Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stability Tests
2.2. Droplet Size Studies
2.3. Rheological Tests
2.4. FTIR
2.5. Color and Refractive Index Analysis
2.6. Biological Activity
2.7. Water Activity
3. Materials and Methods
3.1. Materials
3.2. Emulsion Preparation
3.3. Experimental Design
3.4. Methods
3.4.1. Stability Tests: EI Index, UV-Vis, Centrifugation
3.4.2. Droplet Size Distribution
3.4.3. Microscopic Investigations
3.4.4. Rheological Tests
3.4.5. FTIR
3.4.6. Color Analysis
3.4.7. Refractive Index
3.4.8. Biological Activity
3.4.9. Water Activity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hasenhuettl, G.L. Overview of Food Emulsifiers. In Food Emulsifiers and Their Applications; Springer: New York, NY, USA, 2008; pp. 1–9. [Google Scholar]
- Dickinson, E. Emulsion Stability. In Food Hydrocolloids; Springer US: Boston, MA, USA, 1994; pp. 387–398. [Google Scholar]
- Jarzębski, M.; Smułek, W.; Kościński, M.; Białopiotrowicz, T.; Kaczorek, E. Verbascum nigrum L. (mullein) extract as a natural emulsifier. Food Hydrocoll. 2018, 81, 341–350. [Google Scholar] [CrossRef]
- Ralla, T.; Salminen, H.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Sugar Beet Extract (Beta vulgaris L.) as a New Natural Emulsifier: Emulsion Formation. J. Agric. Food Chem. 2017, 65, 4153–4160. [Google Scholar] [CrossRef] [PubMed]
- Drozłowska, E.; Bartkowiak, A.; Trocer, P.; Kostek, M.; Tarnowiecka-Kuca, A.; Łopusiewicz, Ł. Formulation and Evaluation of Spray-Dried Reconstituted Flaxseed Oil-In-Water Emulsions Based on Flaxseed Oil Cake Extract as Emulsifying and Stabilizing Agent. Foods 2021, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Hydrocolloids acting as emulsifying agents—How do they do it? Food Hydrocoll. 2018, 78, 2–14. [Google Scholar] [CrossRef]
- Dammak, I.; Sobral, P.J.D.A.; Aquino, A.; Das Neves, M.A.; Conte-Junior, C.A. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2721–2746. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M.; Misan, A.; Tiwari, B.K. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Jarzębski, M.; Fathordoobady, F.; Guo, Y.; Xu, M.; Singh, A.; Kitts, D.D.; Kowalczewski, P.; Jeżowski, P.; Singh, A.P. Pea Protein for Hempseed Oil Nanoemulsion Stabilization. Molecules 2019, 24, 4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.; Pateiro, M.; López-Fernández, O.; Lorenzo, J.M. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr. Opin. Food Sci. 2020, 37, 135–144. [Google Scholar] [CrossRef]
- Jarzębski, M.; Smułek, W.; Siejak, P.; Rezler, R.; Pawlicz, J.; Trzeciak, T.; Jarzębska, M.; Majchrzak, O.; Kaczorek, E.; Kazemian, P.; et al. Aesculus hippocastanum L. as a Stabilizer in Hemp Seed Oil Nanoemulsions for Potential Biomedical and Food Applications. Int. J. Mol. Sci. 2021, 22, 887. [Google Scholar] [CrossRef]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef] [PubMed]
