The Use of Iron-Enriched Yeast for the Production of Flatbread
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutrient Composition and Glycemic Index of Flatbreads
2.2. Color Measurements
2.3. The Potential Bioavailability of Iron
2.4. Antioxidant Activity of Flatbread
2.5. Sensory Evaluation
2.6. Limitations and Future Perspectives
3. Materials and Methods
3.1. Ingredients for the Production of Flatbread
3.2. Yeast Strain and Culture Conditions
3.3. Preparation of Yeast Culture
3.4. Preparation of Flatbread
3.5. Nutrient Composition and Energy Content
3.6. Color Measurements
3.7. Antioxidant Properties
3.7.1. Extraction of Bioactive Compounds
3.7.2. DPPH Radical Scavenging Activity
3.7.3. ABTS Radical Scavenging Activity
3.8. Potential Bioavailability of Iron from Flatbread
3.9. In Vitro Glycemic Index (GI)
3.10. Sensory Evaluation
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cappellini, M.D.; Musallam, K.M.; Taher, A.T. Iron deficiency anaemia revisited. J. Intern. Med. 2020, 287, 153–170. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, J.E.; Vassallo, R.R. How do we manage iron deficiency after blood donation? Br. J. Haematol. 2018, 181, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Kulnigg-Dabsch, S.; Resch, M.; Oberhuber, G.; Klinglmueller, F.; Gasche, A.; Gasche, C. Iron deficiency workup reveals high incidence of autoimmune gastritis with parietal cell antibody as reliable screening test. Semin. Hematol. 2018, 55, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; IRON CORE Group. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- von Haehling, S.; Ebner, N.; Evertz, R.; Ponikowski, P.; Anker, S.D. Iron deficiency in heart failure: An overview. JACC Heart Fail. 2019, 7, 36–46. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2020, 58, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, U.; Jamroz, J. Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. Eur. Food Res. Technol. 2010, 231, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Pankiewicz, U.; Jamroz, J. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 2007, 17, 1139–1146. [Google Scholar]
- Pankiewicz, U.; Jamroz, J. Effect of pulsed electric fields upon accumulation of zinc in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 2011, 21, 646–651. [Google Scholar] [CrossRef]
- Pankiewicz, U.; Sujka, M.; Włodarczyk-Stasiak, M.; Mazurek, A.; Jamroz, J. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chem. 2014, 157, 125–131. [Google Scholar] [CrossRef]
- Pankiewicz, U.; Sujka, M.; Jamroz, J. Bioaccumulation of the selected metal ions in Saccharomyces cerevisiae cells under treat- ment of the culture with pulsed electric field (PEF). J. Membr. Biol. 2015, 248, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, U.; Sujka, M.; Kowalski, R.; Mazurek, A.; Włodarczyk-Stasiak, M.; Jamroz, J. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells. Food Chem. 2017, 221, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C. Theory of Electroporation. In Biomembrane Electrochemistry; Blank, M., Vodyanoy, I., Eds.; American Chemical Society: Washington, DC, USA, 1994; Volume 235, pp. 447–470. [Google Scholar]
- Zielinska-Dawidziak, M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błażejak, S.; Duszkiewicz-Reinhard, W. Yeast cell biomass as a potential source of magnesium bioplexes—A review. Pol. J. Food Nutr. Sci. 2004, 13, 223–232. [Google Scholar]
- Mir, S.A.; Naik, H.R.; Shah, M.A.; Mir, M.M.; Wani, M.H.; Bhat, M.A. Indian flat breads: A review. Food Sci. Nutr. 2014, 5, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, R.; Ali, T.M.; Hasnain, A. Effects of barley flour substitution on glycemic index, compositional, rheological, textural, and sensory characteristics of chickpea flour-based flat bread. Legum. Sci. 2021, 3, 89. [Google Scholar] [CrossRef]
- Schakel, S.; Schauer, R.; Himes, J.; Harnack, L.; Van Heel, N. Development of a glycemic index database for dietary assessment. J. Food Comp. Anal. 2008, 21, S50–S55. [Google Scholar] [CrossRef]
