Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Materials
2.2. Characterization of Materials
2.3. Electrochemical Measurements
2.4. Charge–Discharge Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Saloux, E.; Candanedo, J.A. Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage. Appl. Energ. 2021, 291, 116840. [Google Scholar] [CrossRef]
- Wu, Y.H.; Tian, Z.N.; Yuan, S.F.; Qi, Z.Y.; Feng, Y.R.; Wang, Y.F.; Huang, R.; Zhao, Y.L.; Sun, J.H.; Zhao, W.; et al. Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures. Chem. Eng. J. 2021, 411, 127329. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Huang, Z.Q.; Wang, H.L.; Liu, R.K.; Cheng, C.; Guo, Z.Q.; Yu, X.Y.; He, G.C.; Fu, W. Separation of wolframite ore by froth flotation using a novel “crab” structure sebacoyl hydroxamic acid collector without Pb(NO3)2 activation. Power Technol. 2021, 389, 96–103. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Zhang, S.Y.; Wang, H.L.; Liu, R.K.; Cheng, C.; Liu, Z.W.; Guo, Z.Q.; Yu, X.Y.; He, G.C.; Ai, G.H.; et al. “Umbrella” structure trisiloxane surfactant: Synthesis and application for reverse flotation of phosphorite ore in phosphate fertilizer production. J. Agric. Food Chem. 2020, 68, 11114–11120. [Google Scholar] [CrossRef] [PubMed]
- Kasaeian, A.; Bellos, E.; Shamaeizadeh, A.; Tzivanidis, C. Solar-driven polygeneration systems: Recent progress and outlook. Appl. Energy 2020, 264, 114764–114774. [Google Scholar] [CrossRef]
- Khan, A.; Senthil, R.A.; Pan, J.; Osman, S.; Sun, Y.; Shu, X. A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochim. Acta 2020, 335, 135588–135597. [Google Scholar] [CrossRef]
- Kim, H.Y.; Joo, S.H. Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. J. Mater. Chem. A 2020, 8, 8195–8217. [Google Scholar] [CrossRef]
- Li, B.; Xue, J.; Han, C.; Liu, N.; Ma, K.X.; Zhang, R.C.; Wu, X.W.; Dai, L.; Wang, L.; He, Z.X. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci. 2021, 599, 467–475. [Google Scholar] [CrossRef]
- Kou, Z.Y.; Lu, Y.; Miao, C.; Li, J.Q.; Liu, C.J.; Xiao, W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021, 40, 3175–3184. [Google Scholar] [CrossRef]
- Duburg, J.C.; Azizi, K.; Primdahl, S.; Hjuler, H.A.; Zanzola, E.; Schmidt, T.J.; Gubler, L. Composite polybenzimidazole membrane with high capacity retention for vanadium redox flow batteries. Molecules 2021, 26, 1679. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.; Arevalo, M.D.; Pastor, E.; Garcia, G. Electrochemical reduction of carbon dioxide on graphene-based catalysts. Molecules 2021, 26, 572. [Google Scholar] [CrossRef]
- Kim, S.; Kim, G.; Manthiram, A. A bifunctional hybrid electrocatalyst for oxygen reduction and oxygen evolution reactions: Nano-Co3O4-deposited La0.5Sr0.5MnO3 via infiltration. Molecules 2021, 26, 277. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Gao, J.Y.; Ruan, Q.Y.; Wu, X.W.; Wu, X.S.; Zhang, T.; Liu, Z.X.; Xiang, Y.H.; He, Z.Q.; Wu, X.M. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim. Acta 2020, 353, 136570. [Google Scholar] [CrossRef]
- Gao, J.W.; Xie, X.S.; Liang, S.Q.; Lu, B.A.; Zhou, J. Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 2021, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.T.; Wang, Y.R.; Liang, S.Q.; Tang, B.Y.; Yang, Y.Q.; Wang, Z.Q.; Lu, B.A.; Zhou, J. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. Infomat 2021. [Google Scholar] [CrossRef]
- Chang, T.C.; Liu, Y.H.; Chen, M.L.; Tseng, C.C.; Lin, Y.S.; Huang, S.L. Cerium/ascorbic acid/iodine active species for redox flow energy storage battery. Molecules 2021, 26, 3443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.M.; Zhang, X.; Wang, J.; Seveno, D.; Fransaer, J.; Locquet, J.P.; Seo, J.W. Carbon nanotube fibers decorated with MnO2 for wire-shaped supercapacitor. Molecules 2021, 26, 3479. [Google Scholar] [CrossRef]
- Moghaddam, M.; Sepp, S.; Wiberg, C.; Bertei, A.; Rucci, A.; Peljo, P. Thermodynamics, charge transfer and practical considerations of solid boosters in redox flow batteries. Molecules 2021, 26, 2111. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. Acs Nano 2020, 14, 16321–16347. [Google Scholar] [CrossRef]
