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Abstract: Developing an efficient catalytic system using molecular oxygen as the oxidant for rhodium-
catalyzed cross-dehydrogenative coupling remains highly desirable. Herein, rhodium-catalyzed
oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes or alkynes to assemble valuable
6H-isoindolo[2,1-a]indoles, pyrrolo[3,2,1-de]phenanthridines, or indolo[2,1-alisoquinolines using the
atmospheric pressure of air as the sole oxidant enabled by quaternary ammonium salt has been
accomplished. Mechanistic studies provided evidence for the fast intramolecular aza-Michael reaction
and aerobic reoxidation of Rh(I)/Rh(III), facilitated by the addition of quaternary ammonium salt.

Keywords: rhodium catalysis; oxidative annulation; 2- or 7-arylindoles; molecular oxygen; quater-
nary ammonium salt

1. Introduction

C-H functionalization, including the reaction of a C-H bond with a (pseudo)halide,
the reaction of a C-H bond with an organometallic reagent, and cross-coupling between
two C-H bonds (CDC reaction), has gained tremendous popularity in recent years as a
methodology for the construction of C-C bonds or C-heteroatom bonds [1-12]. Among
these reactions, the CDC reaction is especially noteworthy because this reaction precludes
both coupling partners from pre-functionalization, and as a result has high step economy
and atom economy [13-21]. In 2007, Miura and Satoh reported on [RhCp*Cl,],-catalyzed
oxidative coupling of benzoic acids with alkynes [22]. Since then, rhodium-catalyzed
oxidative C-H coupling has drawn increasing attention, and many important organic
building blocks have been produced [23-30]. However, despite indisputable advances, all
rhodium-catalyzed C-H oxidative coupling reactions are extremely limited to hazardous
and stoichiometric oxidants such as AgOAc [31-37] and Cu(OAc); [38—47]. The use of
molecular oxygen is advantageous over other oxidants because only water is generated
as a by-product [48-54]. So far, in sharp contrast to aerobic palladium-catalyzed CDC
reactions [55-65], only very limited examples of rhodium-catalyzed CDC reaction utilizing
molecular oxygen as the sole oxidant have been reported to date [66-70]. Therefore, the
development of protocols using molecular oxygen as the oxidant is highly desirable. In
continuation of our research on transition metal-catalyzed aerobic CDC reactions [71-73],
herein we report on the rhodium-catalyzed oxidative annulation of 2-arylindoles or 7-
arylindoles with alkenes or alkynes using molecular oxygen as the sole oxidant enabled by
quaternary ammonium salt (Scheme 1).
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Scheme 1. Rhodium-catalyzed oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes or alkynes using molecular

oxygen as the sole oxidant enabled by quaternary ammonium salt.

2. Results and Discussion

Our investigation on the aerobic rhodium-catalyzed CDC reaction began with the
NH-indole-directed ortho-C-H alkenylation of 2-phenyl-1H-indole (1a) with n-butyl acry-
late. The catalytic system consisting of [Cp*RhCl]; (2.5 mol%) and n-BusNOACc (1 equiv.)
promoted the reaction at 140 °C under air atmosphere in xylenes to afford 6H-isoindolo[2,1-
alindole (4a) in 93% yield (Table 1, entry 2), derived from ortho-C-H olefination and the
subsequent intramolecular aza-Michael addition. The addition of #-BuyNOAc was indis-
pensable as the reaction became very sluggish in its absence in various solvents such as
xylenes, DMF, THF, EtOAc, and 1,4-dioxane (entry 1). A similar yield was obtained when
MesNOAC (1 equiv.) was added (entry 3), while other quaternary ammonium salts gave
inferior results (entries 4-11). Control experiments have shown that no reaction occurred
in the absence of rhodium catalyst or molecular oxygen (entry 12).

To gain further insights into the impact of quaternary ammonium salts in the present
transformation, we conducted several kinetic studies via 'H NMR spectroscopy. The time
study shown in Figure 1 revealed that the one-pot C-H olefination/aza-Michael reaction
under air atmosphere afforded 50% yield of 4a after 30 min and was completed within
2 h by adding n-BuyNOAc. It must be pointed out that the C-H olefinated product was
not detected during monitoring period. Without n-BuyNOAc, 4a was not obtained at
all, and nor was the C-H olefinated product (3a) formed. Quaternary ammonium salts
have always been considered to be an effective catalyst for Michael reactions [74-79]. As
one can see from Figure 2, the intramolecular aza-Michael reaction of ortho-alkenylated-2-
phenyl-1H-indole could indeed be improved by the addition of #n-BuyNOAc. 1 equiv. of
n-BuyNOAC, and provided complete conversion and quantitative yield of 4a after just 3 min.
In the absence of n-BusNOAC, no reaction occurred, and the ortho-alkenylated-2-phenyl-
1H-indole was totally recovered. The further kinetic experiments were carried out using
Cu(OAc); instead of O, as the terminal oxidant. As seen in Figure 3, the C-H olefination
of 2-phenylindole with with n-butyl acrylate completed within 2 h in the absence of n-
BuyNOAC, affording 90% yield of 3a. By adding n-BuyNOAC, the C-H olefinated product
(3a) was totally transformed into aza-Michael product 4a within 2 h (Figure 4). In order
to illustrate the impact of n-BusyNOACc in the C-H olefination step, styrene was chosen
as the coupling partner because it is not a Michael acceptor, and the reaction can stop
after C-H olefination. As shown in Figure 5, no significant differences were observed
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between experiments performed with or without #n-BuyNOAc. These observations suggest
that quaternary ammonium salt plays at least two roles in the oxidative annuation of
2-phenyl-1H-indole with with alkenes: (a) It promotes the intramolecular aza-Michael
reaction of the C-H olefinated product; and (b) It promotes aerobic reoxidation of Rh(I)
to Rh(III). The second role was partly validated by the fact that the current catalytic
system ([Cp*RhCl;], /n-BusNOAc/O,) was also effective for the oxidative annulation of
2-phenylindoles with alkynes to assemble indolo[2,1-alisoquinoline skeletons. One reason
why quaternary ammonium salt can speed up aerobic reoxidation is probably due to the
increased dissolved quantity of O, from adding quaternary ammonium salt [80-82].

