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Abstract: The review covers the chemistry of organoboron heterocycles structurally related to
benzoxaboroles where one of the carbon atoms in a boracycle or a fused benzene ring is replaced by
a heteroelement such as boron, silicon, tin, nitrogen, phosphorus, or iodine. Related ring expanded
systems including those based on naphthalene and biphenyl cores are also described. The information
on synthetic methodology as well as the basic structural and physicochemical characteristics of
these emerging heterocycles is complemented by a presentation of their potential applications in
organic synthesis and medicinal chemistry, the latter aspect being mostly focused on the promising
antimicrobial activity of selected compounds.
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1. Introduction

Recently, benzoxaboroles (Scheme 1, structure I) constitute one of the leading groups of
organoboron compounds. This is mainly due to their promising biological properties, which
have been exploited for the past 20 years in medicinal and bioanalytical chemistry [1–4].
Benzoxaboroles are strongly predestined for such applications due to their improved ther-
modynamic stability, resulting from the presence of a strong covalent boron-oxygen bond.
Overall, they are rather stable to air and water and, in general, do not undergo rapid degra-
dation under in vivo conditions. Therefore, heteroelement analogues of benzoxaboroles
(Scheme 1, general structures II) constitute an interesting alternative and may offer the
opportunity for various novel applications while retaining high stability arising from the
presence of a strong B-O bond in the ring structure. The replacement of a carbon atom in
the boracycle or an adjacent benzene ring with a different atom may result in a significant
change of structural behaviour, e.g., a tendency to aggregation involving dative interac-
tions of a heteroatom with the boron atom. Moreover, the presence of a heteroatom may
result in modified physicochemical properties, including solubility, lipophilicity, hydrolytic
stability, boron Lewis acidity, and others. The aim of this review is to highlight several
emerging groups of boracyclic systems which comprise various heteroelement atoms such
as another boron, silicon, tin, nitrogen, phosphorus, and iodine. Some ring expanded
analogues (Scheme 1, general structures III), including compounds based on naphthalene
and biphenyl-scaffold, are also included. Overall, the review is divided into sections based
on type of heteroelement and heterocyclic ring as the primary and secondary classification
criteria, respectively. The synthesis and physicochemical properties as well as applications
of compounds of interest are consecutively presented in each section.
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Scheme 1. Structures of benzoxaborole, I; its heteroelement congeners, II; and related ring-expanded 
systems, III. El stands for heteroatom or heteroatom-based fragment. 

2. Benzoxadiboroles and Related Ring-Expanded Systems Comprising B-O-B Linkage 
The formal substitution of the C3 carbon atom in benzoxaborole results in a ben-

zoxadiborole framework featuring a B-O-B linkage within the five-membered ring. An 
example of such a well-defined boracyclic system (1) was reported by Kaufmann et al. in 
1994 [5]. It was isolated in a low yield by aminolysis of 1,2-bis(dichloroboryl)benzene [6] 
followed by ring closure with hydroxide anion (Scheme 2). 

 
Scheme 2. Synthesis of 1,3-bis(diisopropylamino)-1,3-dihydro-2,1,3-benzooxadiborole. 

Phenylene-1,2-diboronic acid (2a) was found to be a useful precursor of benzooxadi-
borole derivatives (Scheme 3). It can be readily obtained by careful hydrolysis of 1,2-
bis(dichloroboryl)benzene [6] or a Br/Li exchange reaction of 2-(2-bromophenyl)bu-
tyl[1,3,6,2]dioxazaborocan, followed by quenching the aryllithium intermediate with 
B(OMe)3 (Scheme 3) [7]. Subsequent studies on the structural behaviour of 2 and its fluor-
inated derivatives (3–7) revealed that those compounds tend to equilibrate in solution 
with respective cyclic semi-anhydrides, i.e., 1,3-dihydroxy-1,3-dihydro-2,1,3-benzoxadi-
boroles (Scheme 3). 1H and 13C NMR analyses in various dry deuterated solvents (acetone, 
THF, DMSO) revealed that cyclization (2a→2b) occurs to a significant extent. Moreover, 
the 11B NMR spectrum showed that boron atoms (2) are slightly deshielded (by ca. 4 ppm) 
with respect to free acid. However, the B-O-B linkage is readily cleaved upon the addition 
of water (or D2O), shifting the equilibrium towards free acid (2b). 

Scheme 1. Structures of benzoxaborole, I; its heteroelement congeners, II; and related ring-expanded
systems, III. El stands for heteroatom or heteroatom-based fragment.

2. Benzoxadiboroles and Related Ring-Expanded Systems Comprising B-O-B Linkage

The formal substitution of the C3 carbon atom in benzoxaborole results in a benzoxadi-
borole framework featuring a B-O-B linkage within the five-membered ring. An example
of such a well-defined boracyclic system (1) was reported by Kaufmann et al. in 1994 [5]. It
was isolated in a low yield by aminolysis of 1,2-bis(dichloroboryl)benzene [6] followed by
ring closure with hydroxide anion (Scheme 2).
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Scheme 2. Synthesis of 1,3-bis(diisopropylamino)-1,3-dihydro-2,1,3-benzooxadiborole.

Phenylene-1,2-diboronic acid (2a) was found to be a useful precursor of benzooxadi-
borole derivatives (Scheme 3). It can be readily obtained by careful hydrolysis of 1,2-
bis(dichloroboryl)benzene [6] or a Br/Li exchange reaction of 2-(2-bromophenyl)butyl
dioxazaborocan, followed by quenching the aryllithium intermediate with B(OMe)3
(Scheme 3) [7]. Subsequent studies on the structural behaviour of 2 and its fluorinated
derivatives (3–7) revealed that those compounds tend to equilibrate in solution with re-
spective cyclic semi-anhydrides, i.e., 1,3-dihydroxy-1,3-dihydro-2,1,3-benzoxadiboroles
(Scheme 3). 1H and 13C NMR analyses in various dry deuterated solvents (acetone, THF,
DMSO) revealed that cyclization (2a→2b) occurs to a significant extent. Moreover, the 11B
NMR spectrum showed that boron atoms (2) are slightly deshielded (by ca. 4 ppm) with
respect to free acid. However, the B-O-B linkage is readily cleaved upon the addition of
water (or D2O), shifting the equilibrium towards free acid (2b).
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Scheme 3. Synthesis of phenylene-1,2-diboronic acid (2a). Cyclization and acid-base equilibria in-
volving 2a and 1,3-dihydroxybenzoxadiborole (2b). 

The formation of 1,3-dihydroxybenzoxadiborole scaffold (2b) (Scheme 3) clearly ac-
counts for the apparent stronger acidity (pKa = 6.0) of the entire equilibrium system com-
pared to related acyclic meta- and para-substituted phenylenediboronic acids [8,9]. Theo-
retical (DFT B3LYP) studies indicate that the relative stabilization the anionic form (2b-
OH) is important in this respect, although the persistence of its hydrated forms, i.e., a 
cyclic species (2a-OH) with a bridging hydroxyl anion bound simultaneously by two bo-
ronic groups in a bidentate fashion and an unsymmetrical form (2a-OH′), stabilized by 
charge-assisted intramolecular H-bond, should also be taken into account. 

Subsequent studies revealed that 3,4,5,6-tetrafluorophenylene-1,2-diboronic acid 7 
shows a stronger tendency to intramolecular cyclization. X-ray diffraction analysis con-
firmed the formation of perfluorinated benzoxadiborole (7b), complexed with water mol-
ecules (Scheme 4) [8]. Interestingly, a unique dimeric form of 7c was also obtained by 
crystallization in toluene. The molecule consists of two benzoxadiborole frameworks 
fused by means of two B-OH-B bridges and additionally stabilized by π-π interactions of 
aromatic rings, resulting in a general chair-type conformation. Overall, the impact of per-
fluorination results in the strong acidity enhancement of 7 compared to 2, leading to an 
apparent pKa of 3.0, which is among the lowest figures for boronic acids and related spe-
cies. 