- Liu, N.; Li, B.; He, Z.X.; Dai, L.; Wang, H.Y.; Wang, L. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 2021, 59, 134–159. [Google Scholar] [CrossRef]
- Baldinelli, A.; Barelli, L.; Bidini, G.; Discepoli, G. Economics of innovative high capacity-to-power energy storage technologies pointing at 100% renewable micro-grids. J Energy Storage 2020, 28, 101198. [Google Scholar] [CrossRef]
- Busacca, C.; Di Blasi, O.; Giacoppo, G.; Briguglio, N.; Antonucci, V.; Di Blasi, A. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery. Electrochim. Acta 2020, 355, 136755. [Google Scholar] [CrossRef]
- Chung, Y.; Noh, C.; Kwon, Y. Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery. J. Power Sources 2019, 438, 227063. [Google Scholar] [CrossRef]
- Divya, K.; Rana, D.; Saraswathi, M.; Nagendran, A. Custom-made sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite membranes for vanadium redox flow battery applications. Polym. Test 2020, 90, 106685. [Google Scholar] [CrossRef]
- Hu, G.J.; Jing, M.H.; Wang, D.W.; Sun, Z.H.; Xu, C.; Ren, W.C.; Cheng, H.M.; Yan, C.W.; Fan, X.Z.; Li, F. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Mater. 2018, 13, 66–71. [Google Scholar] [CrossRef]
- Lv, Y.R.; Han, C.; Zhu, Y.; Zhang, T.; Yao, S.; He, Z.X.; Dai, L.; Wang, L. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives. J. Mater. Sci. Technol. 2021, 75, 96–109. [Google Scholar] [CrossRef]
- Deng, Q.; Tian, Y.; Ding, P.; Yue, J.P.; Zeng, X.X.; Yin, Y.X.; Wu, X.W.; Lu, X.Y.; Guo, Y.G. Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. J. Power Sources 2020, 450, 227633. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Q.F.; Wu, C.; Liu, Y.R.; Ding, M.; Ye, J.Y.; Cheng, Y.H.; Jia, C.K. Graphene coated carbon felt as a high-performance electrode for all vanadium redox flow batteries. Surf. Coat Tech. 2019, 358, 153–158. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H.R.; Goodenough, J.B.; Yu, G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Y.; Liu, J.G.; Yan, C.W. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 2011, 49, 3463–3470. [Google Scholar] [CrossRef]
- He, Z.X.; Cheng, G.; Jiang, Y.Q.; Li, Y.H.; Zhu, J.; Meng, W.; Zhou, H.Z.; Dai, L.; Wang, L. Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward V2+/V3+ redox reaction for vanadium redox flow battery. Int. J. Hydrog. Energy 2020, 45, 3959–3970. [Google Scholar] [CrossRef]
- Cheng, D.; Tian, M.; Wang, B.; Zhang, J.; Chen, J.; Feng, X.; He, Z.; Dai, L.; Wang, L. One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery. J. Colloid Interface Sci. 2020, 572, 216–226. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, T.S.; Zeng, L.; Zhou, X.L.; Zeng, Y.K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 2016, 180, 386–391. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, G.; Li, Y.; He, Z.; Zhu, J.; Meng, W.; Dai, L.; Wang, L. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chem. Eng. J. 2021, 415, 129014. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, Y.; Xi, J.; Qiu, X.; Chen, L. ZrO2-nanoparticle-modified graphite felt: Bifunctional effects on vanadium flow batteries. ACS Appl. Mater. Inter. 2016, 8, 15369–15378. [Google Scholar] [CrossRef]
- Vazquez-Galvan, J.; Flox, C.; Fabrega, C.; Ventosa, E.; Parra, A.; Andreu, T.; Morante, J.R. Hydrogen-treated rutile TiO2 shell in graphite-core structure as a negative electrode for high-performance vanadium redox flow batteries. ChemSusChem 2017, 10, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Bayeh, A.W.; Lin, G.-Y.; Chang, Y.-C.; Kabtamu, D.M.; Chen, G.-C.; Chen, H.-Y.; Wang, K.-C.; Wang, Y.-M.; Chiang, T.-C.; Huang, H.-C.; et al. Oxygen-vacancy-rich cubic CeO2 nanowires as catalysts for vanadium redox flow batteries. ACS Sustain. Chem. Eng. 2020, 8, 16757–16765. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Liu, T.-R.; Wondimu, T.H.; Wang, K.-C.; Wang, C.-H. Hydrogen-treated defect-rich W18O49 nanowires modified graphite felt as high-performance electrode for vanadium redox flow battery. ACS Appl. Energy Mater. 2019, 2, 2541–2551. [Google Scholar] [CrossRef]
- Mehboob, S.; Ali, G.; Shin, H.-J.; Hwang, J.; Abbas, S.; Chung, K.Y.; Ha, H.Y. Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles. Appl. Energy 2018, 229, 910–921. [Google Scholar] [CrossRef]