Table 1. Optimization of the reaction conditions 7.

T+ ~eom
N
H

[CP*RhCLy], (2.5 mol%

)
additive, xylenes O N O
= N

140 °C, air, 8 h
CO,"Bu
1a 2a 4a
Entry Additive Yield (%) (3a)
1°¢ - 0
2 n-BuyNOACc 93 (917)
3 MesNOAC 88
4 n-BuyNPFq trace
5 H-BU4NBF4 0
6 n-BugNHSOy4 0
7 n-BuyNCl trace
8 n-BugNI 0
9 NH,4Cl 0
10 NH4PF¢ trace
11 Et;NBr 0
12¢ n-BuyNOACc trace

: Reaction condition: 1a (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl, ], (2.5 mol%), and additive (1 equiv.) in xylenes
(4 mL) at 140 °C under air for 8 h. ¥: Determined by 'H NMR yield using CH,Br;, as an internal standard. °:
Xylenes, DMF, THEF, EtOAc, or 1,4-dioxane. 4 Isolated yield. ¢: In the absence of [Cp*RhCl,], or under N,
atmosphere.
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Figure 1. The one-pot C-H olefination/aza-Michael reaction of 1a with 2a under air.
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Figure 2. The intramolecular aza-Michael reaction of 3a under air.
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Figure 3. The C-H olefination of 1a with 2a using Cu(OAc), instead of O, as the terminal oxidant.
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Figure 4. The C-H olefination/aza-Michael reaction of 1a with 2a using Cu(OAc); as the terminal

oxidant.
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Figure 5. The C-H olefination of 1a with 2e using Cu(OAc); as the terminal oxidant.
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Reaction condition: Figure 1. A solution of 1a (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl,],
(2.5 mol%), and n-BuyNOACc (1.0 equiv.) in xylenes (4 mL) at 140 °C under air. Figure 2. A
solution of 3a (0.2 mmol) and n-BusNOACc (1.0 equiv.) in xylenes (4 mL) at 140 °C under
air. Figure 3. A solution of 1a (0.2 mmol), 2a (0.4 mmol), [Cp*RhC];]; (2.5 mol%), and
Cu(OAc); (2.0 equiv.) in xylenes (4 mL) at 140 °C under N,. Figure 4. A solution of 1a
(0.2 mmol), 2a (0.4 mmol), [Cp*RhCly], (2.5 mol%), n-BusNOACc (1.0 equiv.), and Cu(OAc),
(2.0 equiv.) in xylenes (4 mL) at 140 °C under Nj. Figure 5. A solution of 1a (0.2 mmol), 2e
(0.4 mmol), [Cp*RhCl;], (2.5 mol%), n-BugNOAc (1.0 equiv.), and Cu(OAc); (2.0 equiv.)
in xylenes (4 mL) at 140 °C under Nj. The yields were determined by the H NMR yield
using CH;,Br; (0.3 M, 0.2 mmol, 14 mg) as an internal standard.

With the optimized conditions in hand, the generality of the rhodium-catalyzed
aerobic C-H olefination/aza-Michael reaction was then explored (Scheme 2). The reaction
of 2-phenyl-1H-indole, which contains two ortho-C-H bonds with n-butyl acrylate, provided
the desired annulated product 4b in low yield (30%) with recovered starting material (65%).
Therefore, blocking one of the ortho-C-H bonds with methyl or chloro is essential for
full conversion. 2-phenyl-1H-indole derivatives with substituents at the benzene ring or
indole ring were delivered the corresponding products in good to excellent yields, showing
very limited effect on the reaction efficiency (4c—4f). As expected, other acrylates bearing
methyl, ethyl, or tert-butyl all well reacted with 1a to afford the desired product 4g—4i in
good yields. The C-H olefination/aza-Michael reaction of 7-phenyl-1H-indoles with ethyl
acrylate afforded the corresponding pyrrolo[3,2,1-deJphenanthridine derivatives under
the reaction conditions by changing n-Bus)NOAc with Me4JNOAc. By contrast, only one
ortho-C-H bond was cleaved, showing good chemoselectivity (4j—4q). 7-phenylindoles and
acrylates bearing various substituents, such as chloro (41), ketone (4m), CN (4n), NO; (40),
naphthyl (4p), and n-butyl (4q) coupled well with ethyl acrylate or ethyl acrylate, showing
good functional group tolerance. The experiment results also showed no electronic effect
on the reaction efficiency.

Next, the scope of oxidative annulation of 2-phenyl-1H-indoles with alkynes was
briefly investigated. As shown in Scheme 3, the reaction of 2-phenyl-1H-indoles 1 bearing
an electron-rich or electron-deficient group at the phenyl ring or indole ring proceeded
smoothly to give the corresponding products 6a—6c, 6f-6g in 39-81% yields. For 2-(2-
chlorophenyl)-1H-indole or 2-(2-bromophenyl)-1H-indole, both C-H and C-Cl (or C-Br)
cleavage occurred. The corresponding C-H oxidative annulation product is difficult to
separate from the mixture (6d + 6a or 6e + 6a). In the present [4 + 2] oxidative annula-
tion, when an unsymmetrical diarylalkyne was employed, the formation of two possible
regioisomers was observed as expected (6h). Again, valuable functional groups were well
accommodated.
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Scheme 2. Substrate scope of oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes. ?: Reaction condition:
1a (0.2 mmol), 2 (0.4 mmol), [Cp*RhCl,]; (2.5 mol%), and n-BuyNOAc (1 equiv.) in xylenes (4 mL) at 140 °C under air
atmosphere for 2 h. Isolated yield. ’: Me;NOAc was used.

