Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens
Abstract
:1. Introduction
2. Results
2.1. Antifungal Activity of Plant Extracts Using Thin Layer Chromatography-Bioautography Assay
2.2. Purified Compounds
2.3. Antifungal Activity of the Compounds
2.4. Phytotoxicity of Isolated Antifungal Compounds on Maize Seed Germination
2.5. Inhibition of Raw 264.7 Macrophage Cell Proliferation by Isolated Compounds
2.6. Structural Elucidation of Compounds
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Material and Preparation of the Extracts
4.2. Subculturing of Fusarium Pathogens
4.3. Thin Layer Chromatography (TLC) Bioautography
4.4. Compound Isolation
4.5. Antifungal Activity Determination of Isolated Compounds
4.6. Physical and Spectroscopic Identification of Purified Compounds
4.7. Characterization of Isolated Purified Compounds
4.8. Phytotoxicity Evaluation of Isolated Antifungal Compounds against Maize Seed Germination
4.9. Cytotoxicity Evaluation of Isolated Compounds
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wilson, C.L.; Solar, J.M.; Ghaouth, A. Rapid Evaluation of Plant Extracts and Essential Oils for Antifungal Activity against Botrytis cinerea. Plant Dis. 1997, 81, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The Effectiveness of Plant Essential Oils on the Growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. Michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Ramaiah, K.A.; Garampalli, R.K.H. In vitro Antifungal Activity of Some Plant Extracts against Fusarium oxysporum f. sp. lycopersici. Asian J. Plant Sci. 2015, 5, 22–27. [Google Scholar]
- Harris, C.A.; Renfrew, M.J.; Woolridge, M.W. Assessing the Risk of Pesticide Residues to Consumers: Recent and Future Developments. Food Addit. Contam. 2001, 18, 1124–1129. [Google Scholar] [CrossRef]
- Fandohan, P.; Gbenou, J.D.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.; Wingfield, M.J. Effect of Essential Oils on the Growth of Fusarium verticillioides and fumonisin Contamination in Corn. J. Agric. Food Chem. 2004, 52, 6824–6829. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- MartÍnez, J.A. Natural Fungicides Obtained from Plants, Fungicides for Plant and Animal Diseases. In Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Ed.; InTechOpen: Shanghai, China, 2012; p. 23. [Google Scholar]
- Adepoju, A.O.; Ogunkunle, A.T.J.; Femi-Adepoju, A.G. Antifungal Activities of Seed Oil of Neem (Azadirachta indica A. Juss). Glob. J. Biol. Agric. Health Sci. 2014, 3, 106–109. [Google Scholar]
- Rishi, K.; Singh, R. Chemical Components and Insecticidal Properties of Bakain (Melia azedarach L.)–A Review. Agric. Rev. 2003, 24, 101–115. [Google Scholar]
- Suresh, K.; Deepa, P.; Harisaranraj, R.; Vaira, A.V. Antimicrobial and Phytochemical Investigation of the Leaves of Carica papaya L., Cynodon dactylon L. Pers., Euphorbia hirta L., Melia azedarach L. and Psidium guajava L. Ethnobot. Leaflets 2008, 12, 1184–1191. [Google Scholar]
- Gelfand, M.; Mavi, S.; Drummond, R.B.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia; Mambo Press: Gweru, Zimbabwe, 1985; p. 411. [Google Scholar]
