Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa
Abstract
:1. Introduction
2. Results
2.1. Effects of the Fermentation on pH of the Extracts
2.2. Isolated Organisms Encouraging the Fermentation
Genomic Analysis of Identified ORGANISMS
2.3. Isolated Organisms Facilitated Transformation of Molecules during the Fermentation
3. Discussion
3.1. Identified Organisms Encouraging the Fermentation
3.2. Isolated Organisms Enhanced Transformation during the Fermentation
3.3. Benefits of the Major Compounds Present in the Unfermented Freeze-Dried Extract of T. Catappa Nuts
4. Materials and Methods
4.1. Procedure for Collecting and Identifying Plant
4.2. Preparation of Flour from Kernel
4.3. Production of Both the Unfermented and the Fermented Freeze-Dried Extracts
4.4. Characterisation of the Isolated Organisms Enhancing the Fermentation
4.4.1. Isolation of Probiotic Bacteria from the Fermented T. catappa Seeds
4.4.2. Safety Evaluation, Gram and Catalase Reaction of Isolates
4.4.3. Biochemical Properties of the Isolated LAB
4.4.4. Genomic Characterisation of the Isolates
Sequencing of the 16sRNA Amplicons
Computational Analysis of the Genomic Sequences
4.5. Sample Preparation for Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
Procedure for GC-MS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ros, E.; Hu, F.B. Consumption of plant seeds and cardiovascular health: Epidemiological and clinical trial evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, I.S.; Jolaoluwa, A.F.; Awogbindin, V.O.; Amosun, P.T. Phytonutrients and bioactive compounds in the leaves of Solenostemon monostachyus. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Baldermann, S.; Blagojević, L.; Frede, K.; Klopsch, R.; Neugart, S.; Neumann, A.; Ngwene, B.; Norkeweit, J.; Schröter, D.; Schröter, A.; et al. Are neglected plants the food for the future? Crit. Rev. Plant Sci. 2016, 35, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, I.S.; Jolaoluwa, A.F.; Awogbindin, V.O.; Amosun, P.T.; Bisi-Adeniyi, T.D. Phytochemical analysis of Ipomoea involucrata. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Ojokoh, A.O.; Daramola, M.K.; Oluoti, O.J. Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. Afr. J. Agric. Res. 2013, 8, 3566–3570. [Google Scholar] [CrossRef]
- Olawole, T.D.; Olalere, A.T.; Adeyemi, O.A.; Okwumabua, O.; Afolabi, I.S. Tannin and antioxidant status of fermented and dried Sorghum bicolor. Rasāyan J. Chem. 2019, 12, 523–530. [Google Scholar] [CrossRef]
- Odutayo, O.E.; Omonigbehin, E.A.; Olawole, T.D.; Ogunlana, O.O.; Afolabi, I.S. Fermentation enhanced biotransformation of compounds in the kernel of Chrysophyllum albidum. Molecules 2020, 25, 6021. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, M.J.; Hamilton, J.J.; Erb, E.A.; Donohue, T.J.; Noguera, D.R. Diagnosing and predicting mixed culture fermentations with unicellular and guild-based metabolic models. mSystems 2020, 5. [Google Scholar] [CrossRef]
- Ladele, B.; Kpoviessi, S.; Ahissou, H.; Gbenou, J.; Kpadonou-Kpoviessi, B.; Mignolet, E.; Hérent, M.-F.; Bero, J.; Larondelle, Y.; Quetin-Leclercq, J.; et al. Chemical composition and nutritional properties of Terminalia catappa L. oil and kernels from Benin. Comptes Rendus Chim. 2016, 19, 876–883. [Google Scholar] [CrossRef]
- Iheagwam, F.N.; Israel, E.N.; Kayode, K.O.; De Campos, O.C.; Ogunlana, O.O.; Chinedu, S.N. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes. Evid.-Based Complementary Altern. Med. 2019, 2019, 6316231. [Google Scholar] [CrossRef] [Green Version]
- Orhevba, B.A.; Adebayo, S.E.; Salihu, A.O. Synthesis of biodiesel from tropical almond (Terminalia Catappa) seed oil. Curr. Res. Agric. Sci. 2016, 3, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.O.; Wang, Y.; Lu, T.; Jin, Y.S.; Blaschek, H.P. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production. Biotechnol. Bioeng. 2017, 114, 106–112. [Google Scholar] [CrossRef]