Based on the experimental results obtained above and precedent reports [31,32,34,44],
a plausible mechanism for the aerobic rhodium-catalyzed oxidative annulation of 2-
phenylindole with alkene or alkyne is postulated in Scheme 4. Coordination of N atom
of phenylindole to Rh(IIl) and the subsequent ortho-C-H activation produced the five-
membered rhodacycle B. B inserted into the alkene or alkyne affording the intermediate C1
or C2, and the subsequent (3-H elimination/reductive elimination provided Rh(I) sandwich
complex D1 or D2. Then D1 or D2 was oxidized by oxygen to regenerate the active Rh(III)
species and released the corresponding product 3 or 5. The C-H olefinated product (3) can
be transformed into aza-Michael product 4 efficiently, and the oxidation step by molecular
oxygen will be sped up substantially by adding quaternary ammonium salts.
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Scheme 3. Substrate scope of oxidative annulation of 2-phenyl-1H-indoles with alkynes ?. ?: Reaction condition: 1a
(0.2 mmol), 5 (0.4 mmol), [Cp*RhCl,]; (2.5 mol%), and n-BugNOACc (1 equiv.) in xylenes (4 mL) at 80 °C under air

atmosphere for 20 h. Isolated yield.
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Scheme 4. Plausible mechanism for the aerobic rhodium-catalyzed oxidative annulation of 2-phenylindole with alkene

or alkyne.
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3. Materials and Methods
3.1. General Information

Unless otherwise noted, the reagents (chemicals) were purchased from commercial
sources and were used without further purification. 2-phenyl-1H-indole is commercially
available. The other 2-arylindoles were synthesized from phenylhydrazine hydrochlorides
via Fisher indole synthesis [44]. 7-phenyl-1H-indoles were synthesized from 7-bromo-1H-
indoles and phenylboronic acid via Suzuki coupling [34,35]. Quaternary ammonium salts
were purchased from commercial sources. Their purity was more than 99.0% and they
were stored in a glovebox. 'H NMR spectra were recorded at 400 MHz and *C NMR
spectra at 100 MHz, respectively (Supplementary material). 'H chemical shifts (§) were
referenced to TMS, and 3C NMR chemical shifts (§) were referenced to internal solvent
resonance. ESI-HRMS spectra were recorded by using a Q-TOF mass spectrometer.

3.2. General Procedure for Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with
Alkenes/Alkynes

Under air atmosphere, 2- or 7-arylindoles (0.2 mmol), alkenes or alkynes (0.4 mmol),
[Cp*RhCly]7 (3.2 mg, 0.005 mmol, 2.5 mol%), n-BusNOAc or MesNOACc (0.2 mmol, 1 equiv.),
and xylenes (4 mL) were placed in a 25 mL tube. The mixture was heated in oil bath at
140 °C for 2 h or 80 °C for 20 h. After the reaction mixture cooled to room temperature,
the crude reaction mixture was diluted with EtOAc to 5 mL, filtered through a celite pad,
and then washed with 10 mL EtOAc. The combined mixture was washed with saturated
aqueous Na;COj; and dried over anhydrous MgSO,. After filtration, the volatiles were
removed under reduced pressure, and the residue was subjected to silica gel column
chromatography (eluting with petroleum ether/dichloromethane = 1/1 or petroleum
ether/ethyl acetate = 100/1) to afford the corresponding product.

3.3. Analytical Characterization Data of Products

Butyl 3-(2-(1H-indol-2-yl)-3-methylphenylacrylate (3a), 57.3 mg, 85% yield, yellow oil. 'H
NMR (400 MHz, CDCls) 4 8.22 (s, 1H), 7.68 (d, ] = 7.6 Hz, 1H), 7.60-7.55 (m, 2H), 7.39-7.32
(m, 3H), 7.24-7.15 (m, 2H), 6.48 (dd, | = 2.0, 1.2 Hz, 1H), 6.33 (d, ] = 16.0 Hz, 1H), 4.06 (t,
] = 6.4 Hz, 2H), 2.23 (s, 3H), 1.59-1.51 (m, 2H), 1.31-1.25 (m, 2H), 0.86 (t, ] = 7.2 Hz, 3H).
13C NMR and HRMS data for the desired product were in agreement with the previously
reported literature data [44].

2-(2-Methyl-6-styrylphenyl)-1H-indole (3b), 25.3 mg, 41% yield, yellow oil. 'H NMR (400 MHz,
CDCl3) 6 7.98 (s, 1H), 7.73-7.71 (m, 1H), 7.67 (d, ] = 8.0 Hz, 1H), 7.42-7.36 (m, 2H), 7.32-7.25
(m, 4H), 7.24-7.18 (m, 4H), 7.03 (d, ] = 8.4 Hz, 2H), 6.54 (dd, ] = 2.0, 0.8 Hz, 1H), 2.26 (s, 3H).
13C NMR and HRMS data for the desired product were in agreement with the previously
reported literature data [44].

Butyl 2-(10-methyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4a), 61.4 mg, 93% yield, yellow oil.
'H NMR (400 MHz, CDCl3) 5 7.69 (d, ] = 8.0 Hz, 1H), 7.40 (dd, ] = 8.4, 0.8 Hz, 1H), 7.30
(t, ] =4.4 Hz, 1H), 7.23-7.19 (m, 3H), 7.13 (td, | = 8.0, 0.8 Hz, 1H), 6.61 (s, 1H), 5.75 (dd,
J=8.0,4.4 Hz, 1H), 4.21-4.14 (m, 2H), 3.30 (dd, | = 16.4, 4.8 Hz, 1H), 2.76 (dd, ] = 16.4,
8.0 Hz, 1H), 2.63 (s, 3H), 1.62-1.55 (m, 2H), 1.35-1.30 (m, 2H), 0.92 (t, ] = 7.2 Hz, 3H).
13C NMR (100 MHz, CDCl3) § 171.1, 145.8, 143.1, 133.5, 133.2, 132.5, 131.3, 129.9, 127.5,
121.9,120.7,119.8, 109.6, 94.2, 65.2, 56.8, 39.9, 30.6, 19.5, 19.2, 13.8. HRMS (ESI) calcd for
CpHyyNO, [M + H]*: 334.1807, found: 334.1808.