- Kunyanee, K.; Luangsakul, N. The effects of ultrasound–assisted recrystallization followed by chilling to produce the lower glycemic index of rice with different amylose content. Food Chem. 2020, 323, 126843. [Google Scholar] [CrossRef]
- Shital, G.; Banerji, A.; Lele, S.S.; Ananthanarayan, L. Starch digestibility and glycaemic index of selected Indian traditional foods: Effects of added ingredients. Int. J. Food Prop. 2017, 20, S290–S305. [Google Scholar]
- Pauter, P.; Rózanska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of thereplacement of wheat flour with cricket powder on the characteristics of muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in food stuff. Crit. Rev. Food Sci. Nutr. 2017, 57, 805–833. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461–1467. [Google Scholar] [CrossRef]
- Pizarro, F.; Olivares, M.; Hertrampf, E.; Nunez, S.; Tapia, M.; Cori, H.; de Romana, D.L. Ascorbyl palmitate enhances iron bioavailability in iron-fortified bread. Am. J. Clin. Nutr. 2006, 84, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Hallberg, L. Wheat fiber, phytates and iron absorption. Scand. J. Gastroenterol. 1987, 22, 73–79. [Google Scholar] [CrossRef]
- Diego Quintaes, K.; Barberá, R.; Cilla, A. Iron bioavailability in iron-fortified cereal foods: The contribution of in vitro studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2028–2041. [Google Scholar] [CrossRef]
- Sabatier, M.; Egli, I.; Hurrell, R.; Hoppler, M.; Gysler, C.; Georgeon, S.; Schaffer-Lequart, C. Iron bioavailability from fresh cheese fortified with iron-enriched yeast. Eur. J. Nutr. 2017, 56, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Miklavčič, D.; Arczewska, M. Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast Saccharomyces cerevisiae. Biomolecules 2021, 11, 850. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.P.; Oteiza, P.I. The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radic. Biol. Med. 2001, 31, 266–274. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Su, T.; Guan, Z.; Ji, M. Screening of iron- and zinc-enriched yeast strain and optimization of cultivation conditions. Prep. Biochem. Biotechnol. 2011, 41, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Pas, M.; Piskur, B.; Sustaric, M.; Raspor, P. Iron enriched yeast biomass-a promising mineral feed supplement. Bioresour. Technol. 2007, 98, 1622–1628. [Google Scholar] [CrossRef] [PubMed]
- Pirman, T.; Orešnik, A. Fe bioavailability from Fe-enriched yeast biomass in growing rats. Animal 2012, 6, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F. Preventing iron deficiency through food fortification. Nutr. Rev. 1997, 55, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.H.; Gillespie, S.R. What Works? A Review of the Efficacy and Effectiveness of Nutrition Interventions; ACC/SCN: Manila, Philippines, 2001. [Google Scholar]
- Kiskini, A.; Argiri, K.; Kalogeropoulos, M.; Komaitis, M.; Kostaropoulos, A.; Mandala, I.; Kapsokefalou, M. Sensory characteristics and iron dialyzability of gluten-free bread fortified with iron. Food Chem. 2007, 102, 309–316. [Google Scholar] [CrossRef]
- Nakov, G.; Stamatovska, V.; Necinova, L.I.N.; Damyanova, S. Sensor analysis of functional biscuits. Ukr. Food J. 2016, 5, 56–62. [Google Scholar]
- Romani, A.M.P.; Maguire, M.E. Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells. Biometals 2002, 15, 271–283. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2010; pp. 2–4. [Google Scholar]
- Association of Official Analytical Chemistry (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Official Analytical Chemistry (AOAC): Arlington, TX, USA, 1984; p. 1141. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Szalast-Pietrzak, A.; Marzec, Z.; Kopcial, E.; Borkowski, L. In vitro bioavailability of iron from dietary supplements recommended for children and adults. Bromatol. Chem. Toksyk. 2018, 51, 174–180. [Google Scholar]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant capacity, arabinoxylans content and in vitro glycemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT-Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