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Singh, A.P. Hemp (Cannabis Sativa L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Kitts, D.D.; Singh, A.; Fathordoobady, F.; Doi, B.; Singh, A.P. Plant Extracts Inhibit the Formation of Hydroperoxides and Help Maintain Vitamin E Levels and Omega-3 Fatty Acids during High Temperature Processing and Storage of Hempseed and Soybean Oils. J. Food Sci. 2019, 84, 3147–3155. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xiang, C.; Wang, P.; Yin, Y.; Hou, Y. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. Int. J. Nanomed. 2017, 12, 2923–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. J. Food Eng. 2014, 122, 15–27. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey and whey proteins—From ‘gutter-to-gold’. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Patel, S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. J. Funct. Foods 2015, 19, 308–319. [Google Scholar] [CrossRef]
- Krunic, T.; Rakin, M.; Bulatovic, M.; Zaric, D. The Contribution of Bioactive Peptides of Whey to Quality of Food Products. In Food Processing for Increased Quality and Consumption; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–285. [Google Scholar] [CrossRef]
- Guzey, D.; McClements, D.J. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interface Sci. 2006, 128–130, 227–248. [Google Scholar] [CrossRef]
- Mantovani, R.A.; Furtado, G.D.F.; Netto, F.M.; Cunha, R.L. Assessing the potential of whey protein fibril as emulsifier. J. Food Eng. 2018, 223, 99–108. [Google Scholar] [CrossRef]
- Iqbal, S.; Hameed, G.; Baloch, M.K.; McClements, D.J. Formation of semi-solid lipid phases by aggregation of protein microspheres in water-in-oil emulsions. Food Res. Int. 2012, 48, 544–550. [Google Scholar] [CrossRef]
- Mao, L.; Yang, J.; Xu, D.; Yuan, F.; Gao, Y. Effects of Homogenization Models and Emulsifiers on the Physicochemical Properties of β-Carotene Nanoemulsions. J. Dispers. Sci. Technol. 2010, 31, 986–993. [Google Scholar] [CrossRef]
- Allen, D.J.; Khela, S. Aesculus hippocastanum. In IUCN Red List Threat. Species; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2017. [Google Scholar]
- Dudek-Makuch, M.; Studzińska-Sroka, E. Horse chestnut—Efficacy and safety in chronic venous insufficiency: An overview. Rev. Bras. Farm. 2015, 25, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Elmas, O.; Erbas, O.; Yigitturk, G. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model. Biomed. Pharmacother. 2016, 83, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R. Aescin: Pharmacology, pharmacokinetics and therapeutic profile. Pharmacol. Res. 2001, 44, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Makino, M.; Katsube, T.; Ohta, Y.; Schmidt, W.; Yoshino, K. Preliminary study on antioxidant properties, phenolic contents, and effects of Aesculus hippocastanum (horse chestnut) seed shell extract on in vitro cyclobutane pyrimidine dimer repair. J. Intercult. Ethnopharmacol. 2017, 6, 414–419. [Google Scholar] [CrossRef]
- Jarzębski, M.; Smułek, W.; Siejak, P.; Kobus-Cisowska, J.; Pieczyrak, D.; Baranowska, H.M.; Jakubowicz, J.; Sopata, M.; Białopiotrowicz, T.; Kaczorek, E. Aesculus hippocastanum L. extract as a potential emulsion stabilizer. Food Hydrocoll. 2019, 97, 105237. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Guo, Y.; Ochoa, S.L.; Fathordoobady, F.; Singh, A. Optimal ultrasonication process time remains constant for a specific nanoemulsion size reduction system. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef] [PubMed]
- Farshi, P.; Tabibiazar, M.; Ghorbani, M.; Mohammadifar, M.A.; Amirkhiz, M.B.; Hamishehkar, H. Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Biosci. 2019, 28, 49–56. [Google Scholar] [CrossRef]
