Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L.
Abstract
:1. Introduction
2. Results
2.1. Essential Oils Yield and Compositions
2.2. Explorative Data Analysis
2.3. Antibacterial In Vitro Tests
2.4. Antifungal In Vitro Test
2.5. Antioxidant Test
2.6. Biodeteriogen Control on Altered Painting
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Essential Oil Isolation
4.3. GC-FID Analysis
4.4. GC/MS Analysis
4.5. Identification of Essential Oil Components
4.6. Statistical Analysis
4.7. Antibacterial Activity Assays against B. subtilis PY79 and E. coli DH5α
4.8. Antifungal Activity Assay
4.9. Antioxidant Activity
4.10. Case Study: A Painting on Wood Dated from the XIX Century
4.11. Antimicrobial Activity on Paint
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Petrovska, B.B. Historical review of medicinal plant usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Smeriglio, A.; Trombetta, D.; Cornara, L.; Valussi, M.; De Feo, V.; Caputo, L. Characterization and phytotoxicity assessment of essential oils from plant by products. Molecules 2019, 24, 2941. [Google Scholar] [CrossRef] [Green Version]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Kikic, I. Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 2009, 112, 1072–1078. [Google Scholar] [CrossRef]
- Reverchon, E.; Della Porta, G. Supercritical CO2 extraction and fractionation of Lavender essential oil and waxes. J. Agric. Food Chem. 1995, 43, 1654–1658. [Google Scholar] [CrossRef]
- Mantovani, A.L.L.; Vieira, G.P.G.; Cunha, W.R.; Groppo, M.; Santos, R.A.; Rodrigues, V.; Magalhaes, L.G.; Crotti, A.E.M. Chemical composition, antischistosomal and cytotoxic effects of the essential oil of Lavandula angustifolia grown in Southeastern Brazil. Rev. Bras. Farmacogn. 2013, 23, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Shellie, R.; Mondello, L.; Marriott, P.; Dugo, G. Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2002, 970, 225–234. [Google Scholar] [CrossRef]
- Cong, Y.; Abulizi, P.; Zhi, L.; Wang, X. Chemical composition of the essential oil of Lavandula angustifolia from Xinjiang, China. Chem. Nat. Compd. 2008, 44, 810–815. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula Angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialon., M.; Krzysko-Lupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical composition of two different lavander essential oils and their effect on facial skin microbiota. Molecules 2019, 24, 3270. [Google Scholar] [CrossRef] [Green Version]
- Danh, L.T.; Han, L.N.; Triet, N.D.A.; Zhao., J.; Mammuccari, R.; Foster, N. Comparison of chemical composition, antioxidant and antimicrobial activity of lavander (Lavandula angustifolia L.) Essential Oils Extracted by Supercritical CO2, hexane and hydrodistillation. Food Bioproc. Technol. 2013, 6, 3481–3489. [Google Scholar] [CrossRef]
- An, M.; Haig, T.; Hatfield, P. On-site sampling and analysis of fragrance from living Lavender (Lavandula angustifolia L.) flowers by solid-phase microextraction coupled to gas chromatography and ion-trap mass spectrometry. J. Chromatogr. A. 2001, 917, 245–250. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, D.D. Comparison of different extraction method for the analysis of fragrance from Lavandula species by gas chromatography-mass spectrometry. J. Chromatogr. A. 2002, 982, 31–47. [Google Scholar] [CrossRef]
- Gora, J.; Lis, A. The most valuable oils-Lavender oil. Aromaterapia PTA 1995, 2, 5–11. [Google Scholar]
- Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to Antibiotics. Lett. Appl. Microbiol. 2008, 47, 167–173. [Google Scholar] [CrossRef]
- Stanojević, L.; Stanković, M.; Cakić, M.; Nikolić, V.; Nikolić, L.; Ilić, D.; Radulović, N. The effect of hydrodistillation techniques on yield, kinetics, composition and antimicrobial activity of essential oils from flowers of Lavandula officinalis L. Hem. Ind. 2011, 65, 455–463. [Google Scholar] [CrossRef]
- Hanamanthagouda, M.A.; Kakkalameli, S.B.; Naik, P.M.; Nagella, P.; Seetharamareddy, H.R.; Murthy, H.N. Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chem. 2010, 118, 836–839. [Google Scholar] [CrossRef]
- Duval, R.E.; Grare, M.; Demoré, B. Fight against Antimicrobial Resistance: We always need new antibacterials but for right bacteria. Molecules 2019, 24, 3152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Huang, C.H.; Vallad, G.E. Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in southeastern United States. Plant Dis. 2014, 98, 1685–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, L.; He, L.; Lu Huan, L.; XiaoLan, L.; Guo, Z.A. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis related bacteria. Afr. J. Microbiol. Res. 2010, 4, 309–313. [Google Scholar]