Flatbread with Yeast | Proteins (%) | Fat (%) | Carbohydrates (%) | Ash (%) | Caloric Value (kcal/100g) | Caloric Value (kJ/100g) | Glycemic Index (IG) |
---|---|---|---|---|---|---|---|
C1 | 11.85 ± 0.42 a | 4.50 ± 0.33 a | 62.09 ± 0.48 c | 21.56 ± 0.19 a | 336.23 ± 2.38 c | 1406.79 ± 9.97 c | 56.24 ± 0.12 a |
C2 | 11.44 ± 0.14 a | 4.81 ± 0.18 a | 59.42 ± 0.18 b | 24.33 ± 0.33 b | 326.70 ± 2.18 b | 1366.91 ± 9.11 b | 56.51 ± 0.25 a |
P | 12.39 ± 0.45 a | 4.11 ± 0.19 a | 58.14 ± 0.40 a | 25.37 ± 0.35 c | 319.07 ± 2.26 a | 1334.97 ± 9.45 a | 56.23 ± 1.34 a |
Flatbread with Yeast | L* | a* | b* | ΔE |
---|---|---|---|---|
C1 | 94.98 ± 0.54 c | 1.00 ± 0.18 a | 11.32 ± 0.52 b | - |
C2 | 93.29 ± 0.22 b | 1.54 ± 0.07 c | 12.86 ± 0.14 c | 3.78 |
P | 91.53 ± 0.95 a | 1.23 ± 0.1 b | 10.47 ± 0.1 a | 4.43 |
Flatbread with Yeast | Iron Content (mg) in 100 g of Dry Mass | The Potential Bioavailability of Iron (%) |
---|---|---|
C1 | 2.96 ± 0.54 a | 5.86 ± 0.12 a |
C2 | 266.3 ± 2.62 b | 7.97 ± 0.64 b |
P | 385.8 ± 4.12 c | 10.83 ± 0.94 c |
Feature | Weighting Factor | Flatbread with Yeast | ||
---|---|---|---|---|
C1 | C2 | P | ||
Color | 0.3 | 1.32 ± 0.10 b | 1.22 ± 0.04 a | 1.32 ± 0.03 b |
Smell | 0.15 | 0.39 ± 0.01 b | 0.37 ± 0.02 b | 0.33 ± 0.01 a |
Structure and consistency | 0.15 | 0.50 ± 0.08 a | 0.56 ± 0.06 a | 0.60 ± 0.02 a |
Taste | 0.4 | 1.55 ± 0.04 a | 1.49 ± 0.08 a | 1.68 ± 0.08 b |
Overall | 3.76 ± 0.12 a | 3.64 ± 0.11 a | 3.93 ± 0.03 b |
Component | Protein (%) | Carbohydrates (%) | Fat (%) | Iron Content (mg/g) |
---|---|---|---|---|
Wheat flour | 10.8 ± 0.21 a | 65.7 ± 0.18 c | 1.35 ± 0.12 a | 0.70 ± 0.01 a |
Yeast C1 | 59.13 ± 0.18 b | 31.79 ± 0.28 a | 2.7 ± 0.14 b | 0.13 ± 0.01 b |
Yeast C2 | 58.24 ± 0.35 c | 30.44 ± 0.59 b | 2.5 ± 0.00 c | 18.68 ± 0.86 c |
Yeast P | 54.0 ± 0.11 d | 31.00 ± 0.37 b | 2.35 ± 0.07 d | 48.01 ± 0.88 d |
Feature | Sample No. | ||
---|---|---|---|
218 | 331 | 829 | |
Color | |||
Smell | |||
Structure and consistency | |||
Taste |
Feature | Weighting Factor | Definitions | ||||
---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | ||
Color | 0.30 | Light with brown baked bubbles | Light with little-baked bubbles | Bright, with traces of baked bubbles | No characteristic baked bubbles | Inappropriate color—very light or very dark |
Smell | 0.15 | Very aromatic, typical for a baked flour product | Aromatic, typical for a baked flour product | A noticeable smell of a baked flour product | Faint smell of baked flour product, perceptible smell of a burnt product | No smell characteristic of flour products, a very perceptible smell of a burnt product, foreign smell |
Structure and consistency | 0.15 | Very well baked, compact, uniform, easily brittle | Well baked, brittle | Sufficiently baked and hard, brittle | Poorly baked, not too hard, not brittle | Underdone, rubbery |
Taste | 0.40 | Very natural, mild, characteristicfor flour product | Natural, gentle, desirable | Sufficiently natural, mild, without any foreign taste | Very poor taste of flour products, not very natural | No flour taste, bitter taste, metallic after-taste |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowosad, K.; Sujka, M. The Use of Iron-Enriched Yeast for the Production of Flatbread. Molecules 2021, 26, 5204. https://doi.org/10.3390/molecules26175204
Nowosad K, Sujka M. The Use of Iron-Enriched Yeast for the Production of Flatbread. Molecules. 2021; 26(17):5204. https://doi.org/10.3390/molecules26175204
Chicago/Turabian StyleNowosad, Karolina, and Monika Sujka. 2021. "The Use of Iron-Enriched Yeast for the Production of Flatbread" Molecules 26, no. 17: 5204. https://doi.org/10.3390/molecules26175204
APA StyleNowosad, K., & Sujka, M. (2021). The Use of Iron-Enriched Yeast for the Production of Flatbread. Molecules, 26(17), 5204. https://doi.org/10.3390/molecules26175204