Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anthocyanin Content
2.2. Total Phenolic and Total Flavonoid Content
2.3. Antioxidant Assay
2.4. Anti-Inflammatory Activities Assay
2.5. Antimicrobial Activity against Foodborne Pathogens
3. Materials and Methods
3.1. Preparation of Purple Rice Extract
3.2. Determination of Anthocyanins by HPLC
3.3. Determination of Total Phenolic Content
3.4. Determination of Total Flavonoid Content
3.5. Antioxidant Assay
3.5.1. ABTS Assay
3.5.2. Lipid Peroxidation Assay
3.5.3. Superoxide Anion Scavenging Activity Assay
3.5.4. Nitric Oxide Scavenging Activity Assay
3.6. Determination of Anti-Inflammatory Activities
3.7. Determination of Antimicrobial Activity against Foodborne Pathogens
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Yadav, S.K.; Yadav, S.; Nema, R. Antioxidants: A review. J. Chem. Pharm. Res. 2009, 1, 102–104. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Kasote, D.; Katyare, S.; Hegde, M.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Wijewickreme, A.N.; Hu, C. Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem. 2000, 203, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, N.; Niki, E. Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic. Biol. Med. 2000, 28, 1538–1546. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jimenez, L. Polyphenols: Food source and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, F.M.; Sommano, S.R.; Riar, C.S.; Seesuriyachan, P.; Chaiyaso, T.; Prom-u-Thai, C. Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance. Agronomy 2020, 10, 1817. [Google Scholar] [CrossRef]
- Melini, V.; Acquistucci, R. Health-promoting compounds in pigmented Thai and wild rice. Foods 2017, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Seechamnanturakit, V.; Karrila, T.; Sontimuang, C.; Sukhoom, A. The natural pigments in pigmented rice bran and their relation to human health: A literature review. KMUTNB IJAST 2018, 11, 3–13. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Prom-u-Thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef]
- Hu, C.; Zawistowski, J.; Ling, W.; Kitts, D.D. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 2003, 51, 5271–5277. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Chen, M.-H.; McClung, A.M.; Bergman, C.J. Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors. J. Cereal Sci. 2017, 77, 110–119. [Google Scholar] [CrossRef]
- Jansom, V.; Jansom, C.; Lerdvuthisopon, N. The relationship between color values in rice to phenolic acids, flavonoids, and antioxidants. J. Med. Assoc. Thai 2020, 103, 80. [Google Scholar]
- Rerkasem, B.; Jumrus, S.; Yimyam, N. Variation of grain nutritional quality among Thai purple rice genotypes grown at two different altitudes. ScienceAsia 2015, 41, 377. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Yooin, W.; Saenjum, C. EPR and HPLC investigation of pigments in Thai purple rice. J. Oleo Sci. 2018, 67, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Yamuangmorn, S.; Dell, B.; Du, X.; Ren, Y. Simultaneous quantification of anthocyanins and phenolic acids in pigmented rice (Oryza sativa) using UPLC-PDA/ESI-Q-TOF. Int. J. Agric. Biol. 2019, 21, 590–596. [Google Scholar] [CrossRef]
- Wongsa, P.; Chaiwarith, J.; Voranitikul, J.; Chaiwongkhajorn, J.; Rattanapanone, N.; Lanberg, R. Identification of phenolic compounds in colored rice and their inhibitory potential against α-amylase. Chiang Mai J. Sci. 2019, 46, 672–682. [Google Scholar]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Effect of extraction conditions on phenolic content, anthocyanin content and antioxidant activity of bran extracts from Thai rice cultivars. J. Cereal Sci. 2019, 86, 86–91. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Chariyakornkul, A.; Sankam, P.; Wongpoomchai, R. Inhibitory effect of Thai purple rice husk extract on chemically induced carcinogenesis in rats. Molecules 2021, 26, 360. [Google Scholar] [CrossRef]