- Lin, C.-W.; Yu, C.-W.; Wu, S.-C.; Yih, K.-H. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of fourty-two kinds of essential oils. J. Food Drug Anal. 2009, 17, 386–395. [Google Scholar]
- Donellia, D.; Antonellia, M.; Bellinazzi, C.; Gensini, G.F.; Firenzuoli, F. Effects of lavender on anxiety: A systematic review and meta-analysis. Phytomedicine 2019, 65, 153099. [Google Scholar] [CrossRef] [PubMed]
- Barresi, G.; Di Carlo, E.; Trapani, M.R.; Parisi, M.G.; Chille, C.; Mule, M.F.; Cammarata, M.; Palla, F. Marine organisms as source of bioactive molecules applied in restoration projects. Herit. Sci. 2015, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential oils as natural biocides in conservation of Cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [Green Version]
- Arabhosseini, A.; Huisman, W.; van Boxtel, A.; Müller, J. Long-term effects of drying conditions on the essential oil and color of tarragon leaves duringstorage. J. Food Eng. 2007, 79, 561–566. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Müller, J. Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.). Ind. Crops Prod. 2014, 52, 118–124. [Google Scholar] [CrossRef]
- Dušková, E.; Dušek, K.; Indrák, P.; Smékalová, K. Postharvest changes in essential oil content and quality of lavender flowers. Ind. Crop. Prod. 2016, 79, 225–231. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Co.: Carol Stream, IL, USA, 2007; ISBN 978-1932633214. [Google Scholar]
- Ärje, J.; Choi, K.P.; Divino, F.; Meissner, K.; Kärkkäinen, S. Understanding the statistical properties of the percent model affinity index can improve biomonitoring related decision making. Stoch. Environ. Res. Risk Assess. 2016, 30, 1981–2008. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Sankaralingam, A.; Nakkeeran, S. Management of groundnut root rot with biocontrol agents and organic amendments. Arch. Phytopathol. Plant Protect. 2006, 39, 215–223. [Google Scholar] [CrossRef]
- Falasca, A.; Caprari, C.; De Felice, V.; Fortini, P.; Saviano, G.; Zollo, F.; Iorizzi, M. GC-MS analysis of the essential oils of Juniperus communis L. berries growing wild in the Molise region: Seasonal variability and in vitro antifungal activity. Biochem. Syst. Ecol. 2016, 69, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Wavare, S.H.; Gade, R.M.; Shitole, A.V. Effect of plant extracts, bio agents and fungicides against Sclerotium rolfsii causing collar rot in chickpea. Indian J. Pharm. Sci. 2017, 79, 513–520. [Google Scholar] [CrossRef]
- Esteves Cardia, G.F.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Cocco Salvadego, V.E.; Spironello, R.A.; Bersani-Amado, C.A.; Nakamura Cuman, R.K. Effect of lavender (Lavandula angustifolia) essential oil on acute inflammatory response. Evid. Based Complementary Altern. Med. 2018, 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3013. [Google Scholar] [CrossRef] [PubMed]
- Okoh, S.O.; Asekun, O.T.; Familoni, O.B.; Afolayan, A.J. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants 2014, 3, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.; Shigeru, A.; Hideyo, Y.; Matsumi, A. Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int. J. Aromather. 2003, 13, 33–41. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Sailer, R.; Berger, T.; Reichling, J.; Harkenthal, M. Pharmaceutical and medicinal aspects of Australian tea tree oil. Phytomedicine 1998, 5, 489–495. [Google Scholar] [CrossRef]
- Usachev, E.; Pyankov, O.V.; Usacheva, O.V.; Agranovski, I.E. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. J. Aerosol. Sci. 2013, 59, 22–30. [Google Scholar] [CrossRef]
- Pyankov, O.V.; Usachev, E.V.; Pyankova, O.; Agranovski, I.E. Inactivation of airborne influenza virus by tea tree and eucalyptus oils. Aerosol. Sci. Technol. 2012, 46, 1296–1302. [Google Scholar] [CrossRef]
- Angulo-Milhema, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Indoor use of essential oils: Emission rates, exposure time and impact on air quality. Atmos. Environ. 2021, 244, 117963. [Google Scholar] [CrossRef]
- Aycock, R. Stem Rot and Other Diseases Caused by Sclerotium Rolfsii or the Status of Rolfs’ Fungus after 70 Years; North Carolina State University: Raleigh, NC, USA, 1966; pp. 132–202. [Google Scholar]
- Farr, D.F.; Bills, G.F.; Chamuris, G.P.; Rossaman, A.Y. Fungi on Plants and Plant Products in the United States; VIII APS Press: St. Paul, MN, USA; p. 1989. ISBN 978-0890540992.