Scheme 3. Synthesis of phenylene-1,2-diboronic acid (2a). Cyclization and acid-base equilibria
involving 2a and 1,3-dihydroxybenzoxadiborole (2b).

The formation of 1,3-dihydroxybenzoxadiborole scaffold (2b) (Scheme 3) clearly ac-
counts for the apparent stronger acidity (pKa = 6.0) of the entire equilibrium system
compared to related acyclic meta- and para-substituted phenylenediboronic acids [8,9].
Theoretical (DFT B3LYP) studies indicate that the relative stabilization the anionic form
(2b-OH) is important in this respect, although the persistence of its hydrated forms, i.e.,
a cyclic species (2a-OH) with a bridging hydroxyl anion bound simultaneously by two
boronic groups in a bidentate fashion and an unsymmetrical form (2a-OH′), stabilized by
charge-assisted intramolecular H-bond, should also be taken into account.

Subsequent studies revealed that 3,4,5,6-tetrafluorophenylene-1,2-diboronic acid 7
shows a stronger tendency to intramolecular cyclization. X-ray diffraction analysis con-
firmed the formation of perfluorinated benzoxadiborole (7b), complexed with water
molecules (Scheme 4) [8]. Interestingly, a unique dimeric form of 7c was also obtained by
crystallization in toluene. The molecule consists of two benzoxadiborole frameworks fused
by means of two B-OH-B bridges and additionally stabilized by π-π interactions of aromatic
rings, resulting in a general chair-type conformation. Overall, the impact of perfluorination
results in the strong acidity enhancement of 7 compared to 2, leading to an apparent pKa of
3.0, which is among the lowest figures for boronic acids and related species.

It was found that the benzoxadiborole scaffold is strongly stabilized upon treat-
ment with -8-hydroxyquinoline (Scheme 5) [10]. The reactions of 2a/2b and its fluori-
nated derivatives 3–7 afforded respective chelate complexes 8–13, both in solution and
under mechanochemical conditions. The most Lewis acidic 7 also bound readily two 8-
oxyquinolinato ligands, yielding bis(chelate) (14) (Scheme 6) [10]. All of the obtained com-
plexes exhibit green luminescence in acetonitrile solution (λem = ca. 525 nm, Φ = 13–15%),
resembling other organoboron 8-oxyquinolinato complexes. Interestingly, it is blue-shifted
in solid state (λem = ca. 500 nm), which was ascribed to the effect of H-bonding and other
polar interactions of discrete molecules in the crystal lattice. Importantly, the electrolumi-
nescence properties of complexes 8 and 14 was proved by testing OLEDs containing those
compounds as emitters [10]. Later on, complex 8 became the subject of in-depth structural
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characterization, which included interesting solvatomorphic behaviour [11] as well as high
resolution single-crystal X-ray diffraction electron density studies performed for the first
time in the case of a luminescent oxyquinolinato organoboron complex [12]. Furthermore,
2 was also employed for the synthesis of a series of luminescent (O,N)-chelate complexes
(15–18) with 2-(imidazo[1,2-a]pyridin-2-yl)phenol ligands (Scheme 7) [13]. The products
were also characterized by single crystal X-ray diffraction, which revealed formation of
H-bonded dimers in the solid state.
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Scheme 7. Synthesis of benzoxadiborole (O,N)-chelate complexes 15–18 with 2-(imidazo[1,2-
a]pyridin-2-yl)phenol.

Transformations of strong bidentate Lewis acids of a general formula o-C6F4(BR2)2,
R = C6F5 (19), and BR2 = BC12F8 (20) gave rise to various anionic or neutral boracyclic
species structurally closely related to 7b/7c (Scheme 8) [14–17]. However, it should
be noted that most of them are formed, at least in a formal sense, by means of dative
O→B interactions. Specifically, weakly-coordinating borate anions o-C6F4[B(C6F5)2]2(µ-
OR), R = Me, Ph, C6F5, and C6F4[BC12F8]2(µ-OMe) were employed for stabilization of
selected tertiary carbocations in respective ion-pair compounds (21–24 and 25, respectively)
(Scheme 8) [15–18]. It was found that trityl salts (21–23) are effective co-catalysts of ethy-
lene polymerization due to activation of dimethyl zirconocene (Cp2ZrMe2), resulting in
corresponding products with Cp2ZrMe+ cation [15,18]. Compound 21 was also used for
generation of stannylium cationic species 26 (Scheme 9) [19].
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The analogous oxonium salt with (Et2O)2H+ counterion was also obtained [19]. Simi-
larly, related Bronsted acids based on solvated protons were generated from reactions of
19–20 with an excess of protic reagents (MeOH, H2O) (Scheme 10) [20]. It should be noted
that such species are generally prone to protolytic cleavage of B-C, which results in frag-
mentation of a boracyclic anions derived from 19. On the other hand, controlled treatment
of 20 with MeOH/H2O gives rise to various neutral species such as cyclic borinic ester
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(27) obtained upon protonolysis of one B-C bond in the borafluorene ligand, the unique
system (28) with water molecule bridging two boron centres, water-coordinated borinic
acid (29) as well as the benzoxadiborole (30) arising from the cleavage of another B-C bond.
The molecular structures of compounds 27–30 were determined by X-ray diffraction. The
studies on the reactivity of 19–20 towards water were directly connected to their use as
potent initiators of isobutene polymerization. They were aimed at shedding light on the
plausible role of dissolved water as a chain transfer agent in polymerizations involving
19–20 that give rise to weakly-coordinating counteranions. It was suggested that species
featuring bridging water molecule such as compound 28 are active as a strong Brønsted
acid that is able to protonate isobutene which initiates the polymer chain growth [20].
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Scheme 10. Transformations of 20 to various boracyclic systems (27–30) upon interactions with
MeOH and H2O.

In addition, one can also mention herein the synthesis of a zwitterionic system (31)
based on an anionic benzoxadiborole framework with a C4-chain attached to an oxygen
atom and decorated with a cationic phosphonium end group. This was obtained by the
ring opening of the THF molecule due to interaction with a Frustrated Lewis Pair system
composed of 1,2-bis(dichloroboryl)benzene and tris(tert-butyl)phosphine (Scheme 11) [21].
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The ring-expanded benzoxadiborole analogues are based on naphthalene and biphenyl
scaffolds. Thus, 1,3-dihydroxy-1H,3H-naphth[l,8-cd][l,2,6]oxadiborin (32) (Scheme 12) is
easily accessible by diboronation of 1,8-dilithionaphthalene with B(OMe)3 [22–24]; 4,9-
Dimethoxy derivative (33) was obtained analogously and characterized by single-crystal
X-ray diffraction [25]. Compound 32 was successfully used as a coupling partner in se-
lected Suzuki–Miayura cross-coupling reactions, resulting in the formation of new aryl-aryl
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bonds [26–28]. Thus, its behaviour seems to be rather typical of arylboronic acids and
their derivatives. However, unlike benzoxadiboroles, the B-O-B linkage in 32 seems to
be rather stable as there are no data which might indicate that a reversible hydrolysis
to naphthalene-1,8-diboronic acid occurs to any appreciable extent. Compound 32 was
used as a starting material for synthesis of a few 1H,3H-naphth[l,8-cd][l,2,6]oxadiborin
derivatives (34–37) where hydroxyl groups were replaced with OMe, Cl, Me [23], or mesityl
(Mes) substituents [24], respectively.
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Scheme 12. Synthesis of 1,3-dihydroxy-1H,3H-naphth[l,8-cd][l,2,6]oxadiborins (32–33) and conver-
sion of 32 to 34–37.

