Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.1.1. Materials
2.1.2. Instruments
2.2. Thermal Analysis
2.2.1. Thermal Gravimetric Analysis (TGA)
2.2.2. Differential Scanning Calorimetry (DSC)
2.3. Miscibility Study
2.4. Drug Content
2.5. Preparation of SRSD
Univariate Analysis
The Screening of Drug-Carrier Mass Ratio
The Screening of Release Modifier
The Screening of Amount of Release Modifier
The Screening of Barrel Temperature
The Screening of Screw Speed
2.6. Saturated Solubility
2.7. In-Vitro Release Study
2.8. FTIR
2.9. XRD
2.10. SEM
2.11. Drug Release Kinetics
2.12. Stability Study
Influencing Factor Tests
High Humidity Test
Strong Light Exposure Test
High Temperature Test
Long-Term Retention Test
2.13. In Vivo Study
3. Results and Discussion
3.1. Thermal Analysis
3.2. Miscibility Study
3.3. Preparation of SRSD
Univariate Analysis
The Effect of Drug-Carrier Mass Ratio
The Effect of Release Modifier
The Effect of Amount of Release Modifier
The Effect of Barrel Temperature and Screw Speed
3.4. Saturated Solubility
3.5. In-Vitro Release Study
3.6. FTIR
3.7. XRD
3.8. SEM
3.9. Drug Release Kinetics
3.10. Stability Study
Influencing Factor Tests
High Humidity Test
Strong Light Exposure Test
High Temperature Test
Long-Term Retention Test
3.11. In Vivo Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, R.; Moriya, J.; Yamakawa, J.; Takahashi, T.; Kanda, T. Traditional chinese medicine for chronic fatigue syndrome. Evid. Based Complement. Alternat. Med. 2010, 7, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Ji, H.; Aihara, K.; Chen, L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 2016, 44, e164. [Google Scholar] [CrossRef]
- Kim, D.; Shih, C.C.; Cheng, H.C.; Kwon, S.H.; Kim, H.; Lim, B. A comparative study of the traditional medicine systems of South Korea and Taiwan: Focus on administration, education and license. Integr. Med. Res. 2021, 10, 100685. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Jardim, F.R.; De Rossi, F.T.; Nascimento, M.X.; Da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; De Oliveira, M.R. Resveratrol and Brain Mitochondria: A Review. Mol. Neurobiol. 2018, 55, 2085–2101. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Quan, P.; Zhang, Y.; Cheng, J.; Liu, J.; Cun, D.; Xiang, R.; Fang, L. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int. J. Pharm. 2014, 460, 13–23. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Marques, S.; Das Neves, J.; Sarmento, B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 2016, 100, 85–101. [Google Scholar] [CrossRef]
- Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J.M.; Renault, J.H.; Clément, C.; Martiny, L.; Delmas, D.; et al. Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor. Molecules 2017, 22, 474. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, L.; Chen, T.; Guo, W.; Bao, X.; Wang, D.; Ren, B.; Wang, H.; Li, Y.; Wang, Y.; et al. Anticancer Effects of Resveratrol-Loaded Solid Lipid Nanoparticles on Human Breast Cancer Cells. Molecules 2017, 22, 1814. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, W.G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B 2014, 4, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Motoyama, K.; Ishida, M.; Onodera, R.; Higashi, T.; Arima, H. Theoretical and practical evaluation of lowly hydrolyzed polyvinyl alcohol as a potential carrier for hot-melt extrusion. Int. J. Pharm. 2019, 555, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.; Vhora, I.; Patel, K.; Bagde, A.; Kutlehria, S.; Singh, M. Development of Hot Melt Extruded Solid Dispersion of Tamoxifen Citrate and Resveratrol for Synergistic Effects on Breast Cancer Cells. AAPS PharmSciTech 2018, 19, 3287–3297. [Google Scholar] [CrossRef]
- Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; Mcfall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs—An integrated review. Int. J. Pharm. 2018, 535, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Maddineni, S.; Lu, J.; Repka, M.A. Melt extrusion with poorly soluble drugs. Int. J. Pharm. 2013, 453, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Palazi, E.; Karavas, E.; Barmpalexis, P.; Kostoglou, M.; Nanaki, S.; Christodoulou, E.; Bikiaris, D.N. Melt extrusion process for adjusting drug release of poorly water soluble drug felodipine using different polymer matrices. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2018, 114, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, J.P.; Cao, Y.; Kowalski, J.; Serajuddin, A.T. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008, 5, 994–1002. [Google Scholar] [CrossRef]
- Bennett, R.C.; Brough, C.; Miller, D.A.; O’Donnell, K.P.; Keen, J.M.; Hughey, J.R.; Williams, R.O., 3rd; Mcginity, J.W. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: Approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev. Ind. Pharm. 2015, 41, 382–397. [Google Scholar] [CrossRef] [PubMed]
- Hörmann, T.R.; Rehrl, J.; Scheibelhofer, O.; Schaden, L.M.; Funke, A.; Makert, C.; Khinast, J.G. Sensitivity of a continuous hot-melt extrusion and strand pelletization line to control actions and composition variation. Int. J. Pharm. 2019, 566, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.C.; Bochmann, E.S.; Kyeremateng, S.O.; Gryczke, A.; Wagner, K.G. Holistic QbD approach for hot-melt extrusion process design space evaluation: Linking materials science, experimentation and process modeling. Eur. J. Pharm. Biopharm. 2019, 141, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Solanki, N.G.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T.M. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion. II: Rheological Analysis and Extrudability Testing. J. Pharm. Sci. 2019, 108, 3063–3073. [Google Scholar] [CrossRef]
- Huang, B.B.; Liu, D.X.; Liu, K.; Wu, G. Application of Solid Dispersion Technique to Improve Solubility and Sustain Release of Emamectin Benzoate. Molecules 2019, 24, 4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S.; Song, J.G.; Lee, S.H.; Han, H.K. Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: Preparation and in vitro/in vivo characterization. Drug. Deliv. 2017, 24, 1731–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.M. 50 Years with solubility parameters—Past and future. Prog. Org. Coat. 2004, 51, 77–84. [Google Scholar] [CrossRef]
- Tamayo, A.; Mazo, M.A.; Veiga, M.D.; Ruiz-Caro, R.; Notario-Pérez, F.; Rubio, J. Drug kinetics release from Eudragit—Tenofovir@SiOC tablets. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 1097–1105. [Google Scholar] [CrossRef]
- Spanopoulos, I.; Hadar, I.; Ke, W.; Tu, Q.; Chen, M.; Tsai, H.; He, Y.; Shekhawat, G.; Dravid, V.P.; Wasielewski, M.R.; et al. Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability. J. Am. Chem. Soc. 2019, 141, 5518–5534. [Google Scholar] [CrossRef]
- Kumar, S.; Lather, V.; Pandita, D. Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma. Food Chem. 2016, 197, 959–964. [Google Scholar] [CrossRef]
- Tsakiridou, G.; Reppas, C.; Kuentz, M.; Kalantzi, L. A Novel Rheological Method to Assess Drug-Polymer Interactions Regarding Miscibility and Crystallization of Drug in Amorphous Solid Dispersions for Oral Drug Delivery. Pharmaceutics 2019, 11, 625. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.; Cheng-Hui, H.; Wei, H.; Jian-Guo, X.; Xuan-Lin, L. Application of hot-melt extrusion technique in pharmaceutical research. J. Int. Pharm. Res. 2014, 41, 437–443. [Google Scholar]
