Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Honey and Flower Volatile Profiles
2.1.1. Volatiles Collected by Solid-Phase Microextraction (SPME)
2.1.2. Volatiles Collected by Hydrodistillation (HD)
2.2. Statistical Analysis
2.2.1. Cluster Analysis
2.2.2. Classification Tree
3. Materials and Methods
3.1. Honey Sampling
3.2. Honey and Flower Volatile Sampling
3.2.1. Sampling of Honey Volatiles by SPME
3.2.2. Sampling of Honey and Flower Volatiles by Hydrodistillation (HD)
3.3. Analysis and Quantification of Compounds
3.3.1. Gas Chromatography (GC)
3.3.2. Gas Chromatography–Mass Spectrometry (GC-MS)
3.4. Statistical Analysis
3.4.1. Cluster Analysis
3.4.2. Classification Tree
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schievano, E.; Stocchero, M.; Morelato, E.; Facchin, C.; Mammi, S. An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics 2012, 8, 679–690. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Carmen Seijo, M. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef]
- García, N.L. The current situation on the international honey market. Bee World 2018, 95, 89–94. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Revised Codex Standard for Honey, Codex Stan 12-1981, Rev. 1 (1987), Rev.2 (2001); Food and Agriculture Organization (FAO): Rome, Italy, 2001; pp. 1–7. [Google Scholar]
- EU. Council Directive 2001/110/CE concerning Honey. Off. J. Eur. Commun. 2002, 10, 47–52. [Google Scholar]
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I.; Rahman, A. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef]
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno 2015, 83, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef]
- Jaafar, M.B.; Othman, M.B.; Yaacob, M.; Talip, B.A.; Ilyas, M.A.; Ngajikin, N.H.; Fauzi, N.A.M. A review on honey adulteration and the available detection approaches. Int. J. Integr. Eng. 2020, 12, 125–131. [Google Scholar]
- Kilpinen, O.; Vejsnæs, F. New analytical methods against honey fraud are problematic for commercial beekeepers. Bee World 2021, 98, 14–16. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey—A challenge. Trends Analyt. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef] [PubMed]
- Phipps, R. International honey market. Am. Bee J. 2021, 161, 1–6. [Google Scholar]
- Trifković, J.; Andrić, F.; Ristivojević, P.; Guzelmeric, E.; Yesilada, E. Analytical methods in tracing honey authenticity. J. AOAC Int. 2017, 100, 827–839. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [Green Version]
- Balkanska, R.; Stefanova, K.; Grigorova, R.S. Main honey botanical components and techniques for identification: A review. J. Apic. Res. 2020, 59, 852–861. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Stanimirova, I.; Üstün, B.; Cajka, T.; Riddelova, K.; Hajslova, J.; Buydens, L.M.C.; Walczak, B. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chem. 2010, 118, 171–176. [Google Scholar] [CrossRef]
- Programa Apícola Nacional 2020–2022. Available online: https://www.gpp.pt/index.php/pan/programa-apicola-nacional-2020-2022 (accessed on 25 May 2021).
- Portal Oficial—Instituto Nacional de Estatística. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0008957&contexto=bd&selTab=tab2 (accessed on 21 June 2021).