Butyl 3-(6-(2-butoxy-2-oxoethyl)-6H-isoindolo[2,1-a]indol-10-yDacrylate (4b), 29.7 mg, 30%
yield, red solid. 'H NMR (400 MHz, CDCl3) § 8.32 (d, ] = 16.0 Hz, 1H), 7.70 (dt, ] = 8.0,
0.8 Hz, 1H), 7.64 (d, ] = 7.6 Hz, 1H), 7.46 (dt, ] = 7.2, 1.2 Hz, 1H), 7.39 (dd, ] = 8.0, 0.8 Hz,
1H),7.30 (t, ] =7.6 Hz, 1H), 7.23 (td, ] = 7.2, 1.2 Hz, 1H), 7.16-7.12 (m, 1H), 6.79 (s, 1H), 6.56
(d,J=15.6 Hz, 1H), 5.74 (dd, ] = 8.0, 44 Hz, 1H), 4.29 (t, ] = 6.8 Hz, 2H), 4.19-4.12 (m, 2H),
3.31(dd, ] = 164, 4.4 Hz, 1H), 2.77 (dd, ] = 16.0, 8.0 Hz, 1H), 1.80-1.73 (m, 2H), 1.56-1.48 (m,
4H), 1.33-1.26 (m, 2H), 1.02 (t, ] = 7.6 Hz, 3H), 0.90 (t, ] = 7.6 Hz, 3H). 13C NMR and HRMS
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data for the desired product were in agreement with the previously reported literature
data [44].

Butyl 2-(10-chloro-6H-isoindolo[2,1-alindol-6-yl)acetate (4c), 50.6 mg, 72% yield, yellow oil.
'H NMR (400 MHz, CDCl3) § 7.71 (dt, ] = 8.0, 0.8 Hz, 1H), 7.40-7.36 (m, 3H), 7.23 (td,
] =8.0,1.2 Hz, 2H), 7.16-7.12 (m, 1H), 6.91 (s, 1H), 5.77 (dd, ] = 8.0, 4.4 Hz, 1H), 4.19-4.13
(m, 2H), 3.31 (dd, ] = 16.4, 44 Hz, 1H), 2.77 (dd, ] = 16.4, 8.4 Hz, 1H), 1.59-1.55 (m, 2H),
1.34-1.28 (m, 2H), 0.91 (t, ] = 7.6 Hz, 3H). 3C NMR (100 MHz, CDCl3) § 170.7, 147.4, 140.6,
133.3,133.2, 131.0, 129.4, 128.3, 128.0, 122.5, 121.8, 120.1, 109.6, 96.0, 65.3, 57.0, 39.6, 30.6,
19.2, 13.8. HRMS (ESI) caled for Co1HpyNO,Cl [M + HJ*: 354.1261, found: 354.1257.

Butyl 2-(8,10-dimethyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4d), 56.2 mg, 81% yield, yellow
oil. TH NMR (400 MHz, CDCl3) § 7.69 (dt, ] = 7.6, 1.2 Hz, 1H), 7.39 (d, ] = 8.0 Hz, 1H),
7.23-7.19 (m, 1H), 7.15-7.11 (m, 2H), 7.05 (s, 1H), 6.56 (s, 1H), 5.70 (dd, | = 8.0, 4.4 Hz, 1H),
4.25-4.16 (m, 2H), 3.29 (dd, ] = 16.0, 4.4 Hz, 1H), 2.76 (dd, ] = 16.0, 8.0 Hz, 1H), 2.59 (s,
3H), 2.40 (s, 3H), 1.63-1.59 (m, 2H), 1.38-1.33 (m, 2H), 0.94 (t, ] = 7.6 Hz, 3H). 13C NMR
(100 MHz, CDCl3) 6 171.1, 146.1, 143.2,137.6, 133.6, 133.1, 132.2, 130.8, 128.6, 121.7, 121.6,
121.4, 119.6, 109.4, 93.4, 65.1, 56.7, 39.9, 30.7, 21.7, 19.4, 19.2, 13.8. HRMS (ESI) calcd for
Cy3HysNO; [M + H]+Z 348.1964, found: 348.1960.

Butyl 2-(2,10-dimethyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4e), 60.7 mg, 88% yield, yellow
oil. TH NMR (400 MHz, CDCls) § 7.47 (s, 1H), 7.30-7.27 (m, 2H), 7.22-7.20 (m, 2H), 7.04
(dd, J =8.4,1.2Hz, 1H), 6.52 (s, 1H), 5.72 (dd, | = 8.0, 4.8 Hz, 1H), 4.21-4.14 (m, 2H), 3.27
(dd, ] =16.4,4.8 Hz, 1H), 2.74 (dd, | = 16.0, 8.0 Hz, 1H), 2.62 (s, 3H), 2.47 (s, 3H), 1.61-1.57
(m, 2H), 1.36-1.30 (m, 2H), 0.92 (t, ] = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) § 171.1,
145.8,143.1,133.8,132.4, 131.6, 131.5, 129.9, 129.0, 127.3, 123.5, 121.6, 120.7, 109.2, 93.7, 65.1,
56.8,39.9,30.7,21.6,19.5, 19.2, 13.8. HRMS (ESI) calcd for Co3HyNO, [M + H]*: 348.1964,
found: 348.1964.