Very recently, a structurally extended analogue of 32 based on bicyclohexene-peri-
naphthalene framework 38 was obtained using an analogous protocol involving bromine-
lithium exchange in an appropriate dibromide, followed by boronation. It should be
stressed that the system features a significant ring strain arising from the presence of
two C4 and one C5-ring fused with the naphthalene core. Nevertheless, 38 was used
successfully for the synthesis of peri-substituted bis(hexyl ether) (39)via oxidation of B-C
bonds followed by alkylation (Scheme 13) [29].
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to bicyclohexene-peri-naphthalene scaffold.

Related oxadiborepins, i.e., 7-membered boracyclic systems comprising B-O-B linkage
and 2,2′-biphenyl core, were also obtained [30–32]. It should be noted that the plausible
equilibrium between biphenyl-2,2′-diboronic acid and its cyclic semi-anhydride (40) has
not been studied to date, although its synthesis was reported already in 2002 [30], followed
by crystallographic determination of 38 in 2011 [31]. Compounds 41–42 were obtained in
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a multistep protocol starting with 2,2′-dibromobiphenyl (Scheme 14). Remarkably, 41–42
were reported as efficient catalysts of dehydrative amidation of carboxylic acids with
amine substrates. Initially, they were employed for efficient preparation of various α- and
β-hydroxy substituted amides [32] but thereafter also proved effective in catalyzing the
formation of Weinreb amides [33,34] as well as various oligopeptides [35]. In the former
case, the proposed mechanism of the catalytic process involves the cooperation of the
two boron atoms in 41–42, which enables the formation of a cyclic mixed anhydride with
carboxylic acid molecule, as evidenced by the ESI MS spectrum; this is followed by an
attack of amine on the activated carbonyl group (Scheme 15) [32]. It should be noted
that the performance of 42 is impressive, as evidenced by low catalyst loading (even a
0.01 mol% turnover number (TON) parameter up to 7500).
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Scheme 15. Direct amidation of β-hydroxy substituted carboxylic acids with amines in the presence
of bromo-substituted oxadiborepins 41–42.

One can also mention the unexpected synthesis of the fused polycyclic oxadiborepin
(44) from the diboraanthracene precusor (43) which involved double arylation with 8-
bromo-1-naphthyllithium followed by successful debromination/C–C coupling using
Ni(COD)2/bpycatalyst (Scheme 16) [36]. The formation of a third C–C bond and the
cleavage of two B–C bonds was observed when THF was used as the solvent. The 1H NMR
studies on the structural behaviour of 44 revealed that it exists in equilibrium with the
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respective diborinic acid (45) upon the addition of water, whereas complete conversion to
the dibromo derivative (46) occurs upon heating with an excess of BBr3. Compound 46 is
readily reconverted back to 44 upon the addition of water.
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3. Benzosiloxaboroles and Related Ring-Expanded Systems Comprising
B-O-Si Linkage

Benzosiloxaboroles are silicon analogues of benzoxaboroles where the carbon atom in
a boracyclic ring is replaced by a silicon atom, thus resulting in the formation of a B-O-Si
linkage. The first benzosiloxaborole derivative bearing mesityl group at the boron atom (49)
was synthesized in 2008 (Scheme 17) [37,38]. The starting 1-dimesitylboryl-2-(dimethylsilyl)
benzene (47) was subjected to hydrolysis of the Si-H bond followed by ring closure effected
through an attack of silanol on one of the B-Mes bonds, yielding mesitylene as a byproduct.
The reaction occurs slowly in THF at rt, but can be accelerated by heating or the addition
of tertiary amine such as Et3N and diazabicyclo[5.4.0]undec-7-ene (DBU). In the case of
the latter, one can isolate an intermediate ionic compound (50) with the boracyclic anion
resulting from the quantitative deprotonation of silanol (48). When heated in THF at 80 ◦C,
it undergoes transformation to complex 51 with the DBU ligand coordinated to the boron
atom in 49.
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The bromine-lithium exchange reaction of ortho-(dimethylsilyl)bromobenzene with
t-BuLi, followed by trapping with (isopropoxy)diarylboranes (52–53), resulted in borohy-
dride intermediates (56–57), which form neutral ortho-(alkoxysilyl)(diarylboryl)benzenes
(58–59) after the addition of chlorotrimethylsilane. The formation of 56–57 can be explained
in terms of intramolecular hydride–isopropoxide exchange between silicon and boron
atoms in initially formed unstable alkoxyborate complexes (54–55) (Scheme 18) [39].
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Scheme 18. Synthesis of ortho-(alkoxysilyl) arylboranes (58–59) featuring dative Si-O(i-Pr)→B linkage.

Compound 58 reacts readily with MeOH and EtOH to give methoxysilane 60 and
ethoxysilane 61, respectively (Scheme 19) [39]. The 11B and 29Si NMR spectroscopy data
of 58–61 point to intramolecular O→B coordination, which results in the existence of
cyclic structures. In addition, X-ray diffraction analysis of 60 confirmed the formation of
a boracyclic ring involving a rather strong dative Si-O(Me)→B linkage (B-O distance of
1.652(2) Å). Remarkably, this interaction enhances reactivity of the Me-O bond owing to
the enhanced electrophilic character of the carbon atom. Thus, the treatment of 60 with 1,4-
diazabicyclo[2.2.2]octane (DABCO) afforded ionic complex 62, composed of silyloxyborate
anion and DABCO-Me cation (Scheme 19). However, the oxygen atom in the anion is
nucleophilic and can be readily methylated to regenerate 60. Finally, the cleavage of the
Me-O bond in 60 can also be performed using KF in the presence of 18-crown-6 ligand to
give potassium salt (63).
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3-hydroxybenzosiloxaboroles, was accomplished using two general protocols. The first 
one involves bromine-lithium exchange in ortho-bromoaryl(dimethyl)silanes and subse-
quent boronation with trialkyl borates B(OR)3 (R = Me, Et, i-Pr), followed by hydrolysis, 
leading to intramolecular dehydrogenative condensation (Scheme 21) [41–43]. The second 
method involves the addition of Me2Si(H)Cl to 2-(2-lithiophenyl)-butyl-1,3,6,2-dioxazab-
orocan or its functionalized analogue, generated via Br-Li exchange using n-BuLi in 
Et2O/THF (1:1) at low temperatures, typically below −90 °C (Scheme 21) [41–43]. Extensive 
work resulted in the preparation of a number of 3-hydroxybenzosiloxaboroles (70–96) 
bearing substituents such as F, Cl, Br, CF3, CN, CHO, CH2OH, and B(OH)2, attached at 
various positions of the aromatic ring [41–43]. 

Scheme 19. Synthesis of ionic compounds 62–63, featuring benzosiloxaborolate anion.

Analogous ortho-(alkoxysilyl)(borafluorenyl)benzenes (64–65) were obtained using
the protocol described above for 58–59. Compound 64 was readily converted to respec-
tive methoxy- and ethoxysilanes (66–67) and resulted in ionic compounds 68–69 upon
treatment with 1,4-diazabicyclo[2.2.2]octane (DABCO) and KF/18-crown-6, respectively
(Scheme 20) [40].
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Scheme 20. Synthesis of ionic compounds 68–69 featuring benzosiloxaborolate anion comprising 9-borafluorenyl moiety.