- Szumała, P.; Pacyna-Kuchta, A.; Wasik, A. Proteolysis of whey protein isolates in nanoemulsion systems: Impact of nanoemulsification and additional synthetic emulsifiers. Food Chem. 2021, 351, 129356. [Google Scholar] [CrossRef] [PubMed]
- Jarzębski, M.; Siejak, P.; Sawerski, A.; Stasiak, M.; Ratajczak, K.; Masewicz, L.; Polewski, K.; Fathordoobady, F.; Guo, Y.; Pratap-Singh, A. Nanoparticles Size Determination by Dynamic Light Scattering in Real (Non-standard) Conditions Regulators—Design, Tests and Applications. In Practical Aspects of Chemical Engineering; Ochowiak, M., Woziwodzki, S., Mitkowski, P.T., Eds.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Sci. Rep. 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.T.; Callis, P. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophys. J. 2001, 80, 2093–2109. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Mukherjee, D.; Chang, S.K. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chem. 2018, 240, 1005–1013. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Wu, C.; Teng, F.; Qi, B.; Zhang, X.; Zhou, L.; Yu, G.; Wang, H.; Zhang, S.; et al. Stability Mechanism of Two Soybean Protein-Phosphatidylcholine Nanoemulsion Preparation Methods from a Structural Perspective: A Raman Spectroscopy Analysis. Sci. Rep. 2019, 9, 6985. [Google Scholar] [CrossRef]
- Ren, S.; Giusti, M. Monitoring the Interaction between Thermally Induced Whey Protein and Anthocyanin by Fluorescence Quenching Spectroscopy. Foods 2021, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Pratap-Singh, A. Plant-Based (Hemp, Pea and Rice) Protein–Maltodextrin Combinations as Wall Material for Spray-Drying Microencapsulation of Hempseed (Cannabis sativa) Oil. Foods 2020, 9, 1707. [Google Scholar] [CrossRef]
- Rave, M.C.; Echeverri, J.D.; Salamanca, C.H. Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. J. Food Eng. 2019, 273, 109801. [Google Scholar] [CrossRef]
- Zheng, H. Introduction: Measuring Rheological Properties of Foods; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–30. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, H.; Liu, W.; Zou, L.; McClements, D.J. A review of the rheological properties of dilute and concentrated food emulsions. J. Texture Stud. 2019, 51, 45–55. [Google Scholar] [CrossRef]
- Rha, C. Rheology of fluid foods. Food Technol. 1978, 32, 77–81. [Google Scholar]
- Topayev, S.; Nouar, C.; Bernardin, D.; Neveu, A.; Bahrani, S.A. Taylor-vortex flow in shear-thinning fluids. Phys. Rev. E 2019, 100, 023117. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.I. VIII. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1923, 223, 289–343. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Richardson, J.F. Non-Newtonian fluid behaviour. In Non-Newtonian Flow in the Process Industries; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1–36. [Google Scholar]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Wu, N.; Li, X.; Liu, S.; Zhang, M.; Ouyang, S. Effect of Hydrogen Bonding on the Surface Tension Properties of Binary Mixture (Acetone-Water) by Raman Spectroscopy. Appl. Sci. 2019, 9, 1235. [Google Scholar] [CrossRef] [Green Version]
