Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material, Extraction and HPLC-PDA-ESI-MS/MS Analysis
2.2. Cyclooxygenase and Lipoxygenase Inhibition Activities
2.3. Total Antioxidant Capacity (TAC) Assay
2.4. In Vivo Studies
Experimental Animals
2.5. Carrageenan-Induced Hind-Paw Edema Model
2.6. Leukocytes Recruitment into Peritoneal Cavity in Mice
2.7. Acetic Acid-Induced Vascular Permeability
2.8. Antinociceptive Activity by Hot Plate Test
2.9. Antinociceptive Activity by Acetic Acid-Induced Abdominal Writhing
2.10. Antipyretic Activity in Brewer’s Yeast Induced Pyrexia in Mice
2.11. Virtual Screening Studies
2.12. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Profiling
3.2. Biological Activities
3.3. Effects of P. perfoliatus Extract on Carrageenan-Induced Paw Edema in Rats and Carrageenan-Induced Leukocyte Migration into the Peritoneal Cavity in Mice
3.4. Effects of P. perfoliatus Extract on Acetic Acid-Induced Vascular Permeability in Mice
3.5. Effects of P. perfoliatus Extract on Acetic Acid-Induced Writhing and Hot Plate Test in Mice
3.6. Effects of P. perfoliatus Extract on Brewer’s Yeast-Induced Pyrexia in Mice
3.7. Virtual Screening Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jankun, J.; Selman, S.H.; Swiercz, R.; Skrzypczak-Jankun, E. Why Drinking Green Tea Could Prevent Cancer. Nature 1997, 387, 561. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Feve, B.; Ferre, P.; Halimi, S.; Baizri, H.; Bordier, L.; Guiu, G.; Dupuy, O.; Bauduceau, B.; Mayaudon, H. Diabetes and Inflammation: Fundamental Aspects and Clinical Implications. Diabetes Metab. 2010, 36, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Sobeh, M.; Rezq, S.; Cheurfa, M.; Abdelfattah, M.A.; Rashied, R.M.; El-Shazly, A.M.; Yasri, A.; Wink, M.; Mahmoud, M.F. Thymus Algeriensis and Thymus Fontanesii: Chemical Composition, In Vivo Antiinflammatory, Pain Killing and Antipyretic Activities: A Comprehensive Comparison. Biomolecules 2020, 10, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobeh, M.; El-Raey, M.; Rezq, S.; Abdelfattah, M.A.O.; Petruk, G.; Osman, S.; El-Shazly, A.M.; El-Beshbishy, H.A.; Mahmoud, M.F.; Wink, M. Chemical Profiling of Secondary Metabolites of Eugenia Uniflora and Their Antioxidant, Anti-Inflammatory, Pain Killing and Anti-Diabetic Activities: A Comprehensive Approach. J. Ethnopharmacol. 2019, 240, 111939. [Google Scholar] [CrossRef]
- Les, D.H.; Sheridan, D.J. Biochemical Heterophylly and Flavonoid Evolution in North American Potamogeton (Potamogetonaceae). Am. J. Bot. 1990, 77, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Shirshova, T.I.; Chadin, I.F.; Volodin, V.V. Biologically Active Substances in Aquatic Plants of the Genus Potamogeton (Potamogetonaceae). Adv. Mod. Biol. 2012, 132, 401–415. [Google Scholar]
- Bhowmik, S.; Datta, B.K.; Saha, A.K. Ethno Medicinal and Phytochemical Screening of Some Hydrophytes and Marsh Plants of Tripura, India. World Appl. Sci. J. 2013, 22, 1453–1459. [Google Scholar]
- Bolotova, Y.V. Aquatic Plants of the Far East of Russia: A Review on Their Use in Medicine, Pharmacological Activity. Bangladesh J. Med. Sci. 2015, 14, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Asaeda, T.; Sultana, M.; Manatunge, J.; Fujino, T. The Effect of Epiphytic Algae on the Growth and Production of Potamogeton perfoliatus L. in Two Light Conditions. Environ. Exp. Bot. 2004, 52, 225–238. [Google Scholar] [CrossRef]
- Karpati, I.; Bedo, S. Utilisation of Hay from Potamogeton perfoliatus L. Kh. Agrartud. Foisk. Kozlem. 1970, 12, 20. [Google Scholar]