- Rajput, V.A.; Konde, S.A.; Thakur, M.R. Evaluation of bioagents against chickpea wilt complex. J. Soils Crop. 2010, 20, 155–158. [Google Scholar]
- Lucini, E.I.; Zunino, M.P.; Lopez, M.L.; Zygadlo, J.A. Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. J. Phytopathol. 2006, 154, 441–446. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 2008, 163, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004; Volume I, p. 217. [Google Scholar]
- Kovats, E. Gas Chromatographic Characterization of Organic Substances in the Retention Index System. In Advances in Chromatography; Giddings, J.C., Keller, R.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1965; Volume I, pp. 229–247. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- NIST/EPA/NIH. Mass Spectral Library; National Institute of Standard and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- McLafferty, F.W. Wiley Registry of Mass Spectral Data, with NIST Spectral Data CD Rom, 7th ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Grob, R.L.; Kaiser, M.A. Qualitative and quantitative analysis by gas chromatography. In Modern Practice of Gas Chromatography; Grob, B., Ed.; John Wiley & Sons: New York, NY, USA, 2004; ISBN 0471229830. [Google Scholar]
- Youngman, P.; Perkins, J.B.; Losick, R. A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol. Gen. Genet. 1984, 195, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Fritsch, E.R.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Bergey, D.H.; Holt, J.G. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, M.P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, G.; Zanardini, E. Biocleaning on Cultural Heritage: New frontiers of microbial biotechnologies. J. Appl. Microbiol. 2021, 31, 583–603. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Exp. RI | Ref. RI | LA 2019 Area % ± SD | LA 2020 Area % ± SD | Abbr. |
---|---|---|---|---|---|---|
1 | 2-Methyl-4-pentenal | - | 732 | 0.08 ± 0.01 | 0.15 ± 0.01 | OT |
2 | Santolinatriene | 918 | 908 | t | 0.01 ± 0.01 | AM |
3 | Tricyclene | 922 | 926 | 0.02 ± 0.00 | 0.02 ± 0.00 | BM |
4 | α-Thujene | 929 | 930 | 0.09 ± 0.01 | 0.09 ± 0.01 | BM |
5 | α-Pinene | 936 | 939 | 0.68 ± 0.02 | 0.61 ± 0.01 | BM |
6 | Camphene | 950 | 954 | 0.51 ± 0.02 | 0.61 ± 0.02 | BM |
7 | Isothujol | 955 | 960 | 0.04 ± 0.01 | 0.05 ± 0.01 | BMO |
8 | Heptanol | 965 | 996 | 0.04 ± 0.01 | 0.08 ±0.02 | OT |
9 | Sabinene | 976 | 975 | 0.20 ± 0.03 | 0.15 ± 0.02 | BM |
10 | β-Pinene | 977 | 979 | 0.52 ± 0.01 | 0.24 ± 0.04 | BM |
11 | 1-Octen-3-ol | 984 | 979 | 0.13 ± 0.02 | 0.24 ± 0.01 | OT |
12 | 3-Octanone | 990 | 983 | 0.17 ± 0.01 | 0.16 ± 0.01 | OT |
13 | Myrcene | 993 | 990 | 0.28 ± 0.02 | 0.21 ± 0.02 | AM |
