Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Studies
2.2. Mass Spectrometry Analysis
2.2.1. Direct Flow Injection
2.2.2. UHPLC-MS Studies
2.2.3. Analysis of Tandem Mass Spectra
2.3. Stopped-Flow Kinetic Studies
3. Conclusions
4. Materials and Methods
4.1. Protein Preparation
4.2. In Vitro Protein Glycation
4.3. UV-Vis Studies
4.4. Mass Spectrometry
4.4.1. Flow Injection Analysis (FIA)
4.4.2. UHPLC-MS Studies
4.4.3. Analysis of Tandem Mass Spectra
4.5. Stopped-Flow Kinetic Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- Giardino, I.; Edelstein, D.; Brownlee, M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J. Clin. Investig. 1994, 94, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Ligtvoet, N.; Twaalfhoven, H.; Jager, A.; Blaauwgeers, H.G.; Schlingemann, R.O.; Tarnow, L.; Parving, H.H.; Stehouwer, C.D.; Van Hinsbergh, V.W. Amadori albumin in type 1 diabetic patients: Correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes 1999, 48, 2446–2453. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-W. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch. Biochem. Biophys. 2018, 641, 1–30. [Google Scholar] [CrossRef]
- Adrover, M.; Mariño, L.; Sanchis, P.; Pauwels, K.; Kraan, Y.; Lebrun, P.; Vilanova, B.; Muñoz, F.; Broersen, K.; Donoso, J. Mechanistic Insights in Glycation-Induced Protein Aggregation. Biomacromolecules 2014, 15, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, L.; Wang, Y.; Wei, Y.; Xu, Y.; He, T.; He, R. d-Ribose contributes to the glycation of serum protein. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Carulli, S.; Calvano, C.D.; Palmisano, F.; Pischetsrieder, M. MALDI-TOF MS Characterization of Glycation Products of Whey Proteins in a Glucose/Galactose Model System and Lactose-free Milk. J. Agric. Food Chem. 2011, 59, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Stehouwer, C.D.A.; Van Hinsbergh, V.W.M. Fructose-mediated non-enzymatic glycation: Sweet coupling or bad modification. Diabetes/Metab. Res. Rev. 2004, 20, 369–382. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Xiao, Y.; Zhang, L.; Fang, J.; Yang, N.; Zhang, Z.; Nasser, M.I.; Qin, H. D-ribose: Potential clinical applications in congestive heart failure and diabetes, and its complications (Review). Exp. Ther. Med. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Shapiro, R.; McManus, M.; Zalut, C.; Bunn, H. Sites of nonenzymatic glycosylation of human hemoglobin A. J. Biol. Chem. 1980, 255, 3120–3127. [Google Scholar] [CrossRef]
- Bakhti, M.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.; Khazaei, M. Consequential Alterations in Haemoglobin Structure upon Glycation with Fructose: Prevention by Acetylsalicylic Acid. J. Biochem. 2007, 141, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Wang, T.-F.; Wu, C.-H.; Chen, S.-H. In-Depth Comparative Characterization of Hemoglobin Glycation in Normal and Diabetic Bloods by LC-MSMS. J. Am. Soc. Mass Spectrom. 2014, 25, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Van Steen, S.C.; Schrieks, I.C.; Hoekstra, J.B.; Lincoff, A.M.; Tardif, J.-C.; Mellbin, L.G.; Rydén, L.E.; Grobbee, D.; DeVries, J.H.; on behalf of the AleCardio Study Group. The haemoglobin glycation index as predictor of diabetes-related complications in the AleCardio trial. Eur. J. Prev. Cardiol. 2017, 24, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Su, T.; Chen, Y.; He, Y.; Liu, Y.; Xu, Y.; Wei, Y.; Li, J.; He, R. d-Ribose as a Contributor to Glycated Haemoglobin. EBioMedicine 2017, 25, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, Z.; Ishtikhar, M.; Moinuddin; Ahmad, S. d-Ribose induced glycoxidative insult to hemoglobin protein: An approach to spot its structural perturbations. Int. J. Biol. Macromol. 2018, 112, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.; Faisal, M.; Alatar, A.R.; Ahmad, S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology 2019, 29, 409–418. [Google Scholar] [CrossRef]
- Ghazanfari-Sarabi, S.; Habibi-Rezaei, M.; Eshraghi-Naeeni, R.; Moosavi-Movahedi, A.A. Prevention of haemoglobin glycation by acetylsalicylic acid (ASA): A new view on old mechanism. PLoS ONE 2019, 14, e0214725. [Google Scholar] [CrossRef] [Green Version]
- Little, R.R.; Rohlfing, C.L. The long and winding road to optimal HbA1c measurement. Clin. Chim. Acta 2013, 418, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Frolov, A.; Hoffmann, P.; Hoffmann, R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. J. Mass Spectrom. 2006, 41, 1459–1469. [Google Scholar] [CrossRef]
- Roy, A.; Sil, R.; Chakraborti, A.S. Non-enzymatic glycation induces structural modifications of myoglobin. Mol. Cell. Biochem. 2009, 338, 105–114. [Google Scholar] [CrossRef]