The synthesis of a benzosiloxaboroles bearing hydroxy group at the boron atom, i.e.,
3-hydroxybenzosiloxaboroles, was accomplished using two general protocols. The first one
involves bromine-lithium exchange in ortho-bromoaryl(dimethyl)silanes and subsequent
boronation with trialkyl borates B(OR)3 (R = Me, Et, i-Pr), followed by hydrolysis, leading
to intramolecular dehydrogenative condensation (Scheme 21) [41–43]. The second method
involves the addition of Me2Si(H)Cl to 2-(2-lithiophenyl)-butyl-1,3,6,2-dioxazaborocan
or its functionalized analogue, generated via Br-Li exchange using n-BuLi in Et2O/THF
(1:1) at low temperatures, typically below −90 ◦C (Scheme 21) [41–43]. Extensive work
resulted in the preparation of a number of 3-hydroxybenzosiloxaboroles (70–96) bearing
substituents such as F, Cl, Br, CF3, CN, CHO, CH2OH, and B(OH)2, attached at various
positions of the aromatic ring [41–43].
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Scheme 21. Synthesis of functionalized benzosiloxaborole derivatives.

The formation of 3-hydroxybenzosiloxaboroles was the subject of some mechanis-
tic studies aimed mainly at the elucidation of the activation pathways of the Si-H bond
in boronated arylsilane precursors. DFT (M06-2X22/6-31+G(d)23) theoretical calcula-
tions revealed that the process of ring closing is driven by the coordination of an oxygen
atom from the B(OH)2 or, far better, from the anionic B(OH)3

− group to the silicon atom
(Scheme 22) [44].
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Scheme 22. The proposed mechanism for the activation of the Si–H bond by the anionic boronate
group in the presence of water.

On the other hand, experimental studies showed that, in the absence of water, the
ortho-(dimethylsilyl)-substituted trialkoxyaryl(boronate) anion undergoes hydride transfer
from silicon to boron to give a mixture of tris(hydrido)arylborate and tris(alkoxy)arylborate
anions (97–98) as confirmed by 11B NMR spectroscopy data (Scheme 23) [43]. Hydrolysis of
the mixture proceeds with hydrogen evolution, and the final intramolecular condensation
of transiently generated silanol and boronic groups occurs readily to give the siloxaborole
ring. In fact, DFT calculations indicate that this process is thermodynamic and favourable,
to a similar extent, as the condensation of carbinol and boronic groups, resulting in the
formation of B-O-C linkage in benzoxaboroles [41].
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It was found that the activated Si-H bond was able to reduce nitrile to the formyl
group, which was used for synthesis of compound 86 (Scheme 24) [42].
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Interestingly, the reduction of otherwise rather inert acetal CH(OMe)2 groups was
observed, giving rise to benzosiloxaboroles comprising an additional fused oxaborole
ring (99 and 100) (Scheme 25) [42]. An analogous system (101) with two siloxaborole
heterocycles fused with the central aromatic ring was also prepared using a double Br-
Li exchange in appropriate bis(dimethylsilyl)dibromobenzene, followed by boronation
(Scheme 26) [43].
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Scheme 26. Synthesis of benzobis(siloxaborole) 101.

It should be noted that formyl-substituted benzosiloxaboroles (87–89) are cleanly re-
duced to respective carbinol derivatives (91–93) using NaBH4, whilst an analogous reaction
of 90 afforded a unique dimeric species (102) featuring a central 10-membered heterocycle
comprising two B-O-Si linkages. Its formation is apparently driven by the preferred forma-
tion of an oxaborole ring with concomitant breakdown of the siloxaborole ring with the
release of free silanol moiety. Subsequent bimolecular dehydrative condensation leads to
the formation of 102 (Scheme 27) [42].
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Very recently, the 6-hydroxy-7-chloro substituted 3,3-difluorobenzosiloxaborolate 
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In addition, a formyl derivative (89) was successfully subjected to reductive amination
with dopamine, giving rise to the benzosiloxaborole conjugate (103) (Scheme 28) [42].
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Very recently, the 6-hydroxy-7-chloro substituted 3,3-difluorobenzosiloxaborolate
anion was prepared in the form of a potassium salt (110), starting with the protection of
4-bromo-2-chlorophenol (105) with tert-butylsilyldimethyl chloride (TBDMS-Cl), followed
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by introduction of the Si(H)Me2 group, subsequent boronation, and cleavage of the silyl
ether group (OTBDMS) in benzosiloxaborole (107) (Scheme 29) [45]. Similar reactions were
performed using 4-bromo-2-fluorophenol (104) as the starting material. Unfortunately, the
final cleavage of the OTBDMS group in 106 resulted in a mixture containing a significant
amount of aryltrifluoroborate salt (108), together with the desired boracyclic species (109),
which hampered further applications.
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Scheme 29. Synthesis of potassium hydroxy-substituted benzosiloxa(difluoro)borolates 109–110.

The salt (110) was used as a phenolate O-nucleophile for reactions with MeI, Et2NCOCl,
benzoyl, and benzenesulfonyl chlorides as electrophilic partners. The syntheses proceeded
smoothly under mild conditions, giving rise to a series of functionalized benzosiloxaboroles
(111–137), respectively (Scheme 30) [45].
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Structurally closely related 6-(chloropyridinyl-2-oxy)-7-fluorobenzosiloxaboroles (138–139)
were also obtained using a standard protocol (Scheme 31) [45].
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Scheme 31. Synthesis of functionalized benzosiloxaboroles (138–139).

In addition, it is worth noting that Br-Li exchange in arylsilane (140), followed by
treatment with B(Oi-Pr)3 (0.5 equiv) gave selectively a unique borinate-type species (141)
in ca. 70% yield (Scheme 32) [44]. The X-ray diffraction analysis revealed that its molecular
structure features the spiro-arrangement of a central boron atom, linking two benzosilox-
aborole systems. In crystal structure, discrete molecules form centrosymmetric dimers due
to strong and symmetrical hydrogen bonds (O· · ·O distance is only 2.432 Å). VT NMR
analyses point to a dynamic character of 141 in CDCl3 solution. Remarkably, acetone-d6
(141) undergoes rearrangement to form 8-membered heterocyclic borinic acid (142) com-
prising the Si–O–Si linkage. However, the process is reversible because crystallization
again afforded 141, whilst prolonged exposure of the solution to air (>1 week) resulted in
extensive degradation.

Molecules 2021, 26, x FOR PEER REVIEW 15 of 35 
 

 

 
Scheme 30. Synthesis of functionalized benzosiloxaboroles 111–137. 

Structurally closely related 6-(chloropyridinyl-2-oxy)-7-fluorobenzosiloxaboroles 
(138–139) were also obtained using a standard protocol (Scheme 31) [45]. 

 
Scheme 31. Synthesis of functionalized benzosiloxaboroles (138–139). 

In addition, it is worth noting that Br-Li exchange in arylsilane (140), followed by 
treatment with B(Oi-Pr)3 (0.5 equiv) gave selectively a unique borinate-type species (141) 
in ca. 70% yield (Scheme 32) [44]. The X-ray diffraction analysis revealed that its molecular 
structure features the spiro-arrangement of a central boron atom, linking two benzosilox-
aborole systems. In crystal structure, discrete molecules form centrosymmetric dimers 
due to strong and symmetrical hydrogen bonds (O⋯O distance is only 2.432 Å). VT NMR 
analyses point to a dynamic character of 141 in CDCl3 solution. Remarkably, acetone-d6 
(141) undergoes rearrangement to form 8-membered heterocyclic borinic acid (142) com-
prising the Si–O–Si linkage. However, the process is reversible because crystallization 
again afforded 141, whilst prolonged exposure of the solution to air (>1 week) resulted in 
extensive degradation. 

 
Scheme 32. Synthesis and reversible rearrangement of spiro-borinate species 141. Scheme 32. Synthesis and reversible rearrangement of spiro-borinate species 141.