- López-López, A.; Moreno-Baquero, J.M.; Rodríguez-Gómez, F.; García-García, P.; Garrido-Fernández, A. Sensory assessment by consumers of traditional and potentially probiotic green Spanish-style table olives. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, I.S.; Nwachukwu, I.C.; Ezeoke, C.S.; Woke, R.C.; Adegbite, O.A.; Olawole, T.D.; Martins, O.C. Production of a new plant-based milk from Adenanthera pavonina seed and evaluation of its nutritional and health benefits. Front. Nutr. 2018, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olawole, T.D.; Okundigie, M.I.; Rotimi, S.O.; Okwumabua, O.; Afolabi, I.S. Preadministration of fermented sorghum diet provides protection against hyperglycemia-induced oxidative stress and suppressed glucose utilization in alloxan-induced diabetic rats. Front. Nutr. 2018, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.S.; El Sheikha, A.F.; Hammami, R.; Kumar, A. Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? J. Funct. Foods 2020, 70, 103971. [Google Scholar] [CrossRef]
- Afolabi, I.S.; Marcus, G.D.; Olanrewaju, T.O.; Chizea, V. Biochemical effect of some food processing methods on the health promoting properties of under-utilized Carica papaya seed. J. Nat. Prod. 2011, 4, 17–24. [Google Scholar]
- Sadh, P.K.; Kumar, S.; Chawla, P.; Duhan, J.S. Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (By-products). Molecules 2018, 23, 2560. [Google Scholar] [CrossRef] [Green Version]
- Catalán, E.; Sánchez, A. Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: A life cycle assessment (LCA) based comparison. Energies 2020, 13, 2685. [Google Scholar] [CrossRef]
- Doriya, K.; Jose, N.; Gowda, M.; Kumar, D.S. Solid-state fermentation vs submerged fermentation for the production of l-asparaginase. In Advances in Food and Nutrition Research; Kim, S.-K., Toldrá, F., Eds.; Elsevier Incorporation: Oxford OX5 1GB, UK, 2016; Volume 78, pp. 115–135. [Google Scholar]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- De Vuyst, L.; Weckx, S. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016, 121, 5–17. [Google Scholar] [CrossRef]
- Padmavathi, T.; Bhargavi, R.; Priyanka, P.R.; Niranjan, N.R.; Pavitra, P.V. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J. Genet. Eng. Biotechnol. 2018, 16, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Jin, Y.H.; Lee, J.H.; Byun, B.Y.; Lee, J.; Jeong, K.C.; Mah, J.H. The role of Enterococcus faecium as a key producer and fermentation condition as an influencing factor in tyramine accumulation in Cheonggukjang. Foods 2020, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Beniwal, A.; Semwal, A.; Navani, N.K. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Front. Microbiol. 2019, 10, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, S.M.; Archer, A.C.; Halami, P.M. Screening, characterization and In vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis. Probiotics Antimicrob. Proteins 2015, 7, 181–192. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.; Bozoudi, D.; Tsaltas, D. Enterococci isolated from cypriot green table olives as a new source of technological and probiotic properties. Fermentation 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Kadri, Z.; Spitaels, F.; Cnockaert, M.; Praet, J.; El Farricha, O.; Swings, J.; Vandamme, P. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk. Antonie Van Leeuwenhoek 2015, 108, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Ben Braiek, O.; Smaoui, S. Enterococci: Between emerging pathogens and potential probiotics. BioMed Res. Int. 2019, 2019, 5938210. [Google Scholar] [CrossRef]
- Fernandez-Sandoval, M.T.; Galindez-Mayer, J.; Bolivar, F.; Gosset, G.; Ramirez, O.T.; Martinez, A. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions. Microb. Cell Fact. 2019, 18, 145. [Google Scholar] [CrossRef]
- Xiao, J.; Bai, W. Bioactive phytochemicals. Crit. Rev. Food Sci. Nutr. 2019, 59, 827–829. [Google Scholar] [CrossRef] [Green Version]
- Basha, S.H.; Svs, S.P.; Madar, I.H.; Kousar, S.H.; Jayanna, N.; Sultan, G. In-silico screening of Indian medicinal plants active constituents database revealed Gmelanone and Litseferine as potential 3CLpro antagonists targeting SARS-CoV-2. J. PeerScientist 2020, 4, e1000030. [Google Scholar] [CrossRef]