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. The honey volatile code: A collective study and extended version. Foods 2019, 8, 508. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Flores, M.S.; Falcão, S.I.; Escuredo, O.; Seijo, M.C.; Vilas-Boas, M. Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. Food Chem. 2021, 336, 127758. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of eucalyptus, chestnut and heather honeys from Portugal using multi-parameter analysis and chemo-calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Pontes, M.; Marques, J.C.; Câmara, J.S. Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta 2007, 74, 91–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman Dekebo, A.N.U.; Kwon, S.Y.; Kim, D.H.; Jung, C. Volatiles analysis of honey by gas chromatography-mass spectrometry (GC-MS): Comparison of SPME volatiles extraction methods. Korean J. Apic. 2018, 33, 117–128. [Google Scholar]
- Jerković, I.; Kuś, P.M.; Carbonell-Barrachina, Á.A. Volatile organic compounds as artefacts derived from natural phytochemicals sourced form plants and honey. Phytochem. Rev. 2019, 18, 871–891. [Google Scholar] [CrossRef]
- Custódio, L.; Serra, H.; Nogueira, J.M.F.; Gonçalves, S.; Romano, A. Analysis of the volatiles emitted by whole flowers and isolated flower organs of the carob tree using HS-SPME-GC/MS. J. Chem. Ecol. 2006, 32, 929–942. [Google Scholar] [CrossRef]
- Boi, M.; Llorens, J.A.; Cortés, L.; Lladó, G.; Llorens, L. Palynological and chemical volatile components of typically autumnal honeys of the western Mediterranean. Grana 2013, 52, 93–105. [Google Scholar] [CrossRef]
- Ouradi, H.; Hanine, H.; Fauconnier, M.-L.; Kenne, T.; Rizki, H.; Ennahli, S.; Hssaini, L. Determination of physico-biochemical proprieties and composition in volatile constituents by solid phase micro-extraction of honey samples from different botanical and geographical origins in Morocco. J. Apic. Res. 2021, 60, 84–98. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; de Torres, C.; Pérez-Coello, M.S. Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Res. Int. 2010, 43, 2335–2340. [Google Scholar] [CrossRef]
- Verzera, A.; Campisi, S.; Zappala, M.; Bonaccorsi, I. SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin. Am. Lab. 2001, 33, 18–21. [Google Scholar]
- Siegmund, B.; Urdl, K.; Jurek, A.; Leitner, E. “More than honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. J. Agric. Food Chem. 2018, 66, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Petretto, G.L.; Urgeghe, P.P.; Mascia, I.; Fadda, C.; Rourke, J.P.; Pintore, G. Stir bar sorptive extraction coupled with GC/MS applied to honey: Optimization of method and comparative study with headspace extraction techniques. Eur. Food Res. Technol. 2017, 243, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, L.C.; Díaz-Maroto, M.C.; Guchu, E.; Pérez-Coello, M.S. Analysis of volatile compounds of eucalyptus honey by solid phase extraction followed by gas chromatography coupled to mass spectrometry. Eur. Food Res. Technol. 2006, 224, 27–31. [Google Scholar] [CrossRef]
- Beckmann, K.; Beckh, G.; Lüllmann, C.; Speer, K. Phenylacetaldehyde in Honey—Residue or Natural Compound? Dtsch. Lebensm. Rundsch. 2007, 103, 154–158. [Google Scholar]
- Jerković, I.; Prđun, S.; Marijanović, Z.; Zekić, M.; Bubalo, D.; Svečnjak, L.; Tuberoso, C.I.G. Traceability of satsuma mandarin (Citrus unshiu Marc.) honey through nectar/honey-sac/honey pathways of the headspace, volatiles, and semi-volatiles: Chemical markers. Molecules 2016, 21, 1302. [Google Scholar] [CrossRef] [Green Version]
- Nozal, M.J.; Bernal, J.L.; Toribio, M.L.; Diego, J.C.; Ruiz, A. Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection. J. Chromatogr. A 2004, 1047, 137–146. [Google Scholar] [CrossRef]
- Tan, S.T.; Wilkins, A.L.; Holland, P.T.; McGhie, T.K. Extractives from New Zealand unifloral honeys. 2. Degraded carotenoids and other substances from heather honey. J. Agric. Food Chem. 1989, 37, 1217–1221. [Google Scholar] [CrossRef]
- Guyot, C.; Scheirman, V.; Collin, S. Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food Chem. 1999, 64, 3–11. [Google Scholar] [CrossRef]
- Guyot-Declerck, C.; Renson, S.; Bouseta, A.; Collin, S. Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia×latifolia honeys. Food Chem. 2002, 79, 453–459. [Google Scholar] [CrossRef]