X-ray diffraction analyses of selected benzosiloxaboroles showed that their molec-
ular structures are similar to those found for related benzoxaboroles. This is also true
for supramolecular assembly, which is typically based on centrosymmetric H-bonded
dimers [41,45]. Determination of the acidity of selected derivatives in water/methanol
solution revealed that their pKa values vary in a wide range (~4.0–8.0), depending on
substitution pattern [43,45]. 1,1-Dimethyl-3-hydroxybenzosiloxaborole (70) is a stronger
acid (pKa = 7.9) than its benzoxaborole counterpart (pKa = 8.3) [41]. Increased acidity of
the boron atom in 70 arises apparently from its lower saturation by the endocyclic oxygen
lone pairs owing to competition with distinctive Si-O bond conjugation (back-bonding
effect). In addition, it was observed that the presence of more electron-withdrawing phenyl
groups at the silicon atom increases the acidity in comparison to SiMe2 derivatives. In
combination with perfluorination of the benzene ring, this resulted in the highest acidity
of benzosiloxaborole (77) (pKa = 4.2) among all of the studied derivatives. Notably, the
acidity of borinate species (141) is even higher (pKa = 3.5) [44] and very strongly enhanced
with respect to the related simple 7-fluorobenzosiloxaborole (72) (pKa = 7.2).

Selected functionalized 3-hydroxybenzosiloxaboroles emerged as novel small-molecule
therapeutic agents. Simple halogenated derivatives (72–80) exhibit good antifungal activity
with low Minimal Inhibitory Concentration (MIC) values (0.78–12.5 mg/L) for strains
from Candida genus such as C. albicans, C. tropicalis, C. krusei, and C. guilliermondii. Thus,
they can be regarded as effective silicon bioisosteres of related benzoxaboroles such as
5-fluorobenzoxaborole (Tavaborole), which has already been approved for the use against
onychomycosis of the toenails [4].

Benzosiloxaboroles (70–139) were also screened as potential antibacterial agents
against selected Gram-positive and Gram-negative strains. Overall, they showed at best a
weak activity against Gram-negative bacilli, which was ascribed to the effective extrusion
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of used agents through bacterial walls by MDR efflux pumps. The highest increase in bac-
terial susceptibility to benzosiloxaboroles in the presence of efflux-pump inhibitor PAβN
was observed for chloro derivatives (79-80) as MIC values decreased from 400 mg/L to
6.25 mg/L for E. coli and from 100–200 mg/L to 6.25 mg/L for S. maltophilia [43].

Benzosiloxaboroles show strongly varying activity against Gram-positive bacteria.
The most promising results were obtained with respect to selected cocci strains such as
Staphylococcus aureus (including MRSA strains), S. epidermidis, Enterococcus faecalis, and E.
faecium, with MICs in the range of 6.25–50 mg/L in some cases. Interestingly, replacement
of the fluoro substituent with the chloro one has the positive impact effect on the activity
against Gram-positive cocci [43]. 6-Arylsulfonyloxy-7-chloro benzosiloxaboroles (113–130)
showed high activity towards S. aureus species, including methicillin-resistant strains, with
low MIC values in the range of 0.39–3.12 mg/L. Compounds 123, 129, and 130 also showed
relatively high activity against other Gram-positive cocci such as E. faecalis and E. faecium,
with MIC value of 6.25 mg/L. It should be noted that related 6-benzoyloxy derivatives
(131–137) showed only moderate or weak activity against Gram-positive bacteria (MIC
range = 12.5–400 mg/L), which indicates that benzenesulfonyl moiety is necessary to
achieve high activity against studied cocci [45].

Benzosiloxaboroles (70–96) were also subjected to studies on inhibition of β-lactamases
KPC- and pAmpC-produced by Gram-negative rods. Those enzymes provide multi-
resistance to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins, and
carbapenems. Compounds 75, 76, 99 and, especially, 6-B(OH)2-substituted derivative (95)
showed promising inhibitory activity. It should be noted that they were essentially inactive
(MICs > 400 mg/L) against the studied Gram-negative strains when used alone but showed
high activity when combined with meropenem. Molecular modelling studies confirmed
strong inhibitory activity of those compounds with respect to KPC-2 carbapenemase [43].

The studies on antimicrobial activity of benzosiloxaboroles were complemented by
evaluation of their cytotoxicity towards normal human lung fibroblasts MRC-5. It is
worth noting that most of the studied compounds presented rather weak cytotoxicity
or can be regarded as essentially non-toxic, which increases their potential in medicinal
chemistry [43,45].

In addition, fluorinated 3-hydroxybenzosiloxaborole derivatives (72,74, and 76) showed
superior binding properties towards biologically-relevant diols in neutral pH aqueous
conditions. Association constants Ks with dopamine, ribose, glucose, fructose, sorbitol,
and adenosine and its monophosphate (AMP) were determined using the Springsteen and
Wang method, with ARS as a fluorescent probe [41]. Later on, compounds 72, 75, 76, 96,
and 102 were employed for the chemometric differential fluorescence-based sensing of
saccharides such as glucose, fructose, ribose, sorbitol, lactose, and sucrose [46].

The synthesis and use of ring-expanded analogues of benzosiloxaboroles is currently at
the initial stage of development. In 2018, Hartwig et al. obtained 1,1-dimethyloxasilaborinin-
3-ol (145), comprising B-O-Si moiety bridging peri-naphthalene scaffold via Ir(I)-catalyzed
CH-borylation of 1-(dimethylsilyl)naphthalene (143), followed by hydrolytic cleavage of
intermediate pinacol boronate (144) in the presence of a Ru(II) catalyst. (Scheme 33) [47].
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Compound 145 was tested as a starting material for further transformations based
on conversion of the B-C bond, including synthesis of a biaryl (146) by Suzuki–Miyaura
cross coupling reaction, copper-mediated/catalyzed halogenation, and azide formation,
as well as oxidation with meta-chloroperbenzoic acid (mCPBA), leading to the formation
of naphthalene-fused oxasilole (147). Oxidation of both C-B and C-Si bonds was per-
formed using an excess of H2O2 under basic conditions to give naphthalene-1,8-diol (148)
(Scheme 34) [47].
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Borylated indole (149) was obtained by a similar catalytic method reported for the
synthesis of 143 (Scheme 35) [48]. A subsequent reaction with aq. H2O2 afforded indole-
based oxasilaborininol (150) instead of an expected oxasilole derivative. It was converted
to 3,4-diarylindole (151) by consecutive Suzuki–Miyaura and Hiyama cross-coupling
reactions.

Molecules 2021, 26, x FOR PEER REVIEW 18 of 35 
 

 

Borylated indole (149) was obtained by a similar catalytic method reported for the 
synthesis of 143 (Scheme 35) [48]. A subsequent reaction with aq. H2O2 afforded indole-
based oxasilaborininol (150) instead of an expected oxasilole derivative. It was converted 
to 3,4-diarylindole (151) by consecutive Suzuki–Miyaura and Hiyama cross-coupling re-
actions. 

 
Scheme 35. Synthesis and Pd-catalyzed double cross-coupling reaction of 150. 

4. Benzoxaborole Congeners and Related Ring-Expanded Systems Comprising B-O-
Sn Linkage 

There are only a few examples of heterocycles comprising B-O-Sn linkage fused with 
an aromatic core. The reaction of 1,8-bis(trimethylstannyl)naphthalene with BCl3 afforded 
1-(chlorodimethylstannyl)-8-(dichloroboryl)naphthalene (152). It underwent chloride–
methyl exchange at elevated temperature to give compound 153, which was converted 
into the borinic acid derivative 1-(dichloromethylstannyl)-8-(hydroxymethylboryl)naph-
thalene (154). It was characterized by multinuclear NMR spectroscopy, and formation of 
a heterocyclic motif through dative B-O(H)→Sn interaction was confirmed by single crys-
tal X-ray analysis (Scheme 36) [49]. 