- David, R.; Neumann, A.W. A Theory for the Surface Tensions and Contact Angles of Hydrogen-Bonding Liquids. Langmuir 2014, 30, 11634–11639. [Google Scholar] [CrossRef]
- Echeverría, J.; Urzúa, A.; Sanhueza, L.; Wilkens, M. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction. Molecules 2017, 22, 1039. [Google Scholar] [CrossRef] [Green Version]
- Bondar, A.-N.; White, S.H. Hydrogen bond dynamics in membrane protein function. Biochim. Biophys. Acta (BBA)—Biomembr. 2012, 1818, 942–950. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.; Demetriades, K. An Integrated Approach to the Development of Reduced-Fat Food Emulsions. Crit. Rev. Food Sci. Nutr. 1998, 38, 511–536. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.K.; Johnson, J.K.; Sullivan, R.J. Refractive Index of the Dispersed Phase in Oil-in-Water Emulsions: Its Dependence on Droplet Size and Aging. J. Food Sci. 1983, 48, 513–516. [Google Scholar] [CrossRef]
- McClements, D.J. Theoretical prediction of emulsion color. Adv. Colloid Interface Sci. 2002, 97, 63–89. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; Clydesdale, F.; McClements, D. Influence of relative refractive index on optical properties of emulsions. Food Res. Int. 2001, 34, 827–835. [Google Scholar] [CrossRef]
- Gharehcheshmeh, M.H.; Arianfar, A.; Mahdian, E.; Naji-Tabasi, S. Production and evaluation of sweet almond and sesame oil nanoemulsion and their effects on physico-chemical, rheological and microbial characteristics of enriched yogurt. J. Food Meas. Charact. 2020, 15, 1270–1280. [Google Scholar] [CrossRef]
- Liu, D.; Lv, X.X. Effect of blueberry flower pulp on sensory, physicochemical properties, lactic acid bacteria, and antioxidant activity of set-type yogurt during refrigeration. J. Food Process. Preserv. 2018, 43, e13856. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Harrison, N.; Kling, D.; Gonzalez, C.; Lorca, G. Blueberries as an additive to increase the survival of Lactobacillus johnsonii N6.2 to lyophilisation. Benef. Microbes 2019, 10, 473–482. [Google Scholar] [CrossRef]
- Ahmad, I.; Khalique, A.; Junaid, M.; Shahid, M.Q.; Imran, M.; Rashid, A.A. Effect of polyphenol from apple peel extract on the survival of probiotics in yoghurt ice cream. Int. J. Food Sci. Technol. 2020, 55, 2580–2588. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfur1c acid. Planta Med. 1976, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Javidi, F.; Razavi, S.M.; Amini, A.M. Cornstarch nanocrystals as a potential fat replacer in reduced fat O/W emulsions: A rheological and physical study. Food Hydrocoll. 2018, 90, 172–181. [Google Scholar] [CrossRef]
- Stangierski, J.; Rezler, R.; Baranowska, H.; Poliszko, S. Effect of enzymatic modification on frozen chicken surimi. Czech J. Food Sci. 2013, 31, 203–210. [Google Scholar] [CrossRef] [Green Version]
Sample Name | AHE Concentration (%) | Whey Concentration (%) | HSO Concentration (%) | Total Volume with Water (mL) |
---|---|---|---|---|
S07 | 1 | 1 | 3 | 25 |
S14 | 1 | 2.5 | 1 | |
S10 | 1 | 2.5 | 5 | |
S02 | 1 | 4 | 3 | |
S04 | 2 | 1 | 1 | |
S09 | 2 | 1 | 5 | |
S01 | 2 | 2.5 | 3 | |
S05 | 2 | 2.5 | 3 | |
S06 * | 2 | 2.5 | 3 | |
S12 * | 2 | 2.5 | 3 | |
S15 * | 2 | 2.5 | 3 | |
S17 | 2 | 4 | 1 | |
S08 | 2 | 4 | 5 | |
S03 | 3 | 1 | 3 | |
S16 | 3 | 2.5 | 1 | |
S11 | 3 | 2.5 | 5 | |