- Huang, J.; Tang, W.; Zhu, S.; Du, M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep. Biochem. Biotechnol. 2018, 48, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Barajas, J.F.; Burdu, M.; Wang, G.; Baidoo, E.E.; Keasling, J.D. Application of an acyl-coA ligase from Streptomyces aizunensis for lactam biosynthesis. ACS Synth. Biol. 2017, 6, 884–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Beek, C.M.; Dejong, C.H.C.; Troost, F.J.; Masclee, A.A.M.; Lenaerts, K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 2017, 75, 286–305. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, M.D.C.; Moreno-Garcia, J.; Garcia-Martinez, T.; Moreno, J.J.; Puig-Pujol, A.; Capdevilla, F.; Mauricio, J.C. Differential analysis of proteins involved in ester metabolism in two Saccharomyces cerevisiae strains during the second fermentation in sparkling wine elaboration. Microorganisms 2020, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Matsuzaka, T.; Tahara-Hanaoka, S.; Shibuya, K.; Shimano, H.; Nakahashi-Oda, C.; Shibuya, A. A long-chain fatty acid elongase Elovl6 regulates mechanical damage–induced keratinocyte death and skin inflammation. Cell Death Dis. 2018, 9, 1181. [Google Scholar] [CrossRef]
- Fujimori, M.; Yunoki, K.; Sato, M.; Tsukamoto, Y.; Ohnishi, M. Changes in fatty acid composition and detection of cis-vaccenic acid during experimental fermentation of wine and cider vinegars. Nippon Shokuhin Kagaku Kogaku Kaishi 2008, 55, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Ajanaku Christiana, O.; Echeme Johnbull, O.; Mordi Raphael, C.; Olugbuyiro Joseph, O.; Osamudiamen Paul, M.; Jolayemi Emmanuel, G. Gas chromatographic study of bio-active compounds in methanolic extract of leaf of Crateva adansonii DC. J. Phys. Conf. Ser. 2019, 1299, 012014. [Google Scholar] [CrossRef]
- Fatima, T.; Snyder, C.L.; Schroeder, W.R.; Cram, D.; Datla, R.; Wishart, D.; Weselake, R.J.; Krishna, P. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 2012, 7, e34099. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, K.D.; Kiewitt, I. Formation of (n-9) and (n-7) cis-monounsaturated fatty acids in seeds of higher plants. Planta 1980, 149, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Van der Made, S.M.; Kelly, E.R.; Berendschot, T.T.; Kijlstra, A.; Lutjohann, D.; Plat, J. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. J. Nutr. 2014, 144, 1370–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sec, P.; Garaiova, M.; Gajdos, P.; Certik, M.; Griac, P.; Hapala, I.; Holic, R. Baker’s yeast deficient in storage lipid synthesis uses cis-vaccenic acid to reduce unsaturated fatty acid toxicity. Lipids 2015, 50, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Galeas, M.D.P. Gas Chromatography- Olfactometry Analysis of Aroma Compounds of Vanilla pompona Schiede. Master’s Thesis, The State University of New Jersey, New Brunswick, NJ, USA, 2015. [Google Scholar]
- MCCormick, D. Characterisation of Vanilla Extracts Based on Sensory Properties and Chemical Composition. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2018. [Google Scholar]
- Goswami, R.P.; Jayaprakasha, G.K.; Shetty, K.; Patil, B.S. Lactobacillus plantarum and natural fermentation-mediated biotransformation of flavor and aromatic compounds in horse gram sprouts. Process Biochem. 2018, 66, 7–18. [Google Scholar] [CrossRef]
- Yilmaz, C.; Gokmen, V. Formation of tyramine in yoghurt during fermentation—Interaction between yoghurt starter bacteria and Lactobacillus plantarum. Food Res. Int. 2017, 97, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Concha, E.; Heipieper, H.J.; Wick, L.Y.; Ciudad, G.A.; Navia, R. Effects of limonene, n-decane and n-decanol on growth and membrane fatty acid composition of the microalga Botryococcus braunii. AMB Express 2018, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Takebe, Y.; Murakami, Y.; Takahama, Y.; Morimura, S. Tyramine and beta-phenylethylamine, from fermented food products, as agonists for the human trace amine-associated receptor 1 (hTAAR1) in the stomach. Biosci. Biotechnol. Biochem. 2017, 81, 1002–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 2007, 317, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Fu, Q.; Wu, W.; Cai, M.; Zhou, X.; Zhang, Y. Producing novel fibrinolytic isoindolinone derivatives in marine fungus Stachybotrys longispora FG216 by the rational supply of amino compounds according to its biosynthesis pathway. Mar. Drugs 2017, 15, 214. [Google Scholar] [CrossRef]
- Thompson, M.G.; Valencia, L.E.; Blake-Hedges, J.M.; Cruz-Morales, P.; Velasquez, A.E.; Pearson, A.N.; Sermeno, L.N.; Sharpless, W.A.; Benites, V.T.; Chen, Y.; et al. Host engineering for improved valerolactam production in Pseudomonas putida. bioRxiv 2019. [Google Scholar] [CrossRef]
- Chae, T.U.; Ko, Y.S.; Hwang, K.S.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 2017, 41, 82–91. [Google Scholar] [CrossRef]