154 (53%)

SnMe2ClCl2BSnMe3Me3Sn

BCl3

SnMeCl2B
Me Cl

H2O

153152

Sn
O

B
Me

H
Me

Cl
Cl

 
Scheme 36. Synthesis of 154. 

Recently, 1,1-dibutylnaphthoxastannaborinin-3-ol (155), featuring covalent B-O-Sn 
linkage was obtained in low yields by the heating of 8-iodonaphthalene-1-boronic acid 
with an excess of Bu3SnOMe (Scheme 37) [50]. It was characterized in detail by single crys-
tal X-ray diffraction analysis, which showed the formation of centrosymmetric H-bonded 
dimers. 

Scheme 35. Synthesis and Pd-catalyzed double cross-coupling reaction of 150.



Molecules 2021, 26, 5464 18 of 34

4. Benzoxaborole Congeners and Related Ring-Expanded Systems Comprising
B-O-Sn Linkage

There are only a few examples of heterocycles comprising B-O-Sn linkage fused with
an aromatic core. The reaction of 1,8-bis(trimethylstannyl)naphthalene with BCl3 afforded
1-(chlorodimethylstannyl)-8-(dichloroboryl)naphthalene (152). It underwent chloride–
methyl exchange at elevated temperature to give compound 153, which was converted into
the borinic acid derivative 1-(dichloromethylstannyl)-8-(hydroxymethylboryl)naphthalene
(154). It was characterized by multinuclear NMR spectroscopy, and formation of a hetero-
cyclic motif through dative B-O(H)→Sn interaction was confirmed by single crystal X-ray
analysis (Scheme 36) [49].
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Recently, 1,1-dibutylnaphthoxastannaborinin-3-ol (155), featuring covalent B-O-Sn
linkage was obtained in low yields by the heating of 8-iodonaphthalene-1-boronic acid with
an excess of Bu3SnOMe (Scheme 37) [50]. It was characterized in detail by single crystal
X-ray diffraction analysis, which showed the formation of centrosymmetric H-bonded
dimers.
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Scheme 37. Synthesis of 1,1-dibutylnaphthooxastannaborinin-3-ol 155.

In addition, one can mention compound 156 with a ferrocene scaffold, where the
formation of a heterocycle occurred through dative B-O(Me)→Sn interaction, resembling
the situation observed in the naphthalene derivative (154). An extended complex (157) was
isolated from the reaction of 156 with pseudoephedrine (Scheme 38) [51].
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5. Benzoxaborole Aza Analogues and Related Ring-Expanded Systems

Nitrogen benzoxaborole congeners comprising a five-membered heterocycle with
B-O-N linkage have not been described in the scientific literature so far. However, replace-
ment of the benzene aromatic ring with a pyridine one gave rise to pyridoxaboroles. Their
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synthesis started with 3-bromopyridine, which was converted to 6-butyl-2-(3′-bromo-4′-
pyridyl)-(N-B)-1,3,6,2-dioxazaborocan (158), followed by Br/Li exchange and the trapping
of a resulting lithiated intermediate with selected benzaldehydes to give pyridoxaboroles
159–161. Compound 161 was subjected to N-methylation, resulting in the cationic hete-
rocycle (162). Pyridosiloxaborole (163) was obtained when Ph2Si(H)Cl was used as an
electrophilic reagent (Scheme 39) [52].

In a different approach, 2-fluoro-3-iodopyridine was subjected to LDA-induced depro-
tonation with concomitant halogen-dance isomerization, followed by the trapping of an
aryllithium with 2-methoxybenzaldehyde. The resultant carbinol (164) was protected as a
sodium salt, which was subjected to I/Li exchange with t-BuLi and subsequent boronation
with B(OMe)3 to give pyridoxaborole (165) (Scheme 40) [52]. In addition, pyridoxaboroles
(166–168) were prepared recently and used in Suzuki–Miyaura cross-coupling reactions
with selected halogenated N-methyl substituted pyrazinone and pyridazinone derivatives
en route to novel Bruton’s tyrosine kinase (BTK) inhibitors, with the general structure
shown in Scheme 41 [53].
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Unlike structurally related benzoxaboroles, pyridoxaboroles are amphoteric com-
pounds due to the presence of a basic nitrogen atom. 11B NMR spectroscopy data point
to formation of zwitterionic species featuring the protonated nitrogen atom and anionic
boronate moiety in a mixed MeOH/D2O solvent. The presence of the Lewis acidic boron
and Lewis base N atom results in aggregation by means of N–B dative bonds, leading
to the formation of a 1D coordination polymer of 161. However, the introduction of a 2-
fluoro substituent at the pyridine ring weakens N–B coordination and therefore H-bonded
chains involving BOH groups and pyridine N atoms are formed in the case of 165 [52].
Thus, pyridoxaboroles can serve as self-complementary tectons for generation of molecular
networks through N–B coordination and/or hydrogen bonds, where the assembly can be
changed by tuning the donor properties of the pyridine N atom. The specific behaviour
of pyridoxaboroles results from their amphoteric character, higher boron Lewis acidity as
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compared to pyridineboronic acids (or esters), and the presence of two competitive electron
deficient sites, i.e., the boron and the BOH hydrogen atoms.
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Ring-expanded benzoxaborole aza analogues featuring the 6-membered boracycle
with B-O-N=C linkage, termed oxazaborines or nitrono arylboronate esters, have been
reported already in the 1950s [54–61]. The parent benzoxazaborine (169) was obtained
by condensation of 2-formylbenzeneboronic acid with hydroxylamine (Scheme 42) [54,56].
Renewed interest in this heterocycle emerged in 1997 thanks to Groziak et al., who under-
took comprehensive research on boron-nitrogen planar heterocycles displaying nucleic
acid-like hydrogen bonding motifs [62]. The analogous benzoxazaborininone (171) was
obtained by aminolysis of ester group in (2-(ethoxycarbonyl)phenyl)boronic acid with hy-
droxylamine, followed by intramolecular condensation of boronic and hydroxamic groups
in the intermediate (170), leading to a target planar 6-membered boron heterocycle ring.
The X-ray diffraction analysis showed the presence of lactam tautomer (171), rather than a
lactim one (171′) (Scheme 43) [63].
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Later, it was found that a simple three-component protocol involving the treatment of
an appropriate chiral hydroxylamine with 2-formylphenylboronic acid and enantiopure
BINOL leads to a mixture of diastereomeric nitrono-arylboronate esters, whose ratio can be
determined by 1H NMR analysis and reflects the optical purity of a starting hydroxylamine
(Scheme 44a). As a secondary effect, these studies gave rise to a series 4-substituted
zwitterionic benzoxazaborine complexes (172–179), obtained as mixtures of diastereomers
(Scheme 44b,c) [64].
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Recently, two functionalized benzoxazaborine derivatives (182–183) were synthesized
via the SN2 reactions of 7-hydroxybenzoxazaborines (180–181) and pleuromutilin tosylate
(Scheme 45). It should be noted that the preparation of 180–181 was not reported. The
pleuromutilin scaffold is a primary structural fragment of an important class of antibiotics.
Thus, 182–183 were investigated as potential new anti-Wolbachia agents for the treatment
of onchocerciasis and lymphatic filariasis [65]. Unlike benzoxaboroles, introduction of a
fluorine atom did not improve antimicrobial potency, and only the EC50 values obtained
for 180 (14.2 nM for Wolbachia infected C6/36 cells and 5.1 nM for Wolbachia infected
LDW1 cells) are promising.

