Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats
Abstract
:1. Introduction
2. Results
2.1. Basic Characteristics of Experimental Animals
2.2. RBC Deformability
2.3. NO Production in RBCs
2.4. Osmotic Resistance of RBCs
2.5. Correlations between RBC Deformability and Biometrical and Biochemical Parameters
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Deformability of RBCs
4.3. NO Production in RBCs
4.4. Determination of RBC Osmotic Resistance
4.5. Biochemical Analysis in Blood Plasma
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radosinska, J.; Vrbjar, N. The Role of Red Blood Cell Deformability and Na,K-ATPase Function in Selected Risk Factors of Cardiovascular Diseases in Humans: Focus on Hypertension, Diabetes Mellitus and Hypercholesterolemia. Physiol. Res. 2016, S43–S54. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Madsen, J.W.; Rybicki, A.C.; Nagel, R.L. Oxidation of Spectrin and Deformability Defects in Diabetic Erythrocytes. Diabetes 1991, 40, 701–708. [Google Scholar] [CrossRef]
- Zhou, Z.; Mahdi, A.; Tratsiakovich, Y.; Zahorán, S.; Kövamees, O.; Nordin, F.; Gonzalez, A.E.U.; Alvarsson, M.; Östenson, C.-G.; Andersson, D.C.; et al. Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. J. Am. Coll. Cardiol. 2018, 72, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Cahn, A.; Livshits, L.; Srulevich, A.; Raz, I.; Yedgar, S.; Barshtein, G. Diabetic foot disease is associated with reduced erythrocyte deformability. Int. Wound J. 2015, 13, 500–504. [Google Scholar] [CrossRef]
- Shin, S.; Ku, Y.H.; Ho, J.X.; Kim, Y.K.; Suh, J.S.; Singh, M. Progressive impairment of erythrocyte deformability as indicator of microangiopathy in type 2 diabetes mellitus. Clin. Hemorheol. Microcirc. 2007, 36, 253–261. [Google Scholar]
- Blaslov, K.; Kruljac, I.; Mirošević, G.; Gaćina, P.; Kolonić, S.O.; Vrkljan, M. The prognostic value of red blood cell characteristics on diabetic retinopathy development and progression in type 2 diabetes mellitus. Clin. Hemorheol. Microcirc. 2019, 71, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Marrazzo, G.; Barbagallo, I.; Galvano, F.; Malaguarnera, M.; Gazzolo, D.; Frigiola, A.; D’Orazio, N.; Volti, G.L. Role of Dietary and Endogenous Antioxidants in Diabetes. Crit. Rev. Food Sci. Nutr. 2014, 54, 1599–1616. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Almazán, S.; Filisola-Villaseñor, J.G.; Alemán-González-Duhart, D.; Tamay-Cach, F.; Mendieta-Wejebe, J.E. Current molecular aspects in the development and treatment of diabetes. J. Physiol. Biochem. 2020, 76, 13–35. [Google Scholar] [CrossRef]
- Shi, G.-J.; Li, Y.; Cao, Q.-H.; Wu, H.-X.; Tang, X.-Y.; Gao, X.-H.; Yu, J.-Q.; Chen, Z.; Yang, Y. In Vitro and In Vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother. 2019, 109, 1085–1099. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [Green Version]
- Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 2012, 1, 146–160. [Google Scholar]
- Chatham, J.C.; Seymour, A.-M.L. Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc. Res. 2002, 55, 104–112. [Google Scholar] [CrossRef]
- Ellis, C.G.; Goldman, D.; Hanson, M.; Stephenson, A.H.; Milkovich, S.; Benlamri, A.; Ellsworth, M.L.; Sprague, R.S. Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats. Am. J. Physiol. Circ. Physiol. 2010, 298, H1661–H1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windberger, U.; Spurny, K.; Graf, A.; Thomae, H. Hemorheology in experimental research: Is it necessary to consider blood fluidity differences in the laboratory rat? Lab Anim. 2014, 49, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Machha, A.; Achike, F.I.; Mustafa, A.M.; Mustafa, M.R. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 2007, 16, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Z.; Song, G.; Wang, H.; Long, M.; Cai, S. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities. Clin. Hemorheol. Microcirc. 1999, 21, 137–146. [Google Scholar] [PubMed]
- Ferenczyova, K.; Kalocayova, B.; Kindernay, L.; Jelemensky, M.; Balis, P.; Berenyiova, A.; Zemancikova, A.; Farkasova, V.; Sykora, M.; Tothova, L.; et al. Quercetin Exerts Age-Dependent Beneficial Effects on Blood Pressure and Vascular Function, But Is Inefficient in Preventing Myocardial Ischemia-Reperfusion Injury in Zucker Diabetic Fatty Rats. Molecules 2020, 25, 187. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yang, L.Z. Hemoglobin A1c Level Higher Than 9.05% Causes a Significant Impairment of Erythrocyte Deformability in Diabetes Mellitus. Acta Endocrinol. 2018, 14, 66–75. [Google Scholar] [CrossRef]