14 | Octyn-3-ol | 998 | - | 0.06 ± 0.01 | 0.07 ± 0.02 | OT |
15 | 3-carene | 1009 | 1011 | 0.05 ± 0.00 | 0.06 ± 0.01 | BM |
16 | 3-Undecen-1-yne | 1018 | - | 0.25 ± 0.01 | 0.35 ± 0.01 | AM |
17 | p-Cymene | 1026 | 1024 | 0.41 ± 0.03 | 0.54 ± 0.04 | MM |
18 | R-(+)-Limonene | 1031 | 1029 | 0.70 ± 0.05 | 0.85 ± 0.05 | MM |
19 | 1,8-Cineole | 1034 | 1031 | 11.0 ± 0.4 | 9.0 ± 0.3 | BMO |
20 | (Z)-β-Ocimene | 1043 | 1037 | 0.32 ± 0.02 | 0.40 ± 0.02 | AM |
21 | (E)-β-Ocimene | 1053 | 1050 | 0.20 ± 0.01 | 0.31 ± 0.02 | AM |
22 | γ-Terpinene | 1062 | 1059 | 0.13 ± 0.01 | 0.17 ± 0.00 | MM |
23 | cis-Sabinene hydrate | 1069 | 1070 | 0.57 ± 0.01 | 0.50 ± 0.01 | BMO |
24 | Linalool oxide cis | 1075 | 1072 | 1.61 ± 0.04 | 1.68 ± 0.04 | AMO |
25 | Linalool oxide trans | 1089 | 1086 | 1.43 ± 0.06 | 1.49 ± 0.02 | AMO |
26 | Linalool | 1105 | 1096 | 35.3 ± 1.0 | 36.0 ± 0.1 | AMO |
27 | 2,4,6-octatriene,3,4 dimethyl | 1133 | 1132 | 0.16 ± 0.02 | 0.14 ± 0.04 | AM |
28 | trans-Pinocarveol | 1142 | 1139 | 0.06 ± 0.01 | 0.07 ± 0.01 | BMO |
29 | Camphor | 1148 | 1146 | 6.02 ± 0.04 | 6.80 ± 0.07 | BMO |
30 | n-Hexyliso-butyrate | 1154 | 1150 | 0.33 ± 0.02 | 0.30 ± 0.02 | AMO |
31 | Borneol | 1170 | 1169 | 15.7 ± 0.3 | 19.4 ± 0.1 | BMO |
32 | Terpinen-4-ol | 1182 | 1177 | 6.5 ± 0.1 | 6.81 ± 0.02 | BMO |
33 | Cymen-8-ol | 1189 | 1182 | 0.43 ± 0.03 | 0.50 ± 0.01 | MMO |
34 | α-Terpineol | 1193 | 1188 | 0.88 ± 0.01 | 0.51 ± 0.02 | MMO |
35 | Hexyl butyrate | 1196 | 1192 | 1.38 ± 0.04 | 1.17 ± 0.02 | OT |
36 | Verbenone | 1212 | 1205 | 0.09 ± 0.01 | 0.09 ± 0.00 | BMO |
37 | Isobormyl formate | 1231 | 1239 | 0.24 ± 0.02 | 0.45 ± 0.01 | BMO |
38 | Hexyl-2-metil butyrate | 1242 | 1236 | 0.75 ± 0.02 | 0.72 ± 0.01 | OT |
39 | Hexyl valerate | 1247 | 1244 | 0.27 ± 0.01 | 0.28 ± 0.01 | OT |
40 | Linalyl acetate | 1262 | 1257 | 3.77 ± 0.08 | 2.75 ± 0.02 | AMO |
41 | Bornyl acetate | 1288 | 1288 | 0.08 ± 0.01 | 0.08 ± 0.00 | BMO |
42 | Lavandulyl acetate | 1295 | 1290 | 0.70 ± 0.02 | 0.63 ± 0.01 | AMO |
43 | Carvacrol | 1306 | 1299 | 0.18 ± 0.01 | 0.05 ± 0.01 | MMO |
44 | Hexyl tiglate | 1336 | 1332 | 0.41 ± 0.01 | 0.27 ± 0.01 | OT |
45 | Terpinyl acetate | 1354 | 1349 | 0.03 ± 0.01 | 0.09 ± 0.00 | OT |
46 | Neryl acetate | 1369 | 1361 | 0.04 ± 0.01 | 0.03 ± 0.01 | AMO |
47 | Elemene | 1388 | 1390 | 0.07 ± 0.01 | 0.07 ± 0.01 | MS |
48 | Hexyl hexanoate | 1390 | 1383 | 0.30 ± 0.00 | 0.30 ± 0.01 | AMO |
49 | α-Cedrene | 1392 | 1411 | 0.08 ± 0.01 | 0.10 ± 0.00 | BS |
50 | α-cis-Bergamotene | 1408 | 1412 | 0.12 ± 0.01 | 0.21 ± 0.01 | MS |
51 | Caryophyllene | 1422 | 1419 | 0.24 ± 0.01 | 0.22 ± 0.01 | BS |
52 | Linalool butanoate | 1428 | 1423 | 0.04 ± 0.01 | 0.04 ± 0.00 | AMO |