Another group of ring-expanded benzoxaborole aza analogues encompasses com-
pounds with a 6-membered boracycle comprising B-O-C=N or B-O-C-N linkage, gen-
erally termed benzoxazaborines. They were reported for the first time over 60 years
ago [66] but attracted increased interest only in the 1990s [67–71]. The parent benzox-
azaborin (186) was synthesized by the reduction of (2-nitrophenyl)boronic acid (184) to
(2-aminophenyl)boronic acid (185), which underwent condensation with acetic formic
anhydride. 3-methyl and 3-trifluoromethyl substituted benzoxazaborines (187–188) were
prepared analogously. Compound 187 was also synthesized from 184 via Parr hydrogena-
tion in aqueous acetic acid, but this method was less efficient (Scheme 46) [68].
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Scheme 46. Synthesis of 1,2,4-benzoxazaborines 186–188.

Zwitterionic benzoxazaborines featuring a four-coordinated boron atom (193–198)
were also obtained. Thus, the treatment of 185 with selected alkyl isocyanates afforded re-
spective diazaborine intermediates (189–191), which underwent condensation with pinacol
to give 193–195. In addition, the reactions of compounds 189 and 190 with KHF2 resulted in
fluoro analogues 197 and 198. In the case of tert-butyl derivative (196), diazaborine pinacol
ester did not form, but the problem was overcome by conversion of 185 to pinacol ester
(192), followed by treatment with t-BuNCO (Scheme 47) [69,70]. In the methanolic solu-
tion, diazaborines 189, 199, and 200 also undergo reversible transformation to zwitterionic
oxazaborine systems (201–203, respectively) (Scheme 48) [71].
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The potassium salt with oxazaborine anion (204) served as the intermediate in the
synthesis, starting with o-bromotrifluoroacetanilide en route to functionalized triarylborane
(205), which was expected to be an efficient fluoride receptor (Scheme 49) [72].
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Scheme 49. Synthesis of 205 via ionic benzoxazaborine intermediate 204.

More extended benzoxazaborines comprising substituents, both in the boracyclic
ring as well as in the aromatic core, were reported in 2009. The synthesis of 207 and 208
started from methyl 4-amino-3-bromobenzoate, which was converted to an appropriate
phenylacetamido derivative followed by the Miyaura borylation. Subsequent deprotection
of boronate ester (206) gave compound 207, which was additionally converted to benzoic
acid derivative 208 (Scheme 50). Unfortunately, studies on the potential inhibitory activity
of 207–208 against D,D-carboxypeptidase R39 did not give positive results [73]. In addition,
an analogous variant of the deprotection reaction of pinacol boronate esters, utilizing
milder NH3 base instead of LiOH in the second step, was elaborated in order to obtain
compounds 187, 207, and 209 (Scheme 51) [74].
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Another functionalized derivative (210) was synthesized using 185 and 4-trifluoromethylphenyl
isocyanate (Scheme 52). It was further subjected to investigation towards recognition of
various guest molecules, especially warfare agents [75].
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Scheme 52. Synthesis of compound 210.

Very recently, it was found that ortho-borylated N-phenyltetramethylguanidine (211)
exhibits the Frustrated Lewis Pair (FLP) character, which enables formation of zwitterionic
boracyclic adducts (212–215) through the insertion of carbonyl electrophiles such as H2CO,
PhCHO, and PhNCO (Scheme 53) [76].
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6. Benzophosphoxaboroles and Related Ring-Expanded Systems

Benzophosphoxaboroles can be generally defined as heterocyclic systems comprising
P-O-B linkage. There are a few examples of such compounds, which can be regarded
as phosphine oxide systems stabilized through intramolecular P=O→B coordination but
are also depicted as zwitterionic structures with P+-O-B− linkage. The synthesis of ben-
zophosphoxaboroles 217 and 220, comprising cyclic peroxoboronate motifs, was achieved
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via 1O2 oxidation of ortho-(diphenylphosphino) phenyl boronates 216 and 219 and subse-
quent con-proportionation to ortho-boronated triphenylphosphine oxides (218 and 221)
(Scheme 54) [77].
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Scheme 54. Synthesis and transformation of benzophosphoxaboroles 217 and 220, comprising
peroxoboronate motifs.

Directed ortho-metalation of bis(tert-butyl)phosphine oxide with t-BuLi, followed
by boronation with B(OMe)3 and reduction using LiAlH4, afforded a water-stable ben-
zophosphoxaborole (222) featuring a P=O-BH2 moiety. It was converted to a mono-C6F5
derivative (223) through the nucleophilic attack of C6F5MgBr on the boron atom, followed
by hydrolysis with a liberation of H2 (Scheme 55) [78]. A analogous bis(C6F5)-substituted
derivative (224) was obtained by treatment of lithiated bis(t-butyl)phosphine oxide with
(C6F5)2BH·SMe2, followed by acidic quenching of an intermediate ate complex. Com-
pounds 222–224 were characterized by X-ray diffraction, which confirmed the formation of
typical single B-O bonds (bond lengths in the range of 1.550–1.584 Å). Crystallographic
data were consistent with 11B NMR chemical shifts, which confirmed the presence of the
tetracoordinate boron atom. Furthermore, the 31P NMR resonances are deshielded by ca.
50 ppm compared to the starting phosphine oxide, which clearly reflects the strong O→B
coordination.
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Scheme 55. Synthesis of 222–224.

Another benzophosphoxaborole derivative (226) was obtained in a two-step protocol
starting with O-borylation of Mes2P(O)H, followed by thermally induced rearrangement of
the intermediate phospinoxyborane (225) via intramolecular attack of the SNAr nucleophilic
P atom on the C-F bond, resulting in ring closure, with concomitant migration of fluoride
to the boron atom (Scheme 56) [79].
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wards dipolar activation of phenyl isocyanate (Scheme 59) [82]. 

Scheme 56. Synthesis of 226.

Ring-expanded benzophosphoxaborole congeners are based on peri-substituted naph-
thalene and acenaphthene frameworks. Thus, 1-(dimesitylboryl)-8-(diphenylphosphino)
naphthalene was subjected to oxidation of the P(III) centre with I2 followed by hydrolysis of
ae P(V) hypercoordinated intermediate, producing phosphine oxide derivative 227, which
showed strong P=O→B coordination according to X-ray diffraction analysis; it was in
agreement with 11B NMR chemical shift, pointing to the tetrahedral character of the boron
atom. Additionally, 31P NMR resonance is significantly shifted to a lower field, which is
characteristic for P=O systems coordinated to Lewis acid centres (Scheme 57) [80].
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Scheme 57. Synthesis of 227.

Boroxine species 229, resulting from dehydrative cyclotricondensation of
5-diphenylphosphinoacenaphth-6-yl boronic acid (228) was susceptible to partial oxi-
dation in moist air, involving only one of three phosphorus atoms to give compound 230
(Scheme 58) [81].

Molecules 2021, 26, x FOR PEER REVIEW 27 of 35 
 

 

 
Scheme 56. Synthesis of 226. 

Ring-expanded benzophosphoxaborole congeners are based on peri-substituted 
naphthalene and acenaphthene frameworks. Thus, 1-(dimesitylboryl)-8-(diphe-
nylphosphino)naphthalene was subjected to oxidation of the P(III) centre with I2 followed 
by hydrolysis of ae P(V) hypercoordinated intermediate, producing phosphine oxide de-
rivative 227, which showed strong P=O→B coordination according to X-ray diffraction 
analysis; it was in agreement with 11B NMR chemical shift, pointing to the tetrahedral 
character of the boron atom. Additionally, 31P NMR resonance is significantly shifted to a 
lower field, which is characteristic for P=O systems coordinated to Lewis acid centres 
(Scheme 57) [80]. 