- Sohni, Y.R.; Kale, P.G. Mutagenicity of Combretum erythrophyllum in Sex-linked Recessive Lethal Test in Drosophila. Phytother. Res. 1997, 11, 524–526. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, P.K.; Dudhe, R.; Singh, S. Biological Activities of Withania somnifera. Ann. Biol. Res. 2010, 1, 56–63. [Google Scholar]
- Kulkarni, S.K.; George, B.; Mathur, R. Protective Effect of Withania somnifera Root Extract on Electrographic Activity in a Lithiumpilocarpine Model of Status Epilepticus. Phytother. Res. 1998, 12, 451–453. [Google Scholar] [CrossRef]
- Acharyya, S.; Patra, A.; Bag, P.K. Evaluation of the Antimicrobial Activity of Some Medicinal Plants against Enteric Bacteria with Particular Reference to Multi-drug Resistant Vibrio cholerae. Trop. J. Pharmaceut. Res. 2009, 8, 231–237. [Google Scholar] [CrossRef]
- Alam, N.; Hossain, M.; Mottalib, M.A.; Sulaiman, S.A.; Gan, S.H.; Khalil, M.I. Methanolic Extracts of Withania somnifera Leaves, Fruits and Roots Possess Antioxidant Properties and Antibacterial Activities. BMC Complement. Altern. Med. 2012, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal Lactones from Withania somnifera, an Ancient Plant for Novel Medicine. Molecules 2009, 14, 2373–2393. [Google Scholar] [CrossRef] [Green Version]
- Seepe, H.A.; Amoo, S.O.; Nxumalo, W.; Adeleke, R.A. Antifungal Activity of Medicinal Plant Extracts for Potential Management of Fusarium pathogens. Res. Crops 2019, 20, 399–406. [Google Scholar]
- Seepe, H.A.; Amoo, S.O.; Nxumalo, W.; Adeleke, R.A. Sustainable Use of Thirteen South African Medicinal Plants for the Management of Crop Diseases Caused by Fusarium species–An In Vitro Study. S. Afr. J. Bot. 2020, 130, 456–464. [Google Scholar] [CrossRef]
- Boue, M.S.; Carter-Wientjes, H.C.; Shih, Y.B.; Cleveland, E.T. Identification of Flavone Aglycones and Glycosides in Soybean Pods by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2003, 991, 61–68. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Prakash, I. Kaempferol glycosides from Siraitia grosvenorii. J. Chem. Pharm. Res. 2011, 3, 799–804. [Google Scholar]
- Mohamed, A.A.A.; Melati, K.; Wong, K.C. Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum. Aschers. Rec. Nat. Prod. 2015, 9, 159–163. [Google Scholar]
- Moghaddam, F.M.; Farimani, M.M.; Salahvarzi, S.; Amin, G. Chemical Constituents of Dichloromethane Extract of Cultivated Satureja khuzistanica. J. Evid. Based Complementary Altern. Med. 2007, 4, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Mena-Rejo’n, G.J.M.; Pe’rez-Espadas, A.R.; Moo-Puc, R.E.; Cedillo-Rivera, R.; Bazzocchi, I.L.; Jime’nez-Diaz, I.A.; Quijano, L. Antigiardial Activity of Triterpenoids from Root Bark of Hippocratea excels. J. Nat. Prod. 2007, 70, 863–865. [Google Scholar] [CrossRef]
- Wicht, M.M. Oleanolic Acid-Its Isolation and Derivatisation to Potential Antimicrobial Compounds. Master’s Thesis, Cape Peninsula University of Technology, Cape Town, South Africa, 2007. [Google Scholar]