- Kadar, M.; Juan-Borrás, M.; Carot, J.M.; Domenech, E.; Escriche, I. Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blossom honey and orange blossom honey. J. Sci. Food Agric. 2011, 91, 2768–2776. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic–mass spectrometric analysis. Food Chem. 2007, 100, 396–404. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Jabalpurwala, F.A.; Smoot, J.M.; Rouseff, R.L. A comparison of citrus blossom bolatiles. Phytochemistry 2009, 70, 1428–1434. [Google Scholar] [CrossRef]
- Ruisinger, B.; Schieberle, P. Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. J. Agric. Food Chem. 2012, 60, 4186–4194. [Google Scholar] [CrossRef] [PubMed]
- Seisonen, S.; Kivima, E.; Vene, K. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2015, 169, 34–40. [Google Scholar] [CrossRef]
- Kruží, V.; Grégrová, A.; Ziková, A.; Čížková, H. Rape honey: Determination of botanical origin based on volatile compound profiles. J. Food Nutr. Res. 2019, 58, 339–348. [Google Scholar]
- Pažitná, A.; Janáčová, A.; Špánik, I. The enantiomer distribution of major chiral volatile organic compounds in slovakian monofloral honeys. J. Food Nutr. Res. 2012, 51, 235–241. [Google Scholar]
- Soria, A.C.; Sanz, J.; Martínez-Castro, I. SPME Followed by GC–MS: A powerful technique for qualitative analysis of honey volatiles. Eur. Food Res. Technol. 2009, 228, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Juan-Borrás, M.; Domenech, E.; Hellebrandova, M.; Escriche, I. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res. Int. 2014, 60, 86–94. [Google Scholar] [CrossRef]
- Graikou, K.; Andreou, A.; Chinou, I. Chemical profile of Greek Arbutus unedo honey: Biological properties. J. Apic. Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Musci, M. Volatile norisoprenoids as markers of botanical origin of Sardinian strawberry-tree (Arbutus unedo L.) honey: Characterisation of aroma compounds by dynamic headspace extraction and gas chromatography–mass spectrometry. Food Chem. 2005, 89, 527–532. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Nikolaou, C.; Karabagias, V.K. Volatile fingerprints of common and rare honeys produced in Greece: In search of PHVMs with implementation of the honey code. Eur. Food Res. Technol. 2019, 245, 23–39. [Google Scholar] [CrossRef]
- Fröhlich, B.; Tautz, J.; Riederer, M. Chemometric classification of comb and cuticular waxes of the honeybee Apis mellifera carnica. J. Chem. Ecol. 2000, 26, 123–137. [Google Scholar] [CrossRef]
- Teerawanichpan, P.; Robertson, A.J.; Qiu, X. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem. Mol. Biol. 2010, 40, 641–649. [Google Scholar] [CrossRef]
- Thom, C.; Gilley, D.C.; Hooper, J.; Esch, H.E. The scent of the waggle dance. PLoS Biol. 2007, 5, e228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerković, I.; Marijanović, Z.; Ljubičić, I.; Gugić, M. Contribution of the bees and combs to honey volatiles: Blank-trial probe for chemical profiling of honey biodiversity. Chem. Biodivers. 2010, 7, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Leon-Ruiz, V.; Alañon, M.E.; Pérez-Coello, M.S.; González-Porto, A.V. Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control 2014, 37, 362–370. [Google Scholar] [CrossRef]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chem. 2020, 325, 126870. [Google Scholar] [CrossRef]
- Jerkovic, I.; Kranjac, M.; Suste, M.; Kus, P.M.; Svecnjak, L. Rhamnus frangula honey: Screening of volatile organic compounds and their composition after short-term heating. Chem. Nat. Compd. 2015, 51, 1174–1177. [Google Scholar] [CrossRef]
- Machado, A.M.; Tomás, A.; Russo-Almeida, P.; Duarte, A.; Antunes, M.; Vilas-Boas, M.; Miguel, M.G.; Figueiredo, A.C. Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Chem. 2021. under review. [Google Scholar]
- Whitfield, F.B.; Stanley, G. The structure and stereochemistry of Edulan I and II and the stereochemistry of the 2,5,5,8a-Tetramethyl-3,4,4a,5,6,7,8,8a-octahydro-2H-1-benzopyrans. Aust. J. Chem. 1977, 30, 1073–1091. [Google Scholar] [CrossRef]
- Pestana, M.H.; Gageiro, J.N. Análise De Dados Para Ciências Sociais: A Complementaridade do SPSS; Edições Sílabo: Lisboa, Portugal, 2000. [Google Scholar]
- Recursive Partitioning and Regression Trees [R Package Rpart Version 4.1-15]. Available online: https://CRAN.R-project.org/package=rpart (accessed on 4 June 2021).