Butyl 2-(2-chloro-10-methyl-6 H-isoindolo[2,1-a]indol-6-yl)acetate (4f), 57.2 mg, 77% yield, yel-
low oil. "H NMR (400 MHz, CDCl3) & 7.63 (dd, ] = 2.0, 0.4 Hz, 1H), 7.31-7.28 (m, 2H),
7.23-7.22 (m, 2H), 7.14 (dd, ] = 8.4, 2.0 Hz, 1H), 6.53 (s, 1H), 5.71 (dd, ] = 7.6, 4.8 Hz, 1H),
4.18-4.12 (m, 2H), 3.19 (dd, ] = 16.4, 4.8 Hz, 1H), 2.79 (dd, ] = 16.0, 7.6 Hz, 1H), 2.61 (s, 3H),
1.58-1.54 (m, 2H), 1.33-1.27 (m, 2H), 0.91 (t, ] = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl;)
5170.8,145.7,144.4,134.5,132.7,131.6, 130.9, 130.1, 127.9, 125.4, 122.0, 121.1, 120.7, 110.4,
93.8, 65.2,57.1,39.9, 30.6, 19.5, 19.2, 13.8. HRMS (ESI) calcd for C5,Hy3NO,Cl [M + H]*:
368.1417, found: 368.1412.

Methyl 2-(10-methyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4g), 49.4 mg, 85% yield, yellow oil.
'H NMR (400 MHz, CDCl3) § 7.74 (dd, ] = 7.6, 0.8 Hz, 1H), 7.41 (d, ] = 8.0 Hz, 1H), 7.33-7.30
(m, 1H), 7.28-7.24 (m, 3H), 7.19-7.15 (m, 1H), 6.64 (s, 1H), 5.74 (dd, ] = 8.4, 4.8 Hz, 1H),
3.82 (s, 3H),3.32 (dd, ] = 16.4, 4.8 Hz, 1H), 2.73 (dd, ] = 16.0, 8.0 Hz, 1H), 2.64 (s, 3H). 13C
NMR (100 MHz, CDCl3) 6 171.4, 145.7, 142.9, 133.5, 133.1, 132.5, 131.1, 129.9, 127 4, 121.8,
120.7, 119.7, 109.5, 94.2, 56.7, 52.2, 39.6, 19.5. HRMS (ESI) calcd for C19H1sNO, [M + H*:
292.1338, found: 292.1340.

Ethyl 2-(10-methyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4h), 51.9 mg, 86% yield, yellow oil.
'H NMR (400 MHz, CDCl3) § 7.69 (dt, ] = 7.6, 1.2 Hz, 1H), 7.40 (dq, ] = 8.0, 0.8 Hz, 1H),
7.32-7.29 (m, 1H), 7.23-7.19 (m, 3H), 7.14-7.10 (m, 1H), 6.61 (s, 1H), 5.75 (dd, | = 8.0, 4.4 Hz,
1H), 4.24 (qd, ] = 7.2, 2.4 Hz, 2H), 3.29 (dd, | = 16.4, 4.8 Hz, 1H), 2.74 (dd, ] = 16.0, 8.0 Hz,
1H), 2.62 (s, 3H), 1.25 (t, ] = 6.8 Hz, 3H). '>*C NMR (100 MHz, CDCl3) § 171.0, 145.8, 143.1,
133.5,133.2, 132.5, 131.3, 129.9, 127.5, 121.9, 120.8, 119.8, 109.6, 94.2, 61.2, 56.8, 39.9, 19.5,
14.2. HRMS (ESI) calcd for CooHpoNO, [M + H]*: 306.1494, found: 306.1493.

Tert-butyl 2-(10-methyl-6H-isoindolo[2,1-a]indol-6-yl)acetate (4i), 53.6 mg, 81% yield, yellow
oil. "TH NMR (400 MHz, CDCl3) 5 7.69 (dt, ] = 8.0, 0.8 Hz, 1H), 7.44 (dq, J =8.0,0.8 Hz,
1H), 7.35-7.32 (m, 1H), 7.24-7.19 (m, 3H), 7.15-7.10 (m, 1H), 6.61 (s, 1H), 5.71 (dd, ] = 7.6,
44Hz, 1H),3.21 (dd, ] =16.0,4.4 Hz, 1H), 2.77 (dd, ] = 16.0, 7.6 Hz, 1H), 2.63 (s, 3H), 1.39
(s, 9H). 3C NMR (100 MHz, CDCl3) § 170.0, 145.9, 143.2, 133.5, 133.2, 132.4, 131.4, 129.8,
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127.4,121.8,120.8, 119.7,109.7, 105.1, 94.0, 81.6, 57.0, 40.8, 28.0, 19.5. HRMS (ESI) calcd for
CpHNO, [M + HJ*: 334.1807, found: 334.1804.

Ethyl 2-(7H-pyrrolo[3,2,1-delphenanthridin-7-ylacetate (4j), 43.5 mg, 74% yield, yellow oil. 'H
NMR (400 MHz, CDCl3) 6 7.97 (d,] =7.6 Hz, 1H), 7.59 (d, ] = 7.6 Hz, 1H), 7.55 (dd, ] = 7.6,
0.4 Hz, 1H), 7.41-7.37 (m, 1H), 7.32-7.30 (m, 2H), 7.25 (d, ] =3.2 Hz, 1H), 7.16 (t, ] = 7.6 Hz,
1H), 6.56 (d, ] =3.2 Hz, 1H), 6.14 (dd, | =7.2, 5.2 Hz, 1H), 4.19-4.03 (m, 2H), 2.77 (dd, ] = 7.2,
4.8 Hz, 2H), 1.16 (t, ] = 7.2 Hz, 3H). 13C NMR and HRMS data for the desired product were
in agreement with the previously reported literature data [35].