- Park, J.B.; Lee, B.J.; Kang, C.Y.; Repka, M.A. Process Analytical Quality Control of Tailored Drug Release Formulation Prepared via Hot-Melt Extrusion Technology. J. Drug Deliv. Sci. Technol. 2017, 38, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshahrani, S.M.; Morott, J.T.; Alshetaili, A.S.; Tiwari, R.V.; Majumdar, S.; Repka, M.A. Influence of degassing on hot-melt extrusion process. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015, 80, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weuts, I.; Kempen, D.; Six, K.; Peeters, J.; Verreck, G.; Brewster, M.; Van Den Mooter, G. Evaluation of different calorimetric methods to determine the glass transition temperature and molecular mobility below T(g) for amorphous drugs. Int. J. Pharm. 2003, 259, 17–25. [Google Scholar] [CrossRef]
- Liu, H.; Wang, P.; Zhang, X.; Shen, F.; Gogos, C.G. Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit E PO solid dispersions. Int. J. Pharm. 2010, 383, 161–169. [Google Scholar] [CrossRef]
- Reitz, E.; Podhaisky, H.; Ely, D.; Thommes, M. Residence time modeling of hot melt extrusion processes. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. 2013, 85, 1200–1205. [Google Scholar] [CrossRef]
- Kashif, P.M.; Madni, A.; Ashfaq, M.; Rehman, M.; Mahmood, M.A.; Khan, M.I.; Tahir, N. Development of Eudragit RS 100 Microparticles Loaded with Ropinirole: Optimization and In Vitro Evaluation Studies. AAPS PharmSciTech 2017, 18, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Navaee, K.; Oskoui, M.; Bayati, K.; Rafiee-Tehrani, M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. 2007, 67, 175–186. [Google Scholar] [CrossRef]
- Školáková, T.; Slámová, M.; Školáková, A.; Kadeřábková, A.; Patera, J.; Zámostný, P. Investigation of Dissolution Mechanism and Release Kinetics of Poorly Water-Soluble Tadalafil from Amorphous Solid Dispersions Prepared by Various Methods. Pharmaceutics 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Du, K.; Li, D.; Du, Y.; Xi, J.; Xu, Y.; Shen, Y.; Jiang, T.; Webster, T.J. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int. J. Nanomed. 2018, 13, 8379–8393. [Google Scholar] [CrossRef] [Green Version]
- Nihei, T.; Ushiro, E.; Sato, H.; Onoue, S. Biopharmaceutical Study on Nobiletin-Loaded Amorphous Solid Dispersion with Improved Hypouricemic Effect. Molecules 2021, 26, 4447. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Lee, C.H.; Lim, D.Y.; Lee, J.; Park, S.-J.; Song, I.-S.; Choi, M.-K. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide. Pharmaceutics 2021, 13, 1022. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.; Alanazi, A.; Elzayat, E.M.; Altamimi, M.A.; Imam, S.S.; Hussain, A.; Alqahtani, F.; Shakeel, F. Formulation, In Vitro and In Vivo Evaluation of Gefitinib Solid Dispersions Prepared Using Different Techniques. Processes 2021, 9, 1210. [Google Scholar] [CrossRef]
Model | Equation |
---|---|
Zero order Model | Mt/M∞ = kt |
First order Model | ln (1 − Mt/M∞) = −kt |
Higuchi Model | Mt/M∞ = kt1/2 |
Ritger-Peppas Model | Mt/M∞ = ktn |
Weibull Model | Mt/M∞ = 1 − e(−αtβ) |
Hixson-Crowell Model | (1 − Mt/M∞)1/3 = kt |
Sample | δd (MPa1/2) | δp (MPa1/2) | δh (MPa1/2) | δ (MPa1/2) | Δδ (MPa1/2) |
---|---|---|---|---|---|
RES | 20.9 | 5.2 | 5.9 | 22.3 | - |
Eudragit RS | 16.94 | 1.02 | 11.26 | 20.4 | 1.9 |
PVP VA64 | 17.4 | 0.5 | 9.2 | 19.7 | 2.6 |
P188 | 16.4 | 6.9 | 5.8 | 18.7 | 3.6 |
PEG6000 | 17.78 | 11.11 | 9.13 | 22.9 | 0.6 |
No. | Mass Ratio | Release Modifier | Amount of Release Modifier (%) | Barrel Temperature (°C) | Screw Speed (rpm) | Content (%) |
---|---|---|---|---|---|---|
1 | 1:2 | PEG6000 | 5 | 170 | 80 | 95.55 |
2 | 1:3 | PEG6000 | 5 | 170 | 80 | 96.27 |
3 | 1:4 | PEG6000 | 5 | 170 | 80 | 97.32 |