- Pramai, P.; Jiamyangyuen, S. Chemometric classification of pigmented rice varietiesbased on antioxidative properties in relation to color. Songklanakarin J. Sci. Technol. 2016, 38, 463–472. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Dell, B.; Prom-u-thai, C. Effects of cooking on anthocyanin concentration and bioactive antioxidant capacity in glutinous and non-glutinous purple rice. Rice Science 2018, 25, 270–278. [Google Scholar] [CrossRef]
- Kushwaha, U. Black rice anthocyanin content increases with increase in altitude of its plantation. APAR 2016, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jamjod, S.; Yimyam, N.; Lordkaew, S.; Rerkasem, B. Characterization of on-farm rice germplasm in an area of the crop’s center of diversity. Chiang Mai Univ. J. Nat. Sci. 2017, 16, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59, 211–218. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, S.Y.; Chu, S.M.; Lim, S.H.; Suh, S.-C.; Lee, Y.-T.; Cho, H.S.; Ha, S.-H. Variation and correlation analysis of flavonoids and carotenoids in korean pigmented rice (Oryza sativa L.) cultivars. J. Agric. Food Chem. 2010, 58, 12804–12809. [Google Scholar] [CrossRef]
- Doshi, P.; Adsule, P.; Banerjee, K.; Oulkar, D. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. J. Food Sci. Technol. 2015, 52, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Ngamdee, P.; Wichai, U.; Jiamyangyuen, S. Correlation between phytochemical and mineral contents and antioxidant activity of black glutinous rice bran, and its potential chemopreventive property. Food Technol. Biotechnol. 2016, 54, 282–289. [Google Scholar] [CrossRef]
- Petroni, K.; Landoni, M.; Tomay, F.; Calvenzani, V.; Simonelli, C.; Cormegna, M. Proximate composition, polyphenol content and anti-inflammatory properties of white and pigmented Italian rice varieties. Univers. J. Agric. Res. 2017, 5, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Wongsa, P. Phenolic compounds and potential health benefits of pigmented rice. In Recent Advances in Rice Research; IntechOpen: London, UK, 2020; pp. 1–20. [Google Scholar]
- Min, S.W.; Ryu, S.N.; Kim, D.H. Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 2010, 10, 959–966. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673. [Google Scholar] [CrossRef] [Green Version]
- Saenjum, C.; Chaiyasut, C.; Chansakaow, S.; Suttajit, M.; Sirithunyalug, B. Antioxidant and anti-inflammatory activities of gamma-oryzanol rich extracts from Thai purple rice bran. J. Med. Plants Res. 2012, 6, 1070–1077. [Google Scholar]
- Junmarkho, K.; Hansakul, P. Thai pigmented rice bran extracts inhibit production of superoxide, nitric oxide radicals and inducible nitric oxide synthase in cellular models. Asian Pac. J. Trop. Biomed. 2019, 9, 291. [Google Scholar] [CrossRef]
- Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Mol. Cells 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Tiwari, V.; Vats, S.; Kumari, A.; Chunduri, V.; Kaur, S.; Kapoor, P.; Garg, M. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules 2020, 25, 5785. [Google Scholar] [CrossRef]
- Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenjum, C.; Pattananandecha, T.; Nakagawa, K. Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules 2021, 26, 3565. [Google Scholar] [CrossRef] [PubMed]