- Wei, L.; Xiong, C.; Jiang, H.R.; Fan, X.Z.; Zhao, T.S. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Storage Mater. 2020, 25, 885–892. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, Y.; Zhang, Z.; Zhang, T.; He, Z. A novel catalyst of titanium boride toward V3+/V2+ redox reaction for vanadium redox flow battery. J. Alloy. Compd. 2021, 875, 159915. [Google Scholar] [CrossRef]
- Tz, A.; Yj, A.; Zz, A.; Jing, X.A.; Yl, A.; Yl, A.; Zc, B.; Zx, B.; Zl, B.; Lei, D. Zirconium boride as a novel negative catalyst for vanadium redox flow battery. Ceram. Int. 2021, 47, 20276–20285. [Google Scholar]
- Ji, Y.; Li, J.L.; Li, S.F.Y. Synergistic effect of the bifunctional polydopamin Mn3O4 composite electrocatalyst for vanadium redox flow batteries. J. Mater. Chem. A 2017, 5, 15154–15166. [Google Scholar] [CrossRef]
- Zhang, R.; Li, K.; Ren, S.; Chen, J.; Feng, X.; Jiang, Y.; He, Z.; Dai, L.; Wang, L. Sb-doped SnO2 nanoparticle-modified carbon paper as a superior electrode for a vanadium redox flow battery. Appl. Surf. Sci. 2020, 526, 146685–146695. [Google Scholar] [CrossRef]
- Choi, M.S.; Mirzaei, A.; Na, H.G.; Kim, S.; Kim, D.E.; Lee, K.H.; Jin, C.; Choi, S.W. Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanoparticles for selective NO2 gas sensing. Sens. Actuat. B Chem. 2021, 340, 129984. [Google Scholar] [CrossRef]
- Ejigu, A.; Edwards, M.; Walsh, D.A. Synergistic catalyst-support interactions in a graphene-Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 2015, 5, 7122–7130. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Liu, J.; Xue, Y.; Wu, T.; Zhang, Z. Appropriate conditions for preparing few-layered graphene oxide and reduced graphene oxide. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 40–46. [Google Scholar] [CrossRef]
- Yu, X.F.; Wu, Q.B.; Zhang, H.Y.; Zeng, G.X.; Li, W.W.; Qian, Y.N.; Li, Y.; Yang, G.Q.; Chen, M.Y. Investigation on synthesis, stability, and thermal conductivity properties of water-based SnO2/reduced graphene oxide nanofluids. Materials 2018, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.D.; Shen, Y.B.; Zhou, P.F.; Hao, F.L.; Fang, P.; Wei, D.Z.; Meng, D.; San, X.G. Design and application of highly responsive and selective rGO-SnO2 nanocomposites for NO2 monitoring. Mater. Charact. 2020, 163, 110284. [Google Scholar] [CrossRef]
- Li, K.; Jiang, Y.Q.; Zhang, R.C.; Ren, S.Z.; Feng, X.J.; Xue, J.; Zhang, T.X.; Zhang, Z.X.; He, Z.X.; Dai, L.; et al. Oxygen vacancy and size controlling endow tin dioxide with remarked electrocatalytic performances towards vanadium redox reactions. Colloid Surf. A 2020, 602, 125073. [Google Scholar] [CrossRef]
- Han, P.X.; Wang, H.B.; Liu, Z.H.; Chen, X.A.; Ma, W.; Yao, J.H.; Zhu, Y.W.; Cui, G.L. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 2011, 49, 693–700. [Google Scholar] [CrossRef]
- Yang, S.B.; Feng, X.L.; Zhi, L.J.; Cao, Q.A.; Maier, J.; Mullen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838. [Google Scholar] [CrossRef] [PubMed]
Sample | Rs/Ω | Qm | Rct/Ω | Qt | ||
---|---|---|---|---|---|---|
Y0 | n0 | Y1 | n1 | |||
GO | 7.771 | 6.43 × 10−3 | 0.24 | 37.4 | 2.86 × 10−5 | 0.859 |
SnO2 | 8.947 | 3.12 × 10−2 | 0.48 | 177.5 | 3.08 × 10−5 | 0.856 |
SnO2/rGO | 7.001 | 3.14 × 10−2 | 0.53 | 7.41 | 4.95 × 10−4 | 0.663 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jiang, Y.; Lv, Y.; He, Z.; Dai, L.; Wang, L. Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions. Molecules 2021, 26, 5085. https://doi.org/10.3390/molecules26165085
Liu Y, Jiang Y, Lv Y, He Z, Dai L, Wang L. Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions. Molecules. 2021; 26(16):5085. https://doi.org/10.3390/molecules26165085
Chicago/Turabian StyleLiu, Yongguang, Yingqiao Jiang, Yanrong Lv, Zhangxing He, Lei Dai, and Ling Wang. 2021. "Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions" Molecules 26, no. 16: 5085. https://doi.org/10.3390/molecules26165085
APA StyleLiu, Y., Jiang, Y., Lv, Y., He, Z., Dai, L., & Wang, L. (2021). Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions. Molecules, 26(16), 5085. https://doi.org/10.3390/molecules26165085