- Zhao, J.; Nakamura, N.; Hattori, M.; Kuboyama, T.; Tohda, C.; Komatsu, K. Withanolide Derivatives from the Roots of Withania somnifera and their Neurite Outgrowth Activities. Chem. Pharm. Bull. 2002, 50, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Murugan, S.; Ameesh, M.; Ekambaram, G.; Devaraja, R.; Sundaram, R.; Ashok, V.; Shilpa, S.; Sakthisekaran, D. Isolation of Withaferin-A from Withania somnifera Plant Root and its Effects on Cancer Rats. Int. J. Recent Trends Sci. Technol. 2015, 15, 463–472. [Google Scholar]
- Chaurasiya, N.D.; Sangwan, N.S.; Sabir, F.; Misra, L.; Sangwan, R.S. Withanolide Biosynthesis Recruits both Mevalonate and DOXP Pathways of Isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep. 2012, 31, 1889–1897. [Google Scholar] [CrossRef]
- Masoko, P.; Makgapeetja, D.M. Antibacterial, Antifungal and Antioxidant Activity of Olea africana against Pathogenic Yeast and Nosocomial Pathogens. BMC Complement. Altern. Med. 2015, 15, 409. [Google Scholar] [CrossRef] [Green Version]
- Masoko, P.; Picard, J.; Eloff, J.N. Antifungal Activities of Six South African Terminalia species (Combretaceae). J. Ethnopharmacol. 2005, 99, 301–308. [Google Scholar] [CrossRef]
- Masoko, P.; Eloff, J.N. The Diversity of Antifungal Compounds of Six South African Terminalia species (Combretaceae) Determined by Bioautography. Afr. J. Biotechnol. 2005, 12, 1425–1431. [Google Scholar]
- Saha, S.; Walia, S.; Kumar, J.; Parmar, B.S. Triterpenic Saponins as Regulator of Plant Growth. J. Appl. Bot. Food Qual. 2010, 83, 189–195. [Google Scholar]
- Aulya, N.R.; Noli, Z.A.; Bakhtiar, A. Effect of Plant Extracts on Growth and Yield of Maize (Zea mays L.). Pertanika J. Trop. Agric. Sci. 2018, 41, 1193–1205. [Google Scholar]
- Kusena, K.; Wynberg, R.; Mujaju, C. Do Smallholder Farmer-Led Seed Systems Have the Capacity to Supply Good-Quality, Fungal-Free Sorghum Seed? Agric. Food Secur. 2017, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Kroll, D.J. Natural Compounds in Cancer Therapy: Promising Nontoxic Antitumor Agents from Plants and Other Natural Sources. J. Nat. Prod. 2001, 64, 1605–1606. [Google Scholar] [CrossRef]
- Taleb-Contini1, S.H.; Salvador, M.J.; Watanabe, E.; Ito, I.Y.; Rodrigues de Oliveira, D.C. Antimicrobial Activity of Flavonoids and Steroids Isolated from Two Chromolaena species. Braz. J. Pharm. Sci. 2003, 39, 4. [Google Scholar] [CrossRef] [Green Version]
- Martini, N.D.; Katerere, D.R.P.; Eloff, J.N. Biological Activity of five Antibacterial Flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef]
- Fajriah, S.; Megawati, M.; Darmawan, A. Apigenin, An Anticancer Isolated from Macaranga gigantifolia leaves. J. Trop. Life Sci. 2016, 6, 7–9. [Google Scholar]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, B.E.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Suzaki, S.; Nishikawa, T.; Kihara, M.; Shibata, H.; Higuti, T. Phytochemical Flavones Isolated from Scutellaria barbata and aAntibacterial Activity against Methicillin-Resistant Staphylococcus aureus. J. Ethnopharmacol. 2000, 72, 483–488. [Google Scholar] [CrossRef]