- Bokiej, M.; Livermore, A.T.; Harris, A.W.; Onishi, A.C.; Sandwick, R.K. Ribose sugars generate internal glycation cross-links in horse heart myoglobin. Biochem. Biophys. Res. Commun. 2011, 407, 191–196. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Liu, F.; Du, K.-J.; Wen, G.-B.; Lin, Y.-W. Structural and functional alterations of myoglobin by glucose-protein interactions. J. Mol. Model. 2014, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Raupbach, J.; Ott, C.; König, J.; Grune, T. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin. Free. Radic. Biol. Med. 2020, 152, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yuan, H.; Xu, J.; Wang, X.-J.; Gao, S.-Q.; Tan, X.; Lin, Y.-W. A Catalytic Binding Site Together with a Distal Tyr in Myoglobin Affords Catalytic Efficiencies Similar to Natural Peroxidases. ACS Catal. 2020, 10, 891–896. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Kim-Shapiro, D.B. The functional nitrite reductase activity of the heme-globins. Blood 2008, 112, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Kamga, C.; Krishnamurthy, S.; Shiva, S. Myoglobin and mitochondria: A relationship bound by oxygen and nitric oxide. Nitric Oxide 2012, 26, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.-B.; Yuan, H.; Gao, S.-Q.; You, Y.; Nie, C.-M.; Wen, G.-B.; Lin, Y.-W.; Tan, X. Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center. Nitric Oxide 2016, 57, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witting, P.K.; Mauk, A.G.; Lay, P. Role of Tyrosine-103 in Myoglobin Peroxidase Activity: Kinetic and Steady-State Studies on the Reaction of Wild-Type and Variant Recombinant Human Myoglobins with H2O2. Biochemestry 2002, 41, 11495–11503. [Google Scholar] [CrossRef]
- Nagao, S.; Asami, O.; Yasui, H.; Hirota, S. Efficient reduction of Cys110 thiyl radical by glutathione in human myoglobin. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2011, 1814, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, S.R.; Hendrickson, W.A.; Lambright, D.G.; Boxer, S.G. X-ray crystal structure of a recombinant human myoglobin mutant at 2·8 Å resolution. J. Mol. Biol. 1990, 213, 215–218. [Google Scholar] [CrossRef]
- Park, Y.-C.; Choi, J.-H.; Bennett, G.N.; Seo, J.-H. Characterization of d-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. J. Biotechnol. 2006, 121, 508–516. [Google Scholar] [CrossRef]
- Ikeda-Saito, M.; Hori, H.; Andersson, L.A.; Prince, R.C.; Pickering, I.J.; George, G.N.; Sanders, C.R., 2nd; Lutz, R.S.; McKelvey, E.J.; Mattera, R. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J. Biol. Chem. 1992, 267, 22843–22852. [Google Scholar] [CrossRef]
- You, Y.; Liu, F.; Gao, S.-Q.; Lin, Y.-W.; Wen, G.-B. D-ribose induced rapid non-enzymatic glycation of human myoglobin. Med. Sci. J. Cent. South China 2016, 44, 499–503. [Google Scholar] [CrossRef]
- Wang, Z.; Ando, Y.; Nugraheni, A.D.; Ren, C.; Nagao, S.; Hirota, S. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met–heme iron bond. Mol. BioSyst. 2014, 10, 3130–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-X.; Li, L.; He, B.; Gao, S.-Q.; Wen, G.-B.; Lin, Y.-W. Neuroglobin is capable of self-oxidation of methionine64 introduced at the heme axial position. Dalton Trans. 2018, 47, 10847–10852. [Google Scholar] [CrossRef]
- Soboleva, A.; Schmidt, R.; Vikhnina, M.; Grishina, T.; Frolov, A. Maillard Proteomics: Opening New Pages. Int. J. Mol. Sci. 2017, 18, 2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Yuan, H.; Liao, F.; Wei, C.-W.; Du, K.-J.; Gao, S.-Q.; Tan, X.; Lin, Y.-W. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: An artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chem. Commun. 2019, 55, 6610–6613. [Google Scholar] [CrossRef]
- Nelson, D.P.; Kiesow, L.A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem. 1972, 49, 474–478. [Google Scholar] [CrossRef]
Time (h) | Ribosylated HMb | Glycosylated HMb |
---|---|---|
1 | HMb + 1R | / |
2 | HMb + 1R, HMb + 2R | / |
4 | HMb + 1R, HMb + 2R, HMb + 3R, HMb + 4R | / |
8 | HMb + 1R, HMb + 2R, HMb + 3R, HMb + 4R | / |
12 | HMb + 1R, HMb + 2R, HMb + 3R, HMb + 4R, HMb + 5R | / |
24 | HMb + 2R, HMb + 3R, HMb + 4R, HMb + 5R, HMb + 6R, HMb + 7R | HMb + 1G, HMb + 2G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-J.; You, Y.; Gao, S.-Q.; Tang, S.; Chen, L.; Wen, G.-B.; Lin, Y.-W. Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose. Molecules 2021, 26, 5829. https://doi.org/10.3390/molecules26195829
Liu J-J, You Y, Gao S-Q, Tang S, Chen L, Wen G-B, Lin Y-W. Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose. Molecules. 2021; 26(19):5829. https://doi.org/10.3390/molecules26195829
Chicago/Turabian StyleLiu, Jing-Jing, Yong You, Shu-Qin Gao, Shuai Tang, Lei Chen, Ge-Bo Wen, and Ying-Wu Lin. 2021. "Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose" Molecules 26, no. 19: 5829. https://doi.org/10.3390/molecules26195829
APA StyleLiu, J. -J., You, Y., Gao, S. -Q., Tang, S., Chen, L., Wen, G. -B., & Lin, Y. -W. (2021). Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose. Molecules, 26(19), 5829. https://doi.org/10.3390/molecules26195829