Honey Samples | Locality/Region of Honey Production | Flower’s Geographical Origin | Volatile Components Present in Selected Flowers and Simultaneously in Corresponding Honeys |
---|---|---|---|
Carob tree (Ct) | Estremadura | α-Pinene, cis- and trans-linalool oxide (furanoid), cis- and trans-linalool oxide (pyranoid) *, UI 8, methyl anthranilate, 1,2-dihydro-1,1,6-trimethyl-naphtalene *, α-eudesmol | |
Ct1 | Lagos/Algarve | ||
Ct2 | Tavira/Algarve | ||
Ct3 | Olhão/Algarve | ||
Ct4 | Tavira/Algarve | ||
Ct5 | Tavira/Algarve | ||
Chestnut (C) | |||
C1 | Macedo de Cavaleiros/Trás-os-Montes e Alto Douro | Trás-os-Montes e Alto Douro | Benzaldehyde, α-pinene, benzene acetaldehyde, acetophenone, cis- and trans-linalool oxide (furanoid), UI 8, 1,2-dihydro-1,1,6-trimethyl-naphtalene *, α-eudesmol, β-eudesmol |
C2 | Vila Pouca de Aguiar/Trás-os-Montes e Alto Douro | ||
Eucalyptus (E) | |||
E1 | Ponte de Lima/Minho | Beira Litoral | α-Pinene, cis-linalool oxide (furanoid), aromadendrene, α-eudesmol, β-eudesmol |
E2 | Penamacor/Beira Baixa | ||
E3 | Marvão/Alto Alentejo | ||
E4 | Vila Pouca de Aguiar/Trás-os-Montes e Alto Douro | ||
E5 | Sesimbra/Estremadura | ||
Bell heather (H) | |||
H1 | Fundão/Beira Baixa | Trás-os-Montes e Alto Douro | Benzaldehyde, benzene acetaldehyde, UI 8, 1,2-dihydro-1,1,6-trimethyl-naphtalene * |
H2 | Boticas/Trás-os-Montes e Alto Douro | ||
H3 | Pampilhosa da Serra/Beira Baixa | ||
H4 | Ponte da Barca/Minho | ||
H5 | Vila Pouca de Aguiar/Trás-os-Montes e Alto Douro | ||
H6 | Melgaço/Minho | ||
Incense (I) | |||
I1 | São Miguel/Açores | São Miguel/Açores | Benzyl salicylate * |
I2 | Pico/Açores | ||
I3 | São Miguel/Açores | ||
I4 | Pico/Açores | ||
Lavender (L) | |||
L1 | Castelo Branco/Beira Baixa | Beira Baixa | No specific components found |
L2 | Castelo Branco/Beira Baixa | ||
L3 | Macedo de Cavaleiros/Trás-os-Montes e Alto Douro | ||
L4 | Mértola/Baixo Alentejo | ||
L5 | Penamacor/Beira Baixa | ||
L6 | Évora/Alto Alentejo | ||
L7 | Seixal/Estremadura | ||
L8 | Sesimbra/Estremadura | ||
Orange (O) | |||
O1 | Faro/Algarve | Estremadura | α-Pinene; lilac aldehydes A *, B *, C *; UI 8; cis-myrcenol; indole; methyl anthranilate |
O2 | Tavira/Algarve | ||
