5 |
Parfum (C) | 0.2 | 0.2 |
Benzyl alcohol (C) | 0.91 | - |
Ethylhexylglycerin (C) | 0.12 | - |
AgNPs (C) | - | 0.007 |
Microorganism | Time (Days) | Control-Cream | AgNP-Cream |
---|---|---|---|
P. aeruginosa Count CFU/gr | 0 | 1.5 × 105 ± 16,773.0 | 1.5 × 105 ± 7810.2 |
2 | 1.5 × 105 ± 2098.4 | 0 | |
7 | 1.5 × 105 ± 20,207.3 | 0 | |
14 | 1.5 × 105 ± 1000 | 0 | |
28 | 1.2 × 104 ± 321.5 | 0 | |
E. coli Count CFU/gr | 0 | 1.5 × 105 ± 2081.7 | 1.5 × 105 ± 1423.1 |
2 | 1.5 × 105 ± 11,135.5 | 0 | |
7 | 1.5 × 105 ± 14,977.8 | 0 | |
14 | 1.5 × 105 ± 1527.5 | 0 | |
28 | 4.8 × 105 ± 20,816.7 | 0 | |
S. aureus Count CFU/gr | 0 | 1.5 × 105 ± 7937.3 | 1.5 × 105 ± 11,269.4 |
2 | 1.1 × 105 ± 1527.5 | 5.3 × 101 ± 6.5 | |
7 | 8.6 × 102 ± 15.3 | 0 | |
14 | 3.8 × 103 ± 602.8 | 0 | |
28 | 4.4 × 103 ± 160.4 | 0 | |
A. brasiliensis Count CFU/gr | 0 | 1.5 × 105 ± 14.4 | 1.5 × 105 ± 13,000.0 |
7 | 1.0 × 102 ± 15.1 | 6.7 × 101 ± 13.1 | |
14 | 0 | 0 | |
28 | 0 | 0 | |
C. albicans Count CFU/gr | 0 | 1.4 × 104 ± 212.1 | 1.4 × 104 ± 1792.5 |
7 | 1.9 × 103 ± 10,343.2 | 0 | |
14 | 2.5 × 103 ± 136.5 | 0 | |
28 | 1.8 × 103 ± 113.7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondéjar-López, M.; López-Jiménez, A.J.; Abad-Jordá, M.; Rubio-Moraga, A.; Ahrazem, O.; Gómez-Gómez, L.; Niza, E. Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules 2021, 26, 4696. https://doi.org/10.3390/molecules26154696
Mondéjar-López M, López-Jiménez AJ, Abad-Jordá M, Rubio-Moraga A, Ahrazem O, Gómez-Gómez L, Niza E. Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules. 2021; 26(15):4696. https://doi.org/10.3390/molecules26154696
Chicago/Turabian StyleMondéjar-López, Maria, Alberto José López-Jiménez, Minerva Abad-Jordá, Angela Rubio-Moraga, Oussama Ahrazem, Loudes Gómez-Gómez, and Enrique Niza. 2021. "Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products" Molecules 26, no. 15: 4696. https://doi.org/10.3390/molecules26154696
APA StyleMondéjar-López, M., López-Jiménez, A. J., Abad-Jordá, M., Rubio-Moraga, A., Ahrazem, O., Gómez-Gómez, L., & Niza, E. (2021). Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules, 26(15), 4696. https://doi.org/10.3390/molecules26154696