- Roberts, M.L.; Haynes, R.R. Flavonoid Systematics of Potamogeton Subsections Perfoliati and Praelongi (Potamogetonaceae). Nord. J. Bot. 1986, 6, 291–294. [Google Scholar] [CrossRef]
- Waridel, P.; Wolfender, J.-L.; Lachavanne, J.-B.; Hostettmann, K. Ent-Labdane Diterpenes from the Aquatic Plant Potamogeton pectinatus. Phytochemistry 2003, 64, 1309–1317. [Google Scholar] [CrossRef]
- Fomina, A.A.; Konnova, S.A.; Fuchedzhi, O.A.; Tikhomirova, Y.I. Influence of the Polysaccharides of Potamogeton perfoliatus (Potamogetonaceae) on the Activity of Factors of Natural Cellular Resistance in Vitro. Rastit. Resur. 2010, 46, 118–125. [Google Scholar]
- Metwally, F.E.; Mohamed, A.A.; Mahalel, U.A.; Sheded, M.G. Evaluation of Certain Cosmopolitan Hydrophytes In The Nile River, Aswan District For Their Ecological And Bioactivity Potentials: A Review. Int. J. Sci. Technol. Res. 2020, 9, 1. [Google Scholar]
- Ali, S.M.; Siddiqui, R.; Khan, N.A. Antimicrobial Discovery from Natural and Unusual Sources. J. Pharm. Pharmacol. 2018, 70, 1287–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS Profiling of Secondary Metabolites from Opuntia Ficus-Indica Cladode, Peel and Fruit Pulp Extracts and Their Antioxidant, Neuroprotective Effect in Rats with Aluminum Chloride Induced Neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- Abdelall, E.K.; Lamie, P.F.; Ali, W.A. Cyclooxygenase-2 and 15-Lipoxygenase Inhibition, Synthesis, Anti-Inflammatory Activity and Ulcer Liability of New Celecoxib Analogues: Determination of Region-Specific Pyrazole Ring Formation by Noesy. Bioorganic Med. Chem. Lett. 2016, 26, 2893–2899. [Google Scholar] [CrossRef] [PubMed]
- Yimer, T.; Birru, E.M.; Adugna, M.; Geta, M.; Emiru, Y.K. Evaluation of Analgesic and Anti-Inflammatory Activities of 80% Methanol Root Extract of Echinops Kebericho M. (Asteraceae). JIR 2020, 13, 647–658. [Google Scholar] [CrossRef]
- Liu, C.; Su, H.; Wan, H.; Qin, Q.; Wu, X.; Kong, X.; Lin, N. Forsythoside A Exerts Antipyretic Effect on Yeast-Induced Pyrexia Mice via Inhibiting Transient Receptor Potential Vanilloid 1 Function. Int. J. Biol. Sci. 2017, 13, 65. [Google Scholar] [CrossRef] [Green Version]
- Bursal, E.; Köksal, E.; Gülçin, İ.; Bilsel, G.; Gören, A.C. Antioxidant Activity and Polyphenol Content of Cherry Stem (Cerasus avium L.) Determined by LC–MS/MS. Food Res. Int. 2013, 51, 66–74. [Google Scholar] [CrossRef]
- Rabiu, Z.; Hamzah, M.A.A.M.; Hasham, R.; Zakaria, Z.A. Characterization and Antiinflammatory Properties of Fractionated Pyroligneous Acid from Palm Kernel Shell. Environ. Sci. Pollut. Res. 2021, 28, 40535–40543. [Google Scholar] [CrossRef]
- Sobeh, M.; Mamadalieva, N.Z.; Mohamed, T.; Krstin, S.; Youssef, F.S.; Ashour, M.L.; Azimova, S.S.; Wink, M. Chemical Profiling of Phlomis Thapsoides (Lamiaceae) and in Vitro Testing of Its Biological Activities. Med. Chem. Res. 2016, 25, 2304–2315. [Google Scholar] [CrossRef]
- Bhattamisra, S.K.; Yap, K.H.; Rao, V.; Choudhury, H. Multiple Biological Effects of an Iridoid Glucoside, Catalpol, and Its Underlying Molecular Mechanisms. Biomolecules 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagas-Paula, D.A.; Zhang, T.; Da Costa, F.B.; Edrada-Ebel, R. A Metabolomic Approach to Target Compounds from the Asteraceae Family for Dual COX and LOX Inhibition. Metabolites 2015, 5, 404–430. [Google Scholar] [CrossRef]
- Chagas-Paula, D.A.; Oliveira, R.B.; Rocha, B.A.; Da Costa, F.B. Ethnobotany, Chemistry, and Biological Activities of the Genus Tithonia (Asteraceae). Chem. Biodivers. 2012, 9, 210–235. [Google Scholar] [CrossRef]
- Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual Inhibitors of Cyclooxygenase and 5-Lipoxygenase. A New Avenue in Anti-Inflammatory Therapy? Biochem. Pharmacol. 2001, 62, 1433–1438. [Google Scholar] [CrossRef]
- Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer Anti-Inflammatory Therapy through Dual COX-2/5-LOX Inhibitors: A Structure-Based Approach. Eur. J. Pharm. Sci. 2018, 121, 356–381. [Google Scholar]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-Induced Paw Edema in the Rat and Mouse. Inflamm. Protoc. 2003, 225, 115–121. [Google Scholar]
- Khan, S.A.; Chatterjee, S.S.; Kumar, V. Low Dose Aspirin like Analgesic and Anti-Inflammatory Activities of Mono-Hydroxybenzoic Acids in Stressed Rodents. Life Sci. 2016, 148, 53–62. [Google Scholar] [CrossRef] [PubMed]
- El-mekkawy, S.; Shahat, A.A.; Alqahtani, A.S.; Alsaid, M.S.; Abdelfattah, M.A.O.; Ullah, R.; Emam, M.; Yasri, A.; Sobeh, M. A Polyphenols-Rich Extract from Moricandia Sinaica Boiss. Exhibits Analgesic, Anti-Inflammatory and Antipyretic Activities In Vivo. Molecules 2020, 25, 5049. [Google Scholar] [CrossRef]
- Hegazi, N.M.; Sobeh, M.; Rezq, S.; El-Raey, M.A.; Dmirieh, M.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. Characterization of Phenolic Compounds from Eugenia Supra-Axillaris Leaf Extract Using HPLC-PDA-MS/MS and Its Antioxidant, Anti-Inflammatory, Antipyretic and Pain Killing Activities in Vivo. Sci. Rep. 2019, 9, 11122. [Google Scholar] [CrossRef] [Green Version]
- Furtado, A.A.; Torres-Rêgo, M.; Lima, M.C.J.S.; Bitencourt, M.A.O.; Estrela, A.B.; Souza da Silva, N.; da Silva Siqueira, E.M.; Tomaz, J.C.; Lopes, N.P.; Silva-Júnior, A.A.; et al. Aqueous Extract from Ipomoea asarifolia (Convolvulaceae) Leaves and Its Phenolic Compounds Have Anti-Inflammatory Activity in Murine Models of Edema, Peritonitis and Air-Pouch Inflammation. J. Ethnopharmacol. 2016, 192, 225–235. [Google Scholar] [CrossRef]
- Nidavani, R.B.; Mahalakshmi, A.M.; Shalawadi, M. Vascular Permeability and Evans Blue Dye: A Physiological and Pharmacological Approach. J. Appl. Pharm. Sci. 2014, 4, 106–113. [Google Scholar]
- Ampadu, F.A.; Boakye-Gyasi, E.; Osafo, N.; Benneh, C.K.; Ekuadzi, E.; Woode, E. Antipleuritic and Vascular Permeability Inhibition of the Ethyl Acetate-Petroleum Ether Stem Bark Extract of Maerua angolensis DC (Capparaceae) in Murine. Int. J. Inflamm. 2018, 2018, 6123094. [Google Scholar] [CrossRef] [PubMed]
- Gawade, S. Acetic Acid Induced Painful Endogenous Infliction in Writhing Test on Mice. J. Pharmacol. Pharmacother. 2012, 3, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzoyem, J.P.; McGaw, L.J.; Kuete, V.; Bakowsky, U. Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 239–270. [Google Scholar]
- Franzotti, E.M.; Santos, C.V.F.; Rodrigues, H.; Mourao, R.H.V.; Andrade, M.R.; Antoniolli, A.R. Anti-Inflammatory, Analgesic Activity and Acute Toxicity of Sida cordifolia L.(Malva-Branca). J. Ethnopharmacol. 2000, 72, 273–277. [Google Scholar] [CrossRef]
- Ferdous, M.; Rouf, R.; Shilpi, J.A.; Uddin, S.J. Antinociceptive Activity of the Ethanolic Extract of Ficus racemosa Lin.(Moraceae). Orient. Pharm. Exp. Med. 2008, 8, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal Models of Nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar]
- Kronfol, R.N. Fever. In Comprehensive Pediatric Hospital Medicine; Elsevier: Amsterdam, The Netherlands, 2007; pp. 158–160. ISBN 978-0-323-03004-5. [Google Scholar]
- Dangarembizi, R.; Erlwanger, K.H.; Rummel, C.; Roth, J.; Madziva, M.T.; Harden, L.M. Brewer’s Yeast Is a Potent Inducer of Fever, Sickness Behavior and Inflammation within the Brain. Brain Behav. Immun. 2018, 68, 211–223. [Google Scholar] [CrossRef] [PubMed]