O3 | Sesimbra/Estremadura | ||
O4 | Aljezur/Algarve | ||
O5 | Odemira/Alentejo Litoral | ||
O6 | Odemira/Alentejo Litoral | ||
O7 | Lagos/Algarve | ||
O8 | Odemira/Alentejo Litoral | ||
O9 | Portimão/Algarve | ||
Rape (R) | |||
R1 | Odemira/Alentejo Litoral | † | |
R2 | Odemira/Alentejo Litoral | ||
Raspberry (Rb) | |||
Rb1 | Sesimbra/Estremadura | † | |
Rb2 | Odemira/Alentejo Litoral | ||
Rosemary (Ro) | |||
Ro1 | Sesimbra/Estremadura | † | |
Sunflower (Sf) | |||
Sf1 | Odemira/Alentejo Litoral | Baixo Alentejo | α-Pinene |
Sf2 | Aljezur/Algarve | ||
Sf3 | Ferreira do Alentejo/Baixo Alentejo | ||
Strawberry tree (St) | |||
St1 | Aljustrel/Baixo Alentejo | Estremadura | α-Isophorone *, 4-keto-isophorone *, UI 8, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, 1,2-dihydro-1,1,6-trimethyl-naphtalene * |
St2 | Ferreira do Alentejo/Baixo Alentejo | ||
St3 | Lagos/Algarve | ||
St4 | Aljezur/Algarve | ||
Total | 51 |
Components | RI | Cluster I | Cluster II | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ia | Ib | Ic | Id | Ie | If | Ig | Ih | Ii | |||||||||
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||||||
Benzene acetaldehyde | 1002 | 9.9 | 8.8 | 3.6 | 0.7 | 0.1 | 0.1 | 0.4 | 1.1 | 3.8 | 0.2 | 3.1 | 17.3 | 24.4 | 0.1 | 0.3 | |
cis-Linalool oxide (furanoid) | 1045 | 6.5 | t | 0.5 | t | 0.1 | 0.1 | 0.3 | 9.0 | 15.1 | 0.2 | 2.9 | 2.9 | 4.3 | t | ||
trans-Linalool oxide (furanoid) | 1059 | 2.4 | t | t | 0.1 | 0.1 | 3.9 | 5.1 | t | 1.7 | 1.6 | 2.0 | t | ||||
Hotrienol * | 1074 | 5.1 | 0.1 | 0.5 | 0.1 | 0.1 | 2.9 | 9.8 | 0.3 | 3.2 | 6.9 | ||||||
α-Isophorone (2-cyclohexen-1-one, 3,5,5-trimethyl-) | 1074 | 4.4 | 0.1 | t | 0.1 | 0.1 | 0.1 | 2.6 | 36.4 | 38.8 | |||||||
3,4,5-Trimethylphenol (3,4,5-hemimellitenol) | 1277 | 1.5 | t | t | t | 0.1 | t | 0.2 | 0.6 | 4.4 | 13.3 | ||||||
Decanoic acid | 1356 | 2.2 | t | t | t | t | 0.2 | 6.4 | t | 0.5 | 3.4 | t | 0.4 | ||||
n-Heptadecane | 1700 | 1.4 | 5.9 | 1.0 | 3.3 | 2.8 | 7.9 | 1.2 | 2.0 | 1.0 | 3.9 | 0.8 | 2.6 | 1.2 | 1.3 | 0.3 | 0.6 |
n-Nonadecane | 1900 | 2.4 | 14.7 | 1.8 | 4.5 | 6.0 | 25.6 | 2.1 | 3.8 | 1.4 | 6.1 | 2.0 | 5.1 | 2.9 | 3.1 | 0.6 | 1.8 |