S13 | 3 | 4 | 3 |
Sample | AHE [g/L] | Whey [g/L] | HSO [%] | ODC/OD0 [-] |
---|---|---|---|---|
1 | 2 | 2.5 | 3 | 26% |
2 | 1 | 4 | 3 | 44% |
3 | 3 | 1 | 3 | 18% |
4 | 2 | 1 | 1 | 28% |
5 | 2 | 2.5 | 3 | 33% |
6 | 2 | 2.5 | 3 | 30% |
7 | 1 | 1 | 3 | 36% |
8 | 2 | 4 | 5 | 17% |
9 | 2 | 1 | 5 | 41% |
10 | 1 | 2.5 | 5 | 35% |
11 | 3 | 2.5 | 5 | 21% |
12 | 2 | 2.5 | 3 | 33% |
13 | 3 | 4 | 3 | 17% |
14 | 1 | 2.5 | 1 | 31% |
15 | 2 | 2.5 | 3 | 26% |
16 | 3 | 2.5 | 1 | 54% |
17 | 2 | 4 | 1 | 55% |
Sample Name | Z-ave (nm) | PDI | Average Size Distribution by Intensity Peak Maximum (nm) | Average Size Distribution by Number Peak Maximum (nm) |
---|---|---|---|---|
S01 | 229 ± 5 | 0.344 ± 0.078 | 369 ± 80 | 59 ± 31 |
S02 | 214 ± 1 | 0.303 ± 0.022 | 317 ± 8 | 30 ± 5 |
S03 | 239 ± 7 | 0.274 ± 0.063 | 333 ± 44 | 69 ± 48 |
S04 | 234 ± 4 | 0.182 ± 0.009 | 279 ± 31 | 121 ± 39 |
S05 | 221 ± 6 | 0.302 ± 0.010 | 316 ± 26 | 27 ± 8 |
S06 | N/A | |||
S07 | 215 ± 3 | 0.291 ± 0.026 | 286 ± 22 | 33 ± 5 |
S08 | 202 ± 4 | 0.412 ± 0.016 | 318 ± 20 | 23 ± 7 |
S09 | 246 ± 2 | 0.471 ± 0.035 | 456 ± 46 | 38 ± 19 |
S10 | 195 ± 5 | 0.439 ± 0.044 | 306 ± 33 | 31 ± 19 |
S11 | 212 ± 3 | 0.441 ± 0.029 | 326 ± 84 | 74 ± 44 |
S12 | N/A | |||
S13 | 218 ± 7 | 0.322 ± 0.040 | 322 ± 33 | 71 ± 46 |
S14 | 215 ± 2 | 0.190 ± 0.018 | 253 ± 6 | 129 ± 12 |
S15 | N/A | |||
S16 | 232 ± 4 | 0.183 ± 0.019 | 288 ± 17 | 103 ± 42 |
S17 | 243 ± 3 | 0.218 ± 0.038 | 291 ± 22 | 98 ± 50 |
Sample Name | Consistency Coefficient K1 | Flow Behavior Index n1 | Consistency Coefficient K2 | Flow Behavior Index n2 |
---|---|---|---|---|
S02 | 1.85 ± 0.03 a | 0.931 ± 0.002 c | 0.093 ± 0.009 a | 1.54 ± 0.02 b |
S08 | 2.01 ± 0.04 b | 0.923 ± 0.003 b | 0.131 ± 0.008 c | 1.48 ±0.02 a |
S13 | 1.86 ± 0.02 a | 0.934 ± 0.004 c | 0.118 ± 0.006 b | 1.50 ± 0.01 a |
S14 | 1.85 ± 0.04 a | 0.916 ± 0.003 a | 0.115 ± 0.007 b | 1.50 ± 0.02 a |
Sample Name | S02 | S08 | S13 | S14 |
---|---|---|---|---|
Refractive index | 1.3368 | 1.3400 | 1.3384 | 1.3349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smułek, W.; Siejak, P.; Fathordoobady, F.; Masewicz, Ł.; Guo, Y.; Jarzębska, M.; Kitts, D.D.; Kowalczewski, P.Ł.; Baranowska, H.M.; Stangierski, J.; et al. Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules 2021, 26, 5856. https://doi.org/10.3390/molecules26195856
Smułek W, Siejak P, Fathordoobady F, Masewicz Ł, Guo Y, Jarzębska M, Kitts DD, Kowalczewski PŁ, Baranowska HM, Stangierski J, et al. Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules. 2021; 26(19):5856. https://doi.org/10.3390/molecules26195856
Chicago/Turabian StyleSmułek, Wojciech, Przemysław Siejak, Farahnaz Fathordoobady, Łukasz Masewicz, Yigong Guo, Małgorzata Jarzębska, David D. Kitts, Przemysław Łukasz Kowalczewski, Hanna Maria Baranowska, Jerzy Stangierski, and et al. 2021. "Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil" Molecules 26, no. 19: 5856. https://doi.org/10.3390/molecules26195856
APA StyleSmułek, W., Siejak, P., Fathordoobady, F., Masewicz, Ł., Guo, Y., Jarzębska, M., Kitts, D. D., Kowalczewski, P. Ł., Baranowska, H. M., Stangierski, J., Szwajca, A., Pratap-Singh, A., & Jarzębski, M. (2021). Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules, 26(19), 5856. https://doi.org/10.3390/molecules26195856