No. | Rt | [M − H]− | MS/MS | Proposed Compounds | References |
---|---|---|---|---|---|
1 | 1.25 | 317 | 125, 165 | Phloretic acid gallate | [3] |
2 | 1.58 | 341 | 161, 179 | Caffeic acid glucoside | [3] |
3 | 2.96 | 197 | 153, 179 | Syringic acid | [20] |
4 | 3.69 | 259 | 179 | Caffeic acid sulphate | |
5 | 4.11 | 163 | 119, 137 | p-Coumaric acid | [20] |
6 | 6.74 | 441 | 199, 361 | Catalpol sulphate | |
7 | 9.18 | 137 | 93, 137 | p-Hydroxybenzoic acid | [20] |
8 | 23.80 | 359 | 161, 197, 223 | Rosmarinic acid | [3] |
9 | 27.40 | 187 | 125, 169 | Gallic acid derivative | |
10 | 30.15 | 343 | 135, 179, 197 | Coumaroyl syringic acid | |
11 | 31.38 | 463 | 179, 301 | Quercetin glucoside | [3] |
12 | 34.92 | 447 | 179, 285 | Luteolin glucoside | [3] |
13 | 36.09 | 447 | 255, 301 | Quercetin rhamnoside | [3] |
14 | 37.74 | 563 | 269, 383, 443 | Apigenin C-caffeoyl pentoside | |
15 | 41.77 | 563 | 269, 443 | Apigenin C-caffeoyl pentoside |
Parameters | TAC | LOX | COX-1 | COX-2 | SI |
---|---|---|---|---|---|
U/L | IC50 (µg/mL) | IC50 (µg/mL) | |||
P. perfoliatus extract | 36.23 ± 2.10 | 3.00 ± 0.15 | 12.1 ± 0.31 | 0.042 ± 0.01 | 289.00 |
Ascorbic acid | 28.27 ± 1.83 | - | - | - | - |
Diclofenac | - | 2.83 ± 0.07 | 4.19 ± 0.18 | 0.87 ± 0.06 | 4.82 |
Celecoxib | - | - | 16.30 ± 0.95 | 0.06 ± 0.01 | 271.66 |
Indomethacin | - | - | 0.1 ± 0.01 | 0.82 ± 0.11 | 0.12 |
Zileuton | - | 3.30 ± 0.06 | - | - | - |
Sample | Dose (mg/kg) | Rectal Temperature (°C) | Rectal Temperature Recorded Following Different Treatments (h) | ||||
---|---|---|---|---|---|---|---|
0.5 | 1 | 2 | 3 | 24 | |||
Control | - | 38.78 ± 0.26 | 38.88 ± 0.16 | 38.66 ± 0.19 | 38.86 ± 0.19 | 38.70 ± 0.20 | 38.34 ± 0.21 |
P. perfoliatus extract | 200 | 37.94 ± 0.36 | 38.24 ± 0.13 | 38.84 ± 0.46 | 38.62 ± 0.21 | 38.28 ± 0.24 | 37.26 ± 0.63 |
400 | 38.86 ± 0.33 | 39.10 ± 0.32 | 38.96 ± 0.27 | 38.52 ± 0.15 | 38.74 ± 0.16 | 37.84 ± 0.45 | |
600 | 38.56 ± 0.15 | 38.73 ± 0.14 | 37.40 ± 0.20 * | 37.5 ± 0.4 * | 37.30 ± 0.17 * | 37.50 ± 0.24 | |
Paracetamol | 150 | 38.60 ± 0.18 | 38.14 ± 0.19 | 37.50 ± 0.31 | 37.12 ± 0.29 * | 36.96 ± 0.24 * | 36.50 ± 0.22 * |
Secondary Metabolite | Score Function (kcal/mol) | |||
---|---|---|---|---|
5-LOX | COX-1 | COX-2 | FLAP | |
Caffeic acid glucoside * | −12.90 | −15.79 | −18.14 | −16.35 |
Rosmarinic acid * | −12.72 | −16.20 | −19.46 | −15.09 |
Luteolin glucoside * | −18.46 | −17.89 | −24.48 | −14.39 |
Phloretic acid gallate | −16.26 | −10.43 | −16.97 | −8.14 |
Caffeic acid sulphate | −19.60 | −10.68 | −10.89 | −8.06 |
p-Hydroxybenzoic acid | −12.72 | −7.95 | −10.09 | −6.86 |
Catalpol sulphate | −16.92 | −10.51 | −10.91 | −8.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezq, S.; Mahmoud, M.F.; El-Shazly, A.M.; El Raey, M.A.; Sobeh, M. Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study. Molecules 2021, 26, 4826. https://doi.org/10.3390/molecules26164826
Rezq S, Mahmoud MF, El-Shazly AM, El Raey MA, Sobeh M. Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study. Molecules. 2021; 26(16):4826. https://doi.org/10.3390/molecules26164826
Chicago/Turabian StyleRezq, Samar, Mona F. Mahmoud, Assem M. El-Shazly, Mohamed A. El Raey, and Mansour Sobeh. 2021. "Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study" Molecules 26, no. 16: 4826. https://doi.org/10.3390/molecules26164826
APA StyleRezq, S., Mahmoud, M. F., El-Shazly, A. M., El Raey, M. A., & Sobeh, M. (2021). Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study. Molecules, 26(16), 4826. https://doi.org/10.3390/molecules26164826