Hexadecanoic acid (palmitic acid) | 1908 | 7.4 | 1.4 | 2.1 | 13.4 | 5.4 | 2.5 | 4.9 | 2.2 | 3.3 | 7.7 | 0.6 | 2.7 | 1.9 | 2.9 | ||
Oleyl alcohol * [(Z)-octadec-9-en-1-ol] | 2044 | 0.3 | 11.4 | 0.1 | |||||||||||||
1-Octadecanol (stearyl alcohol) | 2095 | 4.5 | 0.9 | 0.3 | 3.1 | 1.1 | 1.4 | 3.4 | |||||||||
Heneicosene * | 2088 | 5.4 | t | 0.4 | 0.2 | 1.3 | 4.1 | 2.0 | 1.6 | 0.3 | 1.4 | ||||||
Methyl oleate (methyl cis-9-octadecenoate) | 2096 | 2.1 | 6.3 | t | t | 1 | |||||||||||
n-Heneicosane | 2100 | 3.3 | 11.4 | 2.4 | 4.3 | 6.8 | 15.1 | 24.0 | 25.5 | 1.3 | 5.0 | 2.7 | 4.0 | 2.3 | 3.1 | 2.9 | 7.0 |
Oleic acid (cis-9-octadecenoic acid) | 2119 | 13.7 | 1.8 | 2.1 | 2.6 | t | 1.0 | 1.3 | 3.9 | 17.3 | 38.8 | 0.4 | 2.6 | 0.8 | 8.7 | ||
Linoleic acid (cis-9, cis-12-octadecadienoic acid) | 2140 | 2.3 | 1.3 | 9.4 | |||||||||||||
Ethyl oleate | 2151 | 10.8 | 1.1 | 1.7 | 2.0 | 0.6 | 0.3 | 9.3 | 2.1 | ||||||||
(Z)-9-Tricosene | 2287 | 6.1 | 2.1 | ||||||||||||||
n-Tricosane | 2300 | 13.9 | 29.3 | 12.2 | 12.9 | 14.6 | 13.4 | 9.4 | 13.8 | 6.0 | 12.6 | 7.5 | 14.8 | 7.3 | 8.0 | 1.2 | 2.5 |
n-Pentacosane | 2500 | 0.3 | 16.1 | 6.0 | 6.2 | 6.7 | 7.0 | 8.7 | 11.3 | 2.7 | 6.0 | 4.4 | 7.8 | 3.0 | 5.0 | 1.5 | 2.3 |
Heptacosene | 2667 | 6.2 | 1.2 | 1.7 | 0.5 | 0.2 | t | t | 0.8 | 1.4 | 0.1 | 5.3 | 0.5 | 2.0 | |||
n-Heptacosane | 2700 | 8.2 | 2.6 | 2.1 | 2.0 | 2.7 | 4.3 | 5.8 | 1.1 | 2.3 | t | 7.1 | 1.4 | 3.4 | 1.0 | 2.6 | |
n-Octacosane | 2800 | 4.6 | 0.1 | 0.3 | 0.4 | ||||||||||||
% Identification | 69.6 | 96.4 | 70.0 | 68.8 | 87.0 | 95.6 | 74.1 | 90.2 | 73.2 | 89.5 | 81.5 | 90.4 | 86.5 | 89.5 | 80.2 | 88.7 | |
Grouped components | |||||||||||||||||
Terpenes and derivatives | |||||||||||||||||
Hemiterpene hydrocarbons | t | t | t | t | t | t | t | ||||||||||
Monoterpene hydrocarbons | 1.2 | 0.1 | 0.1 | t | 0.7 | 0.5 | t | 0.5 | |||||||||
Oxygen-containing monoterpenes | 12.1 | 0.3 | 1.0 | 0.1 | 0.2 | 1.9 | 2.2 | 19.9 | 27.4 | 1.0. | 5.4 | 10.5 | 11.6 | 0.1 | 0.6 | ||
Sesquiterpene hydrocarbons | 0.7 | 0.3 | 1.8 | 0.2 | t | 0.1 | 0.2 | t | 0.2 | t | |||||||
Oxygen-containing sesquiterpenes | 1.8 | 0.5 | t | t | t | t | t | t | 0.8 | t | 0.2 | t | 4.2 | ||||
Oxygen-containing diterpenes | 0.4 | t | t | t | |||||||||||||