 
Scheme 57. Synthesis of 227. 

Boroxine species 229, resulting from dehydrative cyclotricondensation of 5-diphe-
nylphosphinoacenaphth-6-yl boronic acid (228) was susceptible to partial oxidation in 
moist air, involving only one of three phosphorus atoms to give compound 230 (Scheme 
58) [81]. 

RB(OH)2
-H2O

B

O
B

O

B
OR R

R

O2 Ph2P
O

B O
B

OB
O

R

R

228 229 230 (81%)

PPh2

R =

 
Scheme 58. Synthesis of 230. 
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distinctive FLP properties of an ambiphilic phosphinoborane i-Pr2P(o-C6H4)BMes2 231 to-
wards dipolar activation of phenyl isocyanate (Scheme 59) [82]. 

Scheme 58. Synthesis of 230.

A six-membered zwitterionic ring system (232), comprising an internal B-O bond
separated from the phosphorus centre by a carbon atom was obtained by utilizing the
distinctive FLP properties of an ambiphilic phosphinoborane i-Pr2P(o-C6H4)BMes2 231
towards dipolar activation of phenyl isocyanate (Scheme 59) [82].
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Scheme 59. Synthesis of zwitterionic compound 232.

Similar six-membered zwitterionic heterocycles (236–238) are also simply formed
by the treatment of ambiphilic ortho-phosphinyl pinacolato and catecholato arylboranes
(233–235) with paraformaldehyde. Interestingly, it was found that CO2 can also be en-
trapped by 235 with the aid of CatBH as a reducing agent to give analogous system 239
(Scheme 60) [83].
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Scheme 60. Synthesis of zwitterionic boron-phosphorus heterocycles 236–239.

The FLP behaviour of 234 was used for the trapping of in situ generated difluorocar-
bene to give a heterocyclic compound (240) featuring B-CF2-P moiety. The ring expansion
in 240 occurred upon heating with 4-chlorobenzaldehyde through insertion of a carbonyl
group, resulting in compound 241 (Scheme 61) [84].
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Scheme 61. Synthesis of ring-expanded compound 241.

Analogous 7-membered ring systems (242–244) were obtained by the ring opening of
selected epoxides, mediated by the FLP compound 233 (Scheme 62) [85].
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7. Benzoiodoxaboroles

Benzoiodoxaborole heterocycles comprising trivalent iodine, oxygen, and boron were
only reported in 2011 [86]. In addition to being benzoxaborole congeners, those systems
are also structurally related to benziodoxoles, representing an important part of the group
of hypervalent iodine compounds extensively exploited in organic synthesis as highly
selective and environmentally friendly oxidizing agents [87]. A 1-Chlorobenzoiodoxaborole
derivative (248) was synthesized in a simple two-step process involving chlorination of
2-fluoro-6-iodophenylboronic acid (246), followed by the hydrolysis of intermediate 247.
Benzoiodoxaboroles (248–251), bearing acetoxy or trifluoroacetoxy substituent at the iodine
atom were obtained by oxidation of iodophenylboronic acids (245–246) with bleach (~5%
aqueous sodium hypochlorite) in acetic or trifluoroacetic acid. However, it was found that
1-trifluoroacetoxy derivatives 251 and 252 can be obtained in much higher yields (>90%)
by the treatment of acetates 249 and 250 with an excess of CF3CO2H (Scheme 63) [86].
Hydrolysis of benzoiodoxaboroles 250 and 252, carried out under mild basic conditions,
afforded 1-hydroxy-4-fluorobenziodoxaborole (253). Treatment of 250 with p-TsOH H2O
led to the formation of 1-tosyloxy-4-fluorobenzoiodoxaborole (254) (Scheme 64) [86].
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Scheme 64. Preparation of benzoiodoxaboroles 253–254.

A slow (10 day) crystallization of 252 in methanol resulted in a unique tetrameric
system (256) composed of four molecules of dimethoxy derivative 255, assembled through
dative interactions between boron and endocyclic oxygen atoms. Thus, the aggregate
features the central 8-membered B4O4 ring (Scheme 65) [86].

Crystallographic studies on benzoiodoxaboroles 248, 251, and 252, comprising the
trigonal-planar sp2 hybridized boron atom, indicates the presence of a planar five-membered
iodoxaborole ring. The most noteworthy feature is the presence of unusually short en-
docyclic I–O bonds at 2.04–2.09 Å. In fact, they are the shortest ever observed for the
five-membered iodine(III) heterocycles. Such a bond shortening, together with the hetero-
cycle planarity, may point to some additional conjugation and possible aromatic character
with the contribution of resonance structures shown in Scheme 66. However, DFT calcu-
lations of NICS(0) and NICS(1) indexes for 1-chloro- and 1-trifluoroacetoxy substituted
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benziodoxaboroles revealed low aromaticity of iodoxaborole heterocycle in comparison to
typical aromatic rings [86].
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Compounds 249–252 were tested as oxidizing agents in reactions with various organic
substrates. However, they exhibit lower activity than 1-hydroxy- and 1-acetoxybenzoiodoxoles
and do not oxidize alcohols, even when combined with a catalyst such as BF3 Et2O [86].

More recently, a new generation of pseudocyclic ionic benzoiodoxaboroles bearing
various aryl substituents at the iodine atom was developed [88]. These new hypervalent
iodine compounds were synthesized from 1-acetoxybenzoiodoxaboroles 249 and 250 and
arenes by treatment with trifluoromethanesulfonic acid under mild conditions. Five deriva-
tives (257–261) with various substitution patterns on the aryl group attached to hypervalent
iodine were successfully obtained (Scheme 67). X-Ray analysis of 259 and 260 confirmed
a pseudocyclic benziodoxaborole structure with rather short intramolecular interactions
between the iodine and oxygen (I-O distance in the range of 2.698–2.717 Å).
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Compounds 258 and 261 serve as new efficient benzyne generators, triggered by water
in room temperature [88]. They were tested in reactions with various model substrates.
The resultant aryne adducts were obtained in moderate to good yields under mild con-
ditions, with water as the only activator of the reaction (Scheme 68). This is particularly
important considering the fact that most of the benzyne precursors known to date require
harsh or strongly basic conditions for the efficient generation of the benzyne intermediate.
Moreover, further research showed that the new 1-arylbenzoiodoxaboroles could also
serve as chemoselective arylating reagents towards the aromatic ring of tert-butyl phenol
(Scheme 69) [88].
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8. Conclusions

Heteroelement analogues of benzoxaboroles represent a diverse group of organoboron
heterocycles. They exhibit strongly varying structural behaviour and different physico-
chemical properties. For example, benzosiloxaboroles can be regarded as close analogues
of benzoxaboroles due to comparable stabilities of 5-membered oxaborole rings. In contrast,
benzoxadiboroles are prone to hydrolytic ring opening. The Lewis acidity of the boron atom
in presented systems also changes in a wide range, reflecting the strong effect of heteroatom
substitution and other structural modifications with a special emphasis on fluorination of
the aromatic ring. The varying properties open possibilities for many applications. Indeed,
obtained systems have been used in organic synthesis as reagents or catalysts, fluorescence
emitters for the construction of organic light-emitting diodes (OLEDs), and diol receptors,
as well as potent antimicrobial agents. We hope that this review will stimulate further
research in the area, which will result in the design of novel structures, including hitherto
unknown heterocycles, e.g., comprising B-O-Ge or B-O-Sb linkage. Most importantly, the
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presented systems show significant practical potential, which should be exploited in future,
especially for medicinal chemistry applications.
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Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations. Crystals 2019,
9, 109. [CrossRef]
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