- Saenjum, C.; Chaiyasut, C.; Kadchumsang, S.; Chansakaow, S.; Suttajit, M. Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. J. Med. Plants Res. 2010, 4, 1594–1600. [Google Scholar]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Choi, C.; Kim, S.; Hwang, S.; Choi, B.; Ahn, H.; Lee, M.; Park, S.; Kim, S. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Sirithunyalug, B.; Saenjum, C.; Charumanee, S.; Sivamaruthi, B.S.; Chaiyasut, C.; Sirithunyalug, J.; Tipduangta, P. Development of colorectal-targeted dietary supplement tablets containing natural purple rice bran oil as a colorectal chemopreventive. Nutrients 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019, 7, e7555. [Google Scholar] [CrossRef] [Green Version]
Samples | Cyanidin 3-O-Glucoside (mg/g Extract) | Peonidin 3-O-Glucoside (mg/g extract) | Delphinidin 3-O- Glucoside (mg/g Extract) |
---|---|---|---|
KGLP | 55.26 ± 0.71 a | 14.24 ± 0.46 b | 1.95 ± 0.13 a |
KGPEK | 52.20 ± 0.89 b | 15.91 ± 0.47 a | 1.55 ± 0.12 b |
KGDSK | 29.62 ± 0.80 c | 10.48 ± 0.38 c | ND |
KND | 28.91 ± 0.74 cd | 10.70 ± 0.40 c | ND |
KHN | 27.04 ± 0.68 d | 8.54 ± 0.31 d | ND |
Samples | Total Phenolic Content (TPC) (mg GAE/g Extract) | Total Flavonoid Content (TFC) (mg QE/g Extract) |
---|---|---|
KGLP | 595.53 ± 7.36 a | 379.35 ± 4.26 a |
KGPEK | 570.49 ± 6.53 b | 340.24 ± 3.64 b |
KGDSK | 489.39 ± 5.16 d | 291.93 ± 3.99 d |
KND | 533.91 ± 5.54 c | 323.21 ± 4.74 c |
KHN | 451.81 ± 4.85 e | 286.40 ± 3.82 d |
Samples/ Positive Control | IC50 (µg/mL) | ||
---|---|---|---|
Lipid Peroxidation | Superoxide Anion | Nitric Oxide | |
KGLP | 19.70 ± 0.31 c | 11.20 ± 0.25 c | 17.12 ± 0.56 c |
KGPEK | 21.45 ± 0.38 b | 11.96 ± 0.65 c | 18.81 ± 0.33 b |
KGDSK | 21.62 ± 0.37 b | 14.78 ± 0.30 ab | 19.38 ± 0.38 b |
KND | 24.57 ± 0.35 a | 14.05 ± 0.31 b | 21.49 ± 0.34 a |
KHN | 25.00 ± 0.31 a | 15.60 ± 0.45 a | 22.31 ± 0.36 a |
Quercetin | 19.57 ± 0.42 c | 9.40 ± 0.37 d | 17.54 ± 0.30 c |
Cyanidin-3-O-glucoside | 16.64 ± 0.38 d | 9.55 ± 0.34 d | 13.76 ± 0.28 d |
l-ascorbic acid | ND | 7.55 ± 0.31 e | ND |
Curcumin | ND | ND | 6.68 ± 0.28 e |
Samples/ Positive Control | IC50 (µg/mL) | |
---|---|---|
Nitric Oxide | iNOS | |
KGLP | 18.32 ± 0.82 d | 23.43 ± 1.21 d |
KGPEK | 20.34 ± 0.98 cd | 24.66 ± 0.87 c |
KGDSK | 24.50 ± 0.97 b | 29.43 ± 0.98 ab |
KND | 22.54 ± 0.80 bc | 27.94 ± 1.17 b |
KHN | 29.66 ± 0.91 a | 31.74 ± 1.32 a |
Quercetin | 15.86 ± 0.67 e | 20.61 ± 1.18 d |
Curcumin | 12.61 ± 0.74 f | 14.70 ± 0.91 e |
Cyanidin-3-glucoside | 13.48 ± 0.85 ef | 16.68 ± 0.92 e |
Rice Sample | Abbreviation | Type | Altitude | Growing Locations |
---|---|---|---|---|
Khao’ Gam Luem-Phua | KGLP | Glutinous | Highland | Tak |
Khao’ Gam Pah E-Kaw | KGPEK | Glutinous | Highland | Mae Hong Son |
Khao’ Gam Doi Saket | KGDSK | Glutinous | Lowland | Chiang Mai |
Khao’ Niaw Dam | KND | Glutinous | Lowland | Chiang Mai |
Khao’ Hom nil | KHN | Non-glutinous | Lowland | Chiang Mai |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattananandecha, T.; Apichai, S.; Sirilun, S.; Julsrigival, J.; Sawangrat, K.; Ogata, F.; Kawasaki, N.; Sirithunyalug, B.; Saenjum, C. Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand. Molecules 2021, 26, 5234. https://doi.org/10.3390/molecules26175234
Pattananandecha T, Apichai S, Sirilun S, Julsrigival J, Sawangrat K, Ogata F, Kawasaki N, Sirithunyalug B, Saenjum C. Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand. Molecules. 2021; 26(17):5234. https://doi.org/10.3390/molecules26175234
Chicago/Turabian StylePattananandecha, Thanawat, Sutasinee Apichai, Sasithorn Sirilun, Jakaphun Julsrigival, Kasirawat Sawangrat, Fumihiko Ogata, Naohito Kawasaki, Busaban Sirithunyalug, and Chalermpong Saenjum. 2021. "Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand" Molecules 26, no. 17: 5234. https://doi.org/10.3390/molecules26175234
APA StylePattananandecha, T., Apichai, S., Sirilun, S., Julsrigival, J., Sawangrat, K., Ogata, F., Kawasaki, N., Sirithunyalug, B., & Saenjum, C. (2021). Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand. Molecules, 26(17), 5234. https://doi.org/10.3390/molecules26175234