- Nayaka, H.B.; Londonkar, R.L.; Umesh, M.K.; Tukappa, A. Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 2014, 175851. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M.; Adamczak, A.; Ożarowski, M. Antibacterial Activity of Apigenin, Luteolin, and their C-glucosides. In Proceedings of the 5th International Electronic Conference on Medicinal Chemistry, Online, 1–30 November 2019. [Google Scholar]
- Adamczak, A.; Ozarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedula, V.S.P.; Prakash, I. Flavonoids from Astragalus propinquus. J. Chem. Pharm. Res. 2013, 5, 261–265. [Google Scholar]
- Noori, S.; Hassan, Z.M.; Yaghmaei, B.; Dolatkhah, M. Antitumor and Immunomodulatory Effects of Salvigenin on Tumor Bearing Mice. Cell Immunol. 2013, 286, 16–21. [Google Scholar] [CrossRef]
- Mansourabadi, A.H.; Sadeghi, H.M.; Razavi, N.; Rezvani, E. Anti-inflammatory and Analgesic Properties of Salvigenin, Salvia Officinalis Flavonoid Extracted. Adv. Herb. Med. 2015, 3, 31–41. [Google Scholar]
- Mangoyi, R.; Midiwo, J.; Mukanganyama, S. Isolation and Characterization of an Antifungal Compound 5-hydroxy-7,4′-dimethoxyflavone from Combretum zeyheri. BMC Complementary Altern. Med. 2015, 15, 405. [Google Scholar] [CrossRef] [Green Version]
- Taşkın, T.; Güler, E.M.; Şentürk, S.; Çelik, D.D.; Arabacı, T.; Gürer, U.S. Cytotoxic Activity-guided Isolation from Achillea monocephala, and Biological Activities of its Different Extracts. TOBCJ 2020, 8, 7–14. [Google Scholar] [CrossRef]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts. Molecules 2009, 14, 2016–2031. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Mena, G.; Sanchez-Gonzalez, M.; Juan, M.E.; Planas, J.M. Maslinic Acid, a Natural Phytoalexin-Type Triterpene from Olives–a Promising Nutraceutical? Molecules 2014, 19, 11538–11559. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evid.-Based Complementary Altern. Med. 2015, 2015, 541591. [Google Scholar] [CrossRef] [Green Version]
- Karygianni, L.; Cecere, M.; Argyropoulou, A.; Hellwig, E.; Skaltsounis, A.L.; Wittmer, A.; Tchorz, J.P.; Al-Ahmad, A. Compounds from Olea europaea and Pistacia lentiscus Inhibit Oral Microbial Growth. BMC Complementary Altern. Med. 2019, 19, 51. [Google Scholar] [CrossRef]
- Blanco-Cabra, N.; Vega-Granados, K.; Moya-Andérico, L.; Vukomanovic, M.; Parra, A.; Álvarez de Cienfuegos, L.; Torrents, E. Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study. ACS Infect. Dis. 2019, 5, 1581–1589. [Google Scholar] [CrossRef]
- Devi, P.U.; Sharada, A.C.; Solomon, F.E. Antitumor and Radios Ensitizing Effects of Withania somnifera (Ashwagandha) on a Transplantable Mouse Tumor, Sarcoma-180. Indian J. Exp. Biol. 1993, 31, 607–611. [Google Scholar]
- Ali, N.A.; Julicch, W.D.; Kusnick, C.; Lindequist, U. Screening of Yemeni Medicinal Plants for Antibacterial and Cytotoxic Activities. J. Ethnopharmacol. 2001, 74, 173–179. [Google Scholar] [CrossRef]