4 | 1:5 | PEG6000 | 5 | 170 | 80 | 95.28 |
5 | 1:5 | P188 | 5 | 170 | 80 | 96.39 |
6 | 1:5 | PVP VA64 | 5 | 170 | 80 | 98.50 |
7 | 1:5 | PEG6000 | 10 | 170 | 80 | 98.87 |
8 | 1:5 | PEG6000 | 15 | 170 | 80 | 95.89 |
9 | 1:5 | PEG6000 | 20 | 170 | 80 | 95.30 |
10 | 1:5 | PEG6000 | 25 | 170 | 80 | 95.72 |
11 | 1:5 | PEG6000 | 30 | 170 | 80 | 101.50 |
12 | 1:5 | PEG6000 | 35 | 170 | 80 | 101.28 |
13 | 1:5 | PEG6000 | 40 | 170 | 80 | 95.03 |
14 | 1:5 | PEG6000 | 45 | 170 | 80 | 96.38 |
15 | 1:5 | PEG6000 | 35 | 150 | 80 | 95.66 |
16 | 1:5 | PEG6000 | 35 | 160 | 80 | 95.12 |
17 | 1:5 | PEG6000 | 35 | 180 | 80 | 97.04 |
18 | 1:5 | PEG6000 | 35 | 190 | 80 | 98.00 |
19 | 1:5 | PEG6000 | 35 | 170 | 40 | 97.56 |
20 | 1:5 | PEG6000 | 35 | 170 | 60 | 96.96 |
21 | 1:5 | PEG6000 | 35 | 170 | 100 | 101.22 |
22 | 1:5 | PEG6000 | 35 | 170 | 120 | 102.38 |
RES | RES/RS/PEG6000-SRSD | Fold | |
---|---|---|---|
Saturated solubility (μg·mL−1) | 44.53 ± 0.29 | 101.65 ± 16.98 | 2.28 |
Model | Equation | R2 |
---|---|---|
Zero order model | Qt = 5.43 × t + 21.37 | 0.8389 |
First order model | Qt = 76.23 × (1 − e − 0.32t) | 0.9590 |
Higuchi model | Qt = 24.00 × t1/2 − 0.1294 | 0.9388 |
Ritger–Peppas model | Qt = 25.32 × t0.4720 | 0.9411 |
Weibull model | Qt = 84.085 × [1 − e(−3.129 × t0.82)] | 0.9592 |
Hixson–Crowell model | Qt = 100 × [1 − (1 − 0.043 × t)3] | 0.8249 |
T/d | Characteristic | Content | Moisture Absorption Rate | RSD of Content | RSD of Moisture Absorption Rate |
---|---|---|---|---|---|
0 | White and off-white powder | 99.83% | 0% | 0.08% | 0 |
5 | Powder aggregation | 93.91% | 17.46% | 0.22% | 0.58% |
10 | Powder aggregation | 86.82% | 7.28% | 1.00% | 1.21% |
T/d | Characteristic | Content | Moisture Absorption Rate | RSD of Content | RSD of Moisture Absorption Rate |
---|---|---|---|---|---|
0 | White and off-white powder | 95.95% | 0% | 0.07% | 0 |
5 | Powder aggregation slightly | 97.29% | 5.93% | 0.26% | 0.63% |
10 | Powder aggregation slightly | 99.47% | 3.27% | 0.98% | 1.26% |
T/d | Characteristic | Content | |
---|---|---|---|
RES | 0 | White and off-white powder | 98.39% |
5 | Light yellow powder | 95.78% | |
10 | Light yellow powder | 86.42% | |
SRSD | 0 | White and off-white powder | 99.83% |
5 | White and off-white powder | 99.81% | |
10 | White and off-white powder | 98.02% |
T/d | Characteristic | Content |
---|---|---|
0 | White and off-white powder | 99.83% |
5 | Brown agglomerates | / |
10 | Brown agglomerates | / |
T/d | Characteristic | Content |
---|---|---|
0 | White and off-white powder | 95.95% |
5 | White and off-white powder | 95.70% |
10 | White and off-white powder | 95.75% |
Parameters | Raw RES | RES/RS/PEG6000 |
---|---|---|
AUC0–t (μg·L−1·h−1) | 2744.80 ± 709.21 | 3298.84 ± 1345.36 |
AUC0–∞ (μg·L−1·h−1) | 2879.75 ± 546.56 | 4042.63 ± 2049.90 |
t1/2z(h) | 3.78 ± 2.80 | 7.09 ± 6.20 |
Tmax (h) | 0.79 ± 0.64 | 1.54 ± 0.82 |
Cmax (μg·L−1) | 681.95 ± 217.31 | 815.65 ± 366.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Fan, W.; Zhang, X.; Gao, M. Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability. Molecules 2021, 26, 4982. https://doi.org/10.3390/molecules26164982
Zhu W, Fan W, Zhang X, Gao M. Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability. Molecules. 2021; 26(16):4982. https://doi.org/10.3390/molecules26164982
Chicago/Turabian StyleZhu, Wenjing, Wenling Fan, Xiaotong Zhang, and Meiqi Gao. 2021. "Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability" Molecules 26, no. 16: 4982. https://doi.org/10.3390/molecules26164982
APA StyleZhu, W., Fan, W., Zhang, X., & Gao, M. (2021). Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability. Molecules, 26(16), 4982. https://doi.org/10.3390/molecules26164982