53 | trans-Bergamotene | 1439 | 1434 | 0.06 ± 0.00 | 0.06 ± 0.01 | MS |
54 | Aromadendrene | 1444 | 1441 | t | 0.04 ± 0.00 | BS |
55 | β-Farnesene | 1462 | 1456 | 2.03 ± 0.04 | 1.50 ± 0.01 | AS |
56 | Linalool isovalerate | 1470 | 1468 | 0.09 ± 0.01 | 0.07 ± 0.01 | ASO |
57 | Dodecanol | 1478 | 1470 | 0.35 ± 0.03 | - | OT |
58 | Lavandulyl isovalerate | 1514 | 1509 | 0.42 ± 0.03 | 0.42 ± 0.04 | ASO |
59 | Spathulenol | 1589 | 1578 | 0.29 ± 0.01 | 0.26 ± 0.01 | BSO |
60 | Muurolol | 1646 | 1646 | 0.06 ± 0.01 | 0.04 ± 0.00 | BSO |
61 | Bisabolol oxide B | 1661 | 1658 | 0.12 ± 0.01 | 0.08 ± 0.01 | BSO |
62 | α-Bisabolol | 1688 | 1685 | 0.71 ± 0.02 | 0.40 ± 0.00 | MSO |
63 | Tetradecenoic acid | 1696 | - | 0.12 ± 0.01 | - | OT |
Abbreviation | LA 2019 and Area % | LA 2020 and Area % | |
---|---|---|---|
Aliphatic monoterpenes Monocyclic monoterpenes Bi–and tricyclic monoterpenes | AM MM BM | 1.2 1.24 2.07 | 1.42 1.56 1.79 |
Monoterpenes | M | 3.81 | 3.92 |
Aliphatic monoterpenoids Monocyclic monoterpenoids Bi–and tricyclic monoterpenoids | AMO MMO BMO | 43.54 1.48 40.28 | 43.2 1.06 43.2 |
Monoterpenoids | MO | 84.30 | 87.46 |
Aliphatic sesquiterpenes Monocyclic sesquiterpenes Bi–and tricyclic sesquiterpenes | AS MS BS | 2.03 0.26 0.32 | 1.5 0.34 0.36 |
Sesquiterpenes | S | 2.61 | 2.2 |
Aliphatic sesquiterpenoids Monocyclic sesquiterpenoids Bi–and tricyclic sesquiterpenoids | ASO MSO BSO | 0.51 0.71 0.47 | 0.50 0.40 0.37 |
Sesquiterpenoids | SO | 1.69 | 1.27 |
Others | OT | 3.78 | 3.25 |
Samples | IC50 ABTS (mg/mL) |
---|---|
LA 2019 | 1.00 ± 0.07 |
LA 2020 | 1.7 ± 0.1 |
Ascorbic acid (positive control) | 0.032 ± 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caprari, C.; Fantasma, F.; Divino, F.; Bucci, A.; Iorizzi, M.; Naclerio, G.; Ranalli, G.; Saviano, G. Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules 2021, 26, 5317. https://doi.org/10.3390/molecules26175317
Caprari C, Fantasma F, Divino F, Bucci A, Iorizzi M, Naclerio G, Ranalli G, Saviano G. Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules. 2021; 26(17):5317. https://doi.org/10.3390/molecules26175317
Chicago/Turabian StyleCaprari, Claudio, Francesca Fantasma, Fabio Divino, Antonio Bucci, Maria Iorizzi, Gino Naclerio, Giancarlo Ranalli, and Gabriella Saviano. 2021. "Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L." Molecules 26, no. 17: 5317. https://doi.org/10.3390/molecules26175317
APA StyleCaprari, C., Fantasma, F., Divino, F., Bucci, A., Iorizzi, M., Naclerio, G., Ranalli, G., & Saviano, G. (2021). Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules, 26(17), 5317. https://doi.org/10.3390/molecules26175317