Ethyl 2-(9-methyl-7H-pyrrolo[3,2,1-de]phenanthridin-7-yl)acetate (4k), 39.1 mg, 63% yield,
yellow soild. 'H NMR (400 MHz, CDCl3) § 7.85 (d, | = 7.6 Hz, 1H), 7.54 (d, ] = 7.2 Hz, 1H),
7.51(dd, ] =8.0,0.8 Hz, 1H), 7.23 (d, ] = 3.2 Hz, 1H), 7.21-7.11 (m, 3H), 6.54 (d, ] = 3.2 Hz,
1H), 6.08 (dd, | = 6.8, 5.6 Hz, 1H), 4.15-4.07 (m, 2H), 2.76 (d, ] = 1.6 Hz, 1H), 2.75 (s, 1H),
2.38 (s, 3H), 1.16 (t, ] = 7.2 Hz, 3H). 13C NMR and HRMS data for the desired product were
in agreement with the previously reported literature data [35].

Ethyl 2-(9-chloro-7H-pyrrolo[3,2,1-deJphenanthridin-7-yl)acetate (41), 48.4 mg, 71% yield, yellow
oil. 'TH NMR (400 MHz, CDCl3) & 7.87 (d, | = 8.4 Hz, 1H), 7.55-7.52 (m, 2H), 7.35 (dd,
J=84,2.0Hz 1H),7.30 (d,] =2.0 Hz, 1H), 7.23 (d, ] =3.2 Hz, 1H), 7.14 (t, ] = 7.6 Hz, 1H),
6.56 (d, ] = 3.2 Hz, 1H), 6.08 (dd, ] = 6.8, 5.2 Hz, 1H), 4.11 (q, ] = 7.2 Hz, 2H), 2.76 (dd,
] =7.2,4.8 Hz, 2H), 1.17 (t, ] = 6.8 Hz, 3H). 13C NMR and HRMS data for the desired
product were in agreement with the previously reported literature data [35].

Ethyl 2-(9-acetyl-7H-pyrrolo[3,2,1-delphenanthridin-7-yl)acetate (4m), 40.9 mg, 61% yield, yel-
low oil. 'H NMR (400 MHz, CDCl3) § 8.00~7.91 (m, 3H), 7.60 (t, | = 6.4 Hz, 2H), 7.25 (s, 1H),
7.16 (t,] =8.0 Hz, 1H), 6.57 (d, ] = 3.2 Hz, 1H), 6.15 (dd, ] = 7.6, 5.2 Hz, 1H), 4.14-4.05 (m,
2H), 2.82-2.74 (m, 2H), 2.62 (s, 3H), 1.15 (t, ] = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3)
5197.1,170.4,136.2, 134.9, 134.0, 133.3, 128.6, 127.7, 127.1, 126.4, 122.9, 122.4, 120.9, 117.0,
115.1,103.8, 61.2, 55.4, 46.4, 26.7, 14.1. HRMS (ESI) calcd for Cp;HpoNO3 [M + H]*: 334.1443,
found: 334.1446.

Ethyl 2-(9-cyano-7H-pyrrolo[3,2,1-de]phenanthridin-7-yl)acetate (4n), 44.7 mg, 71% yield, yel-
low solid. 'H NMR (400 MHz, CDCl3) § 8.02 (d, ] = 8.0 Hz, 1H), 7.66 (dd, ] = 8.0, 1.6 Hz,
1H), 7.63-7.58 (m, 3H), 7.25 (d, ] = 3.2 Hz, 1H), 7.18 (t, ] = 7.6 Hz, 1H), 6.59 (d, ] = 3.2 Hz,
1H), 6.13 (dd, ] =7.6,5.2 Hz, 1H), 410 (q, | = 7.2 Hz, 2H), 2.77 (qd, | = 16.0, 7.6 Hz, 2H), 1.16
(t, ] =7.2 Hz, 3H). 13C NMR and HRMS data for the desired product were in agreement
with the previously reported literature data [35].

Ethyl 2-(9-nitro-7H-pyrrolol3,2,1-deJphenanthridin-7-yl)acetate (40), 41.3 mg, 61% yield, yellow
oil. 'H NMR (400 MHz, CDCl3) § 8.24 (dd, ] = 8.8, 2.4 Hz, 1H), 8.20 (d, ] = 2.0 Hz, 1H), 8.06
(d,J=84Hz 1H),7.64 (d,] =3.2Hz, 1H),7.62 (d,] =2.4 Hz, 1H), 7.27 (d, ] = 3.2 Hz, 1H),
719 (t,] =7.6 Hz, 1H), 6.60 (d, ] = 3.2 Hz, 1H), 6.20 (dd, ] = 7.2, 4.8 Hz, 1H), 4.10 (qd, | = 7.2,
2.0 Hz, 2H), 2.82 (qd, ] = 16.0, 7.2 Hz, 2H), 1.16 (t, ] = 7.2 Hz, 3H). 3C NMR and HRMS data
for the desired product were in agreement with the previously reported literature data [35].