- Abou-Douh, A.M. New Withanolides and Other Constituents from the Fruit of Withania somnifera. Architec. Pharmacol. 2002, 335, 267–276. [Google Scholar] [CrossRef]
- Aberkane, A.; Cuenca-Estrella, M.; Gomez-Lopez, A.; Petrikkou, E.; Mellado, E.; Monzon, A.; Rodriguez Tudela, J.L. Comparative Evaluation of Two Different Methods of Inoculums Preparation for Antifungal Susceptibility Testing of Filamentous Fungi. J. Antimicrob. Chemother. 2002, 50, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Mahlo, S.M.; McGaw, L.J.; Eloff, J.N. Antifungal Activity of Leaf Extracts from South African Trees against Plant Pathogens. Crop Prot. 2010, 29, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. Which Extractant Should be Used for the Screening and Isolation of Antimicrobial Components from Plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- HighChem LLC. mz Cloud. Advanced Mass Spectral Database. 2020. Available online: https://www.mzcloud.org/ (accessed on 29 May 2019).
- Seepe, H.A.; Lodama, K.E.; Sutherland, R.; Nxumalo, W.; Amoo, S.O. In Vivo Antifungal Activity of South African Medicinal Plant Extracts against Fusarium pathogens and their Phytotoxicity Evaluation. Plants 2020, 9, 1668. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Pathogens | Leaf Extracts | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ethyl Acetate | Acetone | |||||||||
F. oxysporum | - | - | - | - | - | - | - | - | 0.47 | 0.52 |
F. verticilloides | 0.20 | 0.29 | 0.38 | 0.44 | 0.48 | - | 0.32 | 0.38 | 0.47 | 0.52 |
F. subglutinans | - | - | 0.38 | - | 0.48 | 0.51 | - | 0.38 | 0.47 | 0.52 |
F. proliferatum | 0.20 | - | 0.38 | 0.44 | 0.48 | - | - | 0.38 | 0.47 | 0.52 |
F. solani | - | 0.29 | - | 0.44 | 0.48 | - | - | 0.87 | 0.47 | - |
F. graminearum | - | - | - | - | - | - | - | 0.38 | 0.47 | - |
F. chlamydosporum | - | - | 0.38 | 0.44 | 0.48 | 0.51 | 0.32 | - | 0.47 | 0.52 |
Pathogens | Leaf Extracts | ||||||
---|---|---|---|---|---|---|---|
Ethyl Acetate | Acetone | ||||||
F. oxysporum | 0.22 | 0.41 | - | 0.26 | - | 0.44 | - |
F. verticilloides | 0.22 | 0.41 | 0.59 | 0.26 | - | - | - |
F. proliferatum | 0.22 | 0.41 | 0.59 | 0.26 | 0.33 | - | - |
F. semitectum | 0.22 | 0.41 | 0.59 | 0.26 | - | 0.44 | 0.46 |
F. solani | 0.22 | 0.41 | - | 0.26 | 0.33 | - | - |
Combretum erythrophyllum | Withania somnifera | ||
---|---|---|---|
Compounds | Mass (w/w %) | Compounds | Mass (w/w %) |
A | 1.6 | Y | 1.4 |
B | 1.0 | Z | 2.7 |
C | 1.7 | AA | 1.3 |
D | 1.1 | AB | 1.1 |
E | 1.2 | AC | 1.0 |
F | 0.9 | AD | 1.1 |
G | 1.3 | AE | 0.2 |
H | 0.7 | AF | 1.1 |
I | 1.1 | AG | 0.8 |
J | 0.9 | AH | 1.3 |
K | 1.3 | AI | 1.4 |
AJ | 1.3 |
Compounds | MIC (mg/mL) | ||||||
---|---|---|---|---|---|---|---|
F. oxysporum | F. verticilloides | F. subglutinans | F. proliferatum | F. solani | F. graminearum | F. chlamydosporum | |
A | 1.25 | 0.31 | 1.3 | 0.01 | 0.31 | 0.63 | 0.63 |
B | 0.31 | 0.08 | 0.63 | 0.31 | 0.63 | 0.63 | 1.3 |
C | >2.5 | 2.5 | 1.25 | >2.5 | >2.5 | 1.3 | 2.5 |
D | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.3 |
E | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 |