Apocarotenoids | 5.2 | t | t | 0.1 | t | 0.1 | 0.4 | 0.7 | 0.1 | 0.6 | 3.7 | 41.6 | 44.3 | ||||
Amino acid derivatives and phenylpropanoids | |||||||||||||||||
Benzoic acid derivatives | 1.3 | 1.0 | 1.1 | t | t | t | t | 0.2 | 0.5 | 0.7 | 1.6 | 2.6 | t | 0.3 | |||
Phenylpropenes | 1.0 | 1.1 | t | t | t | 1.1 | 0.3 | t | 0.5 | t | t | ||||||
Aromatic amino acid derivatives | 0.1 | 9.9 | 8.8 | 3.6 | 1.1 | 0.1 | 1.4 | 2.0 | 1.1 | 3.8 | 0.9 | 3.1 | 17.3 | 25.2 | 7.4 | 18.6 | |
Fatty acids and derivatives | |||||||||||||||||
Green leaf volatiles (GLVs) | 0.1 | t | t | t | t | t | t | t | 0.1 | t | t | ||||||
Fatty acids | 1.0 | 18.6 | 3.5 | 4.2 | 18.0 | 5.4 | 3.5 | 5.1 | 9.0 | 11.4 | 20.6 | 45.3 | 3.7 | 9.6 | 2.8 | 12.1 | |
Alkanes | 40.8 | 74.2 | 27.7 | 37.1 | 43.2 | 76.9 | 55.7 | 65.7 | 15.2 | 35.9 | 24.5 | 42.7 | 22.2 | 27.0 | 11.2 | 14.9 | |
Methyl-branched hydrocarbons | 1.2 | 0.8 | 0.8 | 0.5 | 0.2 | 0.3 | 0.8 | 0.9 | 1.5 | 0.3 | 0.4 | t | 0.1 | ||||
Other fatty acid derivatives | 6.6 | 28.5 | 25.6 | 18.2 | 23.4 | 12.6 | 8.8 | 16.6 | 10.2 | 14.3 | 10.7 | 17.4 | 14.5 | 18.1 | 2.0 | 4.4 | |
Carbohydrate derivatives | 2.0 | t | 1.0 | 0.2 | 0.1 | t | 0.1 | 2.0 | 2.8 | t | 0.7 | 1.9 | 2.2 | 0.2 | 0.9 | ||
Nitrogen-containing compounds | t | t | 0.1 | ||||||||||||||
Sulphur-containing compounds | t | t | |||||||||||||||
Others | 2.3 | 0.4 | t | 3.5 | t | 0.4 | 1.2 | t | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, A.M.; Antunes, M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules 2021, 26, 4970. https://doi.org/10.3390/molecules26164970
Machado AM, Antunes M, Miguel MG, Vilas-Boas M, Figueiredo AC. Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules. 2021; 26(16):4970. https://doi.org/10.3390/molecules26164970
Chicago/Turabian StyleMachado, Alexandra M., Marília Antunes, Maria Graça Miguel, Miguel Vilas-Boas, and Ana Cristina Figueiredo. 2021. "Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination" Molecules 26, no. 16: 4970. https://doi.org/10.3390/molecules26164970
APA StyleMachado, A. M., Antunes, M., Miguel, M. G., Vilas-Boas, M., & Figueiredo, A. C. (2021). Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules, 26(16), 4970. https://doi.org/10.3390/molecules26164970