Ethyl 2-(7H-benzoljlpyrrolo[3,2,1-delphenanthridin-7-yl)acetate (4p), 44.5 mg, 65% yield, yellow
solid. 'H NMR (400 MHz, CDCl3) 5 8.40 (s, 1H), 7.90 (d, ] = 7.6 Hz, 1H), 7.80 (s, 1H), 7.78
(d, ] =2.8Hz, 2H),7.59 (dd, ] = 8.0, 0.8 Hz, 1H), 7.55-7.44 (m, 2H), 7.30 (d, ] = 3.2 Hz, 1H),
7.23 (t,] =7.6 Hz, 1H), 6.60 (d, ] = 3.2 Hz, 1H), 6.26 (t, ] = 6.4 Hz, 1H), 4.14-4.06 (m, 2H),
2.82(qd, ] = 15.6, 7.2 Hz, 2H), 1.14 (t, ] = 7.2 Hz, 3H). 13C NMR and HRMS data for the
desired product were in agreement with the previously reported literature data [35].
Butyl 2-(7H-pyrrolo[3,2,1-deJphenanthridin-7-yl)acetate (4q), 47.5 mg, 72% yield, yellow oil.
'H NMR (400 MHz, CDCl3) § 7.97 (d, ] = 7.6 Hz, 1H), 7.58 (d, ] = 7.6 Hz, 1H), 7.54 (dd,
] = 8.0, 0.8 Hz, 1H), 7.41-7.37 (m, 1H), 7.32-7.30 (m, 2H), 7.24 (d, ] = 3.2 Hz, 1H), 7.16 (t,
J=7.6 Hz, 1H), 6.55 (d, ] = 3.2 Hz, 1H), 6.14 (dd, | = 7.2, 5.2 Hz, 1H), 4.11-4.00 (m, 2H),
2.78 (qd, ] = 16.0, 7.6 Hz, 2H), 1.54-1.47 (m, 2H), 1.30-1.24 (m, 2H), 0.89 (t, ] = 7.6 Hz, 3H).
13C NMR and HRMS data for the desired product were in agreement with the previously
reported literature data [35].
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5,6-Diphenylindolo[2,1-alisoquinoline (6a), 55.8 mg, 75% yield, yellow solid. 'H NMR (400 MHz,
CDCl3) $8.31(d, J=8.0Hz, 1H), 7.81 (d, ] = 8.0 Hz, 1H), 7.52 (t, ] = 7.6 Hz, 1H), 7.43 (s, 1H),
7.41-7.25 (m, 7H), 7.26-7.13 (m, 6H), 6.83 (t, ] = 8.0 Hz, 1H), 6.01 (d, ] = 8.8 Hz, 1H). 13C NMR
(100 MHz, CDCl3) 6 136.9, 136.1, 135.5, 132.9, 132.0, 131.0, 130.4, 129.8, 128.8, 128.7, 128.0,
127.5,127.2,126.9,126.3,125.5,123.4, 121.8, 120.3, 120.2, 114.7, 94.3. HRMS data for the desired
product were in agreement with the previously reported literature data [40].

10-Nitro-5,6-diphenylindolo[2,1-alisoquinoline (6b), 64.8 mg, 79% yield, orange solid. 'H NMR
(400 MHz, CDCl3) 6 8.70 (d, | = 2.4 Hz, 1H), 8.32 (d, ] = 8.0 Hz, 1H), 7.66 (dd, | = 9.6, 2.4 Hz,
1H), 7.59-7.54 (m, 2H), 7.44-7.36 (m, 4H), 7.31-7.27 (m, 3H), 7.25-7.17 (m, 5H), 5.99 (d,
J = 9.6 Hz, 1H). 13C NMR and HRMS data for the desired product were in agreement with
the previously reported literature data [40].

1-Methyl-5,6-diphenylindolo[2,1-alisoquinoline (6¢), 55.3 mg, 73% yield, yellow solid, m.p.
173.7-174.0 °C. 'TH NMR (400 MHz, CDCl3) § 7.84 (d, ] = 8.0 Hz, 1H), 7.56 (s, 1H), 7.39 (d,
J = 7.6 Hz, 1H), 7.36-7.26 (m, 6H), 7.25-7.16 (m, 6H), 7.04 (d, ] = 8.0 Hz, 1H), 6.86-6.81 (m,
1H), 6.00 (d, ] = 8.4 Hz, 1H), 3.03 (s, 3H). 13C NMR (100 MHz, CDCl3) § 137.6, 135.9, 135.2,
132.0, 131.9, 131.0, 130.3, 129.6, 128.7, 128.0, 126.8, 126.6, 125.1, 124.5, 121.6, 120.6, 120.5,
114.8,100.7, 25.4. HRMS (ESI) calcd for Co9H2oN [M + H]*: 384.1752, found: 384.1751.

1-Chloro-5,6-diphenylindolo[2,1-a]isoquinoline (6d) and 5,6-diphenylindolo[2,1-aJisoquinoline
(6a), 37.5 mg, 47% yield, yellow solid, m.p. 201.1-201.6 °C. 'H NMR (400 MHz, CDCl3) &
8.40 (6d, d, ] = 0.8 Hz, 1H), 8.30 (6a, dt, ] = 8.0, 0.8 Hz, 1H), 7.85 (6d, dt, ] = 8.0, 1.2 Hz, 1H),
7.79 (6a, dt, ] = 8.0, 1.2 Hz, 1H), 7.57 (6d, dd, | = 8.0, 1.2 Hz, 1H), 7.53-7.49 (6a, m, 1H), 7.42
(6a, d, ] = 0.4 Hz, 1H), 7.36-7.28 (6d + 6a, m, 11H), 7,24-7.13 (6d + 6a, m, 14H), 7.05 (6d,
dd, ] = 8.0, 1.2 Hz, 1H), 6.87-6.79 (6d + 6a, m, 2H), 6.00-5.95 (6d + 6a, m, 2H). 13C NMR
(100 MHz, CDCl3) 6 137.0, 135.4, 132.9, 132.0, 131.0, 130.8, 129.7, 128.9, 128.8, 128.7, 128.1,
128.0, 127.5, 127.2, 127.1, 126.9, 126.3, 125.1, 123.6, 123.4, 121.8, 121.8, 121.3, 121.1, 120.2,
114.7,102.5, 94.3. HRMS (ESI) calcd for 6d CooHigNCI [M + H]*: 404.1206, found: 404.1209.