- Nigra, A.D.; Monesterolo, N.E.; Rivelli, J.F.; Amaiden, M.R.; Campetelli, A.N.; Casale, C.H.; Santander, V.S. Alterations of hemorheological parameters and tubulin content in erythrocytes from diabetic subjects. Int. J. Biochem. Cell Biol. 2016, 74, 109–120. [Google Scholar] [CrossRef]
- Yetuk, G.; Pandir, D.; Bas, H. Protective Role of Catechin and Quercetin in Sodium Benzoate-Induced Lipid Peroxidation and the Antioxidant System in Human Erythrocytes In Vitro. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Duchnowicz, P.; Broncel, M.; Podsędek, A.; Koter-Michalak, M. Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study). Eur. J. Nutr. 2011, 51, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, M.; Meiselman, H.J.; Baskurt, O.K. Blood rheology and aging. J. Geriatr. Cardiol. 2013, 10, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Goi, G.; Cazzola, R.; Tringali, C.A.; Massaccesi, L.; Volpe, S.R.; Rondanelli, M.; Ferrari, E.; Herrera, C.J.B.; Cestaro, B.; Lombardo, A. Erythrocyte membrane alterations during ageing affect β-d-glucuronidase and neutral sialidase in elderly healthy subjects. Exp. Gerontol. 2005, 40, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-X.; Wu, Z.-J.; Mehrishi, J.; Huang, B.-T.; Chen, X.-Y.; Zheng, X.-J.; Liu, W.-J.; Luo, M. Human red blood cell aging: Correlative changes in surface charge and cell properties. J. Cell. Mol. Med. 2011, 15, 2634–2642. [Google Scholar] [CrossRef] [Green Version]
- Maurya, P.K.; Prakash, S. Decreased Activity of Ca++-ATPase and Na+/K+-ATPase during Aging in Humans. Appl. Biochem. Biotechnol. 2013, 170, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS ONE 2015, 10, e0125206. [Google Scholar] [CrossRef] [Green Version]
- Yapislar, H.; Aydogan, S. Effect of carnosine on erythrocyte deformability in diabetic rats. Arch. Physiol. Biochem. 2012, 118, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.F.; Mancuso, J.E.; Zivkovic, A.; Smilowitz, J.T.; Ristenpart, W.D. Red Blood Cells from Individuals with Abdominal Obesity or Metabolic Abnormalities Exhibit Less Deformability upon Entering a Constriction. PLoS ONE 2016, 11, e0156070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazegh, K.; Fang, F.; Bravo, M.D.; Tran, J.Q.; Muench, M.O.; Jackman, R.P.; Roubinian, N.; Bertolone, L.; D’Alessandro, A.; Dumont, L.; et al. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress. Transfusion 2020, 61, 435–448. [Google Scholar] [CrossRef]
- Radosinska, J.; Jasenovec, T.; Puzserova, A.; Krajcir, J.; Lacekova, J.; Kucerova, K.; Kalnovicova, T.; Tothova, L.; Kovacicova, I.; Vrbjar, N. Promotion of whole blood rheology after vitamin C supplementation: Focus on red blood cells. Can. J. Physiol. Pharmacol. 2019, 97, 837–843. [Google Scholar] [CrossRef]
Experimental Group | Parameter | r | p Value |
---|---|---|---|
All 6-month old diabetic rats (vehicle- and QCT-treated) | BW/T ratio | −0.65 | 0.04 |
6- and 12-month-old lean vehicle-treated rats | BW/T ratio | −0.65 | 0.01 |
6- and 12-month-old lean QCT-treated rats | BW/T ratio | −0.63 | 0.01 |
All 12-month-old rats | LDL cholesterol | −0.41 | 0.008 |
All 12-month-old rats | FRAP | 0.39 | 0.02 |
Experimental Group | 6-Month-Old | 12-Month-Old |
---|---|---|
Lean control vehicle-treated (C) | n = 7 | n = 8 |
Lean control quercetin-treated (CQ) | n = 6 | n = 12 |
Obese ZDF vehicle-treated (D) | n = 6 | n = 15 |
Obese ZDF quercetin -treated (DQ) | n = 8 | n = 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasenovec, T.; Radosinska, D.; Kollarova, M.; Balis, P.; Ferenczyova, K.; Kalocayova, B.; Bartekova, M.; Tothova, L.; Radosinska, J. Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules 2021, 26, 4868. https://doi.org/10.3390/molecules26164868
Jasenovec T, Radosinska D, Kollarova M, Balis P, Ferenczyova K, Kalocayova B, Bartekova M, Tothova L, Radosinska J. Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules. 2021; 26(16):4868. https://doi.org/10.3390/molecules26164868
Chicago/Turabian StyleJasenovec, Tomas, Dominika Radosinska, Marta Kollarova, Peter Balis, Kristina Ferenczyova, Barbora Kalocayova, Monika Bartekova, Lubomira Tothova, and Jana Radosinska. 2021. "Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats" Molecules 26, no. 16: 4868. https://doi.org/10.3390/molecules26164868
APA StyleJasenovec, T., Radosinska, D., Kollarova, M., Balis, P., Ferenczyova, K., Kalocayova, B., Bartekova, M., Tothova, L., & Radosinska, J. (2021). Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules, 26(16), 4868. https://doi.org/10.3390/molecules26164868