F | 2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 2.5 | 1.3 |
G | 2.5 | >2.5 | >2.5 | >2.5 | > 2.5 | 2.5 | >2.5 |
H | 1.25 | >2.5 | 1.25 | >2.5 | 1.3 | 1.3 | 1.3 |
I | 0.63 | >2.5 | 0.63 | >2.5 | 1.3 | 2.5 | >2.5 |
J | 0.63 | 0.63 | 0.63 | 1.3 | 1.3 | 1.3 | 0.63 |
K | 1.3 | 1.3 | 2.5 | 1.3 | 1.3 | 1.3 | 1.3 |
Amphotericin B® | 1.2 | 0.003 | 9.4 | 0.0004 | 1.2 | 2.3 | 2.3 |
Compounds | MIC (mg/mL) | ||||
---|---|---|---|---|---|
F. oxysporum | F. verticilloides | F. proliferatum | F. semitectum | F. solani | |
Y | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 |
Z | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 |
AA | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 |
AB | 0.63 | 0.31 | 0.31 | 1.25 | 1.25 |
AC | 2.5 | >2.5 | 2.5 | 2.5 | 2.5 |
AD | 2.5 | 1.25 | 2.5 | >2.5 | 2.5 |
AE | 2.5 | 1.25 | 2.5 | 2.5 | 1.25 |
AF | >2.5 | 0.63 | >2.5 | 0.63 | 0.63 |
AG | >2.5 | >2.5 | 1.25 | >2.5 | >2.5 |
AH | >2.5 | >2.5 | 2.5 | >2.5 | >2.5 |
AI | 1.25 | 0.16 | 1.25 | 1.25 | 2.5 |
AJ | >2.5 | >2.5 | 2.5 | >2.5 | >2.5 |
Amphotericin B® | 1.2 | 0.003 | 0.0004 | 2.3 | 1.2 |
Signals | Chemical Shift (δH, ppm in DMSO-d6) | Integration, Multiplicity | Coupling Constant (J, Hz) | Apigenin | Salvigenin |
---|---|---|---|---|---|
1 | 3.8 | s, 3H | - | - | 3.87 (s, 3H) |
2 | 6.2 | d, 1H | 2.04 | 6.19 (d, 1H, J = 2.0 Hz) | - |
3 | 6.5 | d, 1H | 2.04 | 6.48 (d, 1H, J = 2.0 Hz) | 6.52 (s, 1H) |
4 | 6.8 | s, 1H | - | 6.78 (s, 1H) | - |
5 | 7.1 | d, 2H | 8.96 | 6.94 (d, 2H, J = 8.8 Hz) | 6.99 (d, 2H, J = 8.9 Hz) |
6 | 8.0 | d, 2H | 8.92 | 7.94 (d, 2H, J = 8.8 Hz) | 7.82 (d, 2H, J = 8.9 Hz) |
7 | 10.9 | s, 1H | - | - | - |
8 | 12.9 | s, 1H | - | 12.97 (s, 1H) | 12.74 (s, 1H) |
Signals | Chemical Shift (δC, ppm in DMSO-d6) | |
---|---|---|
Compound A | Apigenin [22] | |
1 | 55.6 | - |
2 | 56.1 | - |
3 | 94.1 | 93.9 |
4 | 98.9 | 98.9 |
5 | 103.5 | 102.8 |
6 | 103.8 | 103.7 |
7 | 115.9 | 115.9 |
8 | 122.8 | 121.2 |
9 | 128.6 | 128.5 |
10 | 157.4 | 157.3 |
11 | 161.5 | 161.2 |
12 | 162.3 | 161.5 |
13 | 163.3 | 163.7 |
14 | 164.3 | 164.3 |
15 | 181.8 | 181.8 |
Signals | Chemical Shift (δH, ppm in CDCl3) | Integration, Multiplicity | Coupling Constants (J, Hz) |
---|---|---|---|
1 | 0.8 | s, 3H | - |
2 | 0.9 | t, 2H | 6.75 |
3 | 1.0 | s, 3H | - |
4 | 1.3 | s, 3H | - |
5 | 1.7 | s, 1H | - |
6 | 1.8 | s, 2H | - |
7 | 1.9 | d, 1H | 7.08 |
8 | 2.0 | dd, 2H | 6.56 |
9 | 2.1 | d, 1H | 6.88 |
10 | 2.2 | s, 2H | - |
11 | 3.5 | s, 7H | - |
12 | 3.6 | s, 2H | - |
13 | 5.1 | td, 1H | 7.42, 14.4 |
Signals | 13C, ppm in CDCl3 | |
---|---|---|
Compound B | Ursolic Acid [23] | |
1 | 15.9 | 16.1 |
2 | 16.3 | 16.9 |
3 | 17.6 | 17.8 |
4 | 18.6 | 18.9 |
5 | 22.6 | 21.9 |
6 | 25.7 | 24.1 |
7 | 26.6 | 24.7 |
8 | 26.7 | 27.8 |
9 | 28.2 | 28.4 |
10 | 29.3 | 29.1 |
11 | 29.6 | 29.1 |
12 | 30.9 | 31.1 |
13 | 31.9 | 33.6 |
14 | 39.7 | 39.3 |
15 | 39.7 | 39.4 |
16 | 44.4 | 42.5 |
17 | 44.8 | 47.7 |
18 | 51.8 | 47.9 |
19 | 54.2 | 53.2 |
20 | 124.2 | - |
21 | 124.3 | 125.4 |
22 | 131.2 | - |
23 | 135.0 | 139.0 |
24 | 176.9 | - |
25 | 178.1 | 179.1 |