1-Bromo-5,6-diphenylindolo[2,1-alisoquinoline (6e) and 5,6-diphenylindolo[2,1-a]isoquinoline (6a),
34.9 mg, 39% yield, yellow solid, m.p. 188.5-188.9 °C. 'H NMR (400 MHz, CDCl5) § 8.67
(6e, s, 1H), 8.31 (6a, d, ] = 8.0 Hz, 1H), 7.85 (6e, d, | = 8.0 Hz, 1H), 7.82-7.79 (6e + 6a, m, 2H),
7.53-7.49 (6a, m, 1H), 7.43-7.27 (6e + 6a, m, 13H), 7.25-7.10 (6e + 6a, m, 14H), 6.87-6.79
(6e + 6a, m, 2H), 6.00 (6a, d, ] = 8.8 Hz, 1H), 5.97 (6e, d, ] = 8.8 Hz, 1H). 13C NMR (100 MHz,
CDCl3) 6 133.7,132.0, 132.0, 131.0, 130.8, 128.9, 128.9, 128.8, 128.8, 128.2, 128.0, 127.5, 127.3,
127.2,127.1, 127.1, 126.9, 126.3, 125.9, 121.3, 121.1, 120.3, 120.2, 119.7, 114.7, 102.2, 94.3.
HRMS (ESI) caled for 6e Co9gH19NBr [M + H]*: 448.0701, found: 448.0705.

1,3-Dimethyl-5,6-diphenylindolo[2,1-a]isoquinoline (6£), 64.4 mg, 81% yield, orange solid, m.p.
183.2-183.7 °C. TH NMR (400 MHz, CDCl3) & 7.82 (dt, ] = 8.0, 1.2 Hz, 1H), 7.50 (s, 1H),
7.35-7.27 (m, 5H), 7.25-7.15 (m, 7H), 6.84-6.79 (m, 2H), 5.98 (d, | = 8.4 Hz, 1H), 2.99 (s, 3H),
2.31 (s, 3H). 13C NMR (100 MHz, CDCl3) & 137.7, 136.5, 136.0, 135.9, 135.7, 135.1, 132.1,
131.9, 131.7, 131.0, 129.7, 128.7, 128.7, 128.0, 126.7, 124.5, 122.7, 122.0, 121.5, 120.3, 120.3,
114.7,99.9, 25.3, 21.5. HRMS (ESI) caled for C3oHpsN [M + H]*: 398.1909, found: 398.1905.

1,10-Dimethyl-5,6-diphenylindolo[2,1-alisoquinoline (6g), 64.2 mg, 81% yield, orange solid,
m.p. 212.6-213.0 °C. '"H NMR (400 MHz, CDCl3) § 7.61 (s, 1H), 7.38 (d, | = 7.2 Hz, 1H),
7.36-7.26 (m, 6H), 7.25-7.16 (m, 6H), 7.05 (dd, | = 8.0, 1.2 Hz, 1H), 6.68 (dd, | = 8.8, 2.0 Hz,
1H), 5.87 (d, ] = 8.8 Hz, 1H), 3.02 (s, 3H), 2.44 (s, 3H). 13C NMR (100 MHz, CDCl3) 6§ 137.7,
136.0, 135.9, 135.6, 135.1, 132.1, 131.9, 131.0, 130.3, 130.2, 130.0, 128.7, 128.0, 126.8, 126.5,
125.1, 124. 5, 122.4, 121.8, 120.0, 114.4, 100.3, 25.4, 21.5. HRMS (ESI) calcd for C3yHyyN
[M + HJ*: 398.1909, found: 398.1912.

5-(4-Ethylphenyl)-1-methyl-6-(p-tolyl)indolo[2,1-alisoquinoline and 6-(4-ethylphenyl)-1-methyl-5-(p-
tolylindolo[2,1-alisoquinoline (6h), 68.6 mg, 82% yield, yellow solid, m.p. 151.6-151.9 °C. 'H
NMR (400 MHz, CDCl3) 6 7.82 (dq, ] =8.0, 1.2 Hz, 1H), 7.54 (s, 1H), 7.37 (d, ] = 6.8 Hz, 1H),
7.25-7.12 (m, 6H), 7.07 and 7.05 (a pair of s, 5H), 6.87-6.81 (m, 1H), 6.04 and 5.98 (a pair
of dd, ] = 8.8, 0.8 Hz, 1H), 3.02 (s, 3H), 2.69 and 2.62 (a pair of q, ] = 7.6 Hz, 2H), 2.39 and
2.32 (a pair of s, 3H), 1.27 and 1.22 (a pair of t, ] = 7.6 Hz, 3H). 1*C NMR (100 MHz, CDCl3)
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0 144.8,142.5,138.3, 136.1, 135.6, 135.1, 134.8, 134.6, 133.2, 132.0, 131.8, 130.8, 130.8, 130.1,
129.6, 129.4, 128.7, 128.2, 127.4, 126.5, 125.0, 124.6, 124.5, 122.1, 122.0, 121.4, 120.4, 120.4,
115.0, 100.6, 28.8, 28.6, 25.4, 21.6, 21.4, 15.6, 15.5. HRMS (ESI) calcd for C3;HpgN [M + HJ*:
426.2222, found: 426.2224.

4. Conclusions

In conclusion, we have reported on the rhodium-catalyzed oxidative annulation of
2- or 7-phenyl-1H-indoles with alkenes or alkynes to assemble valuable 6H-isoindolo[2,1-
alindoles, pyrrolo[3,2,1-de]phenanthridines, or indolo[2,1-a]isoquinolines using molecular
oxygen as the sole oxidant enable by quaternary ammonium salt. Salient features of
present catalytic system comprise (a) the atmospheric pressure of air as the sole oxidant,
(b) one catalytic system for three discrete reactions, and (c) mechanistic insights. Mecha-
nistic studies provided support for fast intramolecular aza-Michael reaction and aerobic
reoxidation of Rh(I) to Rh(Ill) by adding quaternary ammonium salt. Additional mech-
anistic/computational studies will be needed to fully elucidate the unique influence of
quaternary ammonium salt on the catalytic cycle, and are in progress in our laboratory.

Supplementary Materials: The following are available online. Figure S1: Copies of the 'H NMR,
13C NMR charts for compounds.
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