- Boot, M.D.; Tian, M.; Hensen, E.J.M.; Mani Sarathy, S. Impact of fuel molecular structure on auto-ignition behavior—Design rules for future high performance gasolines. Prog. Energy Combust. Sci. 2017, 60, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; McCormick, R.L.; Luecke, J.; de Jong, E.; van der Waal, J.C.; van Klink, G.P.M.; Boot, M.D. Anti-knock quality of sugar derived levulinic esters and cyclic ethers. Fuel 2017, 202, 414–425. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Li, S. Application of n-dodecane as an oxygen vector to enhance the activity of fumarase in recombinant Escherichia coli: Role of intracellular microenvironment. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2018, 49, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Kwak, S.; Jin, Y.S. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth. Biol. 2019, 8, 2131–2140. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2019, 104, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Chidi, B.S.; Bauer, F.F.; Rossouw, D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. S. Afr. J. Enol. Vitic. 2018, 39, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Alphonce, S.; Kaale, L.D. Assessment of biochemical changes during fermentation process for production of traditional fermented cassava meal “Mchuchume”. Tanzan. J. Sci. 2020, 46, 228–240. [Google Scholar]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Almaiman, S.A.; Rahman, I.A.; Gassem, M.; Dalal; Alkhudayri; Alhuthayli, H.F.; Mohammed, M.A.; Hassan, A.B.; Fickak, A.; Osman, M. Biochemical changes during traditional fermentation of Saudi sorghum (Sorghum bicolor L.) cultivars flour into khamir (local gluten free bread). J Oleo Sci. 2021, 70, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sun, L.; Wu, H.; Wang, Y.; Wang, Z.; Zheng, F.; Lu, X.; Xu, J. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashmi, D.; Zanan, R.; John, S.; Khandagale, K.; Nadaf, A. γ-aminobutyric acid (GABA): Biosynthesis, role, commercial production, and applications. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Susan Dennis and Elsevier Incorporation: Amsterdam, The Netherlands, 2018; Volume 57, pp. 413–452. [Google Scholar]
- Moreno, J.; Peinado, R. Polyphenols. In Enological Chemistry, 1st ed.; Moreno, J., Peinado, R., Eds.; Academic Press: London, UK, 2012; pp. 53–76. [Google Scholar] [CrossRef]
- Moreno, J.; Peinado, R. Changes in acidity after fermentation. In Enological Chemistry, 1st ed.; Moreno, J., Peinado, R., Eds.; Academic Press: London, UK, 2012; pp. 271–287. [Google Scholar] [CrossRef]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with low pH: Molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef] [Green Version]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.-W.; Ling, T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Haile, M.; Kang, W.H. The role of microbes in coffee fermentation and their impact on coffee quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- Machovina, M.M.; Mallinson, S.J.B.; Knott, B.C.; Meyers, A.W.; Garcia-Borras, M.; Bu, L.; Gado, J.E.; Oliver, A.; Schmidt, G.P.; Hinchen, D.J.; et al. Enabling microbial syringol conversion through structure-guided protein engineering. Proc. Natl. Acad. Sci. USA 2019, 116, 13970–13976. [Google Scholar] [CrossRef] [Green Version]
- Hokkanen, M.; Luhtasela, U.; Kostamo, P.; Ritvanen, T.; Peltonen, K.; Jestoi, M. Critical effects of smoking parameters on the levels of polycyclic aromatic hydrocarbons in traditionally smoked fish and meat products in Finland. J. Chem. 2018, 2018, 2160958. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, Y.; Zhang, H.; Sun, B.; Ren, F.; Chen, H.; Tang, Y. Characterization of the key aroma compounds in traditional hunan smoke-cured pork leg (Larou, THSL) by aroma extract dilution analysis (AEDA), odor activity value (OAV), and sensory evaluation experiments. Foods 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, R.; Minocha, R.; Lebar, M.D.; Rajasekaran, K.; Long, S.; Carter-Wientjes, C.; Minocha, S.; Cary, J.W. Contribution of maize polyamine and amino acid metabolism toward resistance against Aspergillus flavus infection and aflatoxin production. Front. Plant Sci. 2019, 10, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.; Samart, C.; Tsutsumi, K.; Nomura, K.; Kongparakul, S. Efficient conversion of renewable unsaturated fatty acid methyl esters by cross-metathesis with eugenol. ACS Omega 2018, 