26 | 207.1 | - |
Signals | Compound AI | Withanolide Derivative [26] | Withaferin-A [27] | ||
---|---|---|---|---|---|
Chemical Shift (δH, ppm in CDCl3) | Multiplicity | Coupling Constants (J, Hz) | δH, ppm | ||
1 | 0.8 | s, 2H | - | 0.89, m | - |
2 | 0.9 | s, 1H | - | 0.94, m | 0.91, s |
3 | 0.9 | d, 1H | 8 | 0.96, m | - |
4 | 1.0 | d, 2 H | 6.8 | 1.03, m | 1.03, d |
5 | 1.1 | s, 1 H | - | - | |
6 | 1.2 | s, 1H | 1.20, m | 1.20, s | |
7 | 1.3 | m, 3H | 6.4 | - | 1.27–1.34, m |
8 | 1.5 | m, 2H | 3, 12 | 1.40, dd, | - |
9 | 1.6 | m | 1.62, td | 1.64–1.65, m | |
10 | 1.7 | m, 3H | 1.74, m | 1.68–1.91, m | |
11 | 1.8 | s | 1.81–1.85, m | - | |
12 | 1.9 | s, 2H | 1.90, m | 1.91, s | |
13 | 2.0 | m, 2H | 2.01, dd | 2.0. s | |
14 | 2.3 | m, 1H | 4 | 2.32, dd | - |
15 | 2.4 | d, 1H | 3.6 | - | - |
16 | 2.5 | m, 1H | - | - | 2.52–2.57, m |
17 | 2.6 | d, 1H | 4.8 | - | - |
18 | 2.7 | d, 1H | 18 | - | 2.68–2.73, m |
19 | 2.8 | dd, 1H | 3, 13.44 | 2.88, dd | - |
20 | 3.03 | d, 1H | 2.24 | 2.93, dd | 3.06, d |
21 | 3.1 | d, 1H | 1.20 | - | - |
22 | 3.3 | m, 1H | 1.96, 5.44 | - | - |
23 | 4.6 | m, 1H | 2.84, 7.36, 19.32 | 4.55, m | 4.30–4.41, m |
24 | 5.8 | dd, 1H | 2.32, 10.28 | 4.83, d | 5.86, dd |
25 | 6.6 | m, 1H | 2.36, 7.44, 17.48 | - | 6.59–6.62, m |
Signals | 13C, ppm in CDCl3 | ||
---|---|---|---|
Compound AI | Withanolide Derivative [26] | Withaferin A [28] | |
1 | 9.5 | - | 9.8 |
2 | 12.3 | 11.6 | 11.6 |
3 | 14.7 | 13.4 | 13.3 |
4 | 15.1 | 16.0 | 17.4 |
5 | 20.5 | 20.0 | 20.0 |
6 | 21.6 | 21.5 | 22.2 |
7 | 22.9 | 24.3 | 24.3 |
8 | 32.4 | 31.3 | 29.8 |
9 | 32.7 | 32.9 | 31.2 |
10 | 35.2 | - | - |
11 | 35.9 | - | - |
12 | 36.5 | 39.0 | 38.8 |
13 | 36.7 | 39.6 | 39.4 |
14 | 42.8 | 42.5 | 42.6 |
15 | 45.8 | 42.7 | 44.2 |
16 | 48.6 | - | - |
17 | 50.9 | 51.7 | 51.9 |
18 | 56.2 | 56.1 | 56.1 |
19 | 57.2 | 58.0 | 57.4 |
20 | 73.2 | 74.2 | 69.9 |
21 | 78.7 | 77.9 | 78.8 |
22 | 84.6 | 78.4 | 80.0 |
23 | 121.3 | - | 125.1 |
24 | 128.9 | 127.2 | 131.6 |
25 | 139.7 | - | 137.5 |
26 | 150.6 | 154.1 | 152.6 |
27 | 167.2 | 166.4 | 166.9 |
28 | 203.2 | 210.1 | 202.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seepe, H.A.; Ramakadi, T.G.; Lebepe, C.M.; Amoo, S.O.; Nxumalo, W. Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens. Molecules 2021, 26, 4732. https://doi.org/10.3390/molecules26164732
Seepe HA, Ramakadi TG, Lebepe CM, Amoo SO, Nxumalo W. Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens. Molecules. 2021; 26(16):4732. https://doi.org/10.3390/molecules26164732
Chicago/Turabian StyleSeepe, Hlabana Alfred, Tselane Geneva Ramakadi, Charity Mekgwa Lebepe, Stephen O. Amoo, and Winston Nxumalo. 2021. "Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens" Molecules 26, no. 16: 4732. https://doi.org/10.3390/molecules26164732
APA StyleSeepe, H. A., Ramakadi, T. G., Lebepe, C. M., Amoo, S. O., & Nxumalo, W. (2021). Antifungal Activity of Isolated Compounds from the Leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium Pathogens. Molecules, 26(16), 4732. https://doi.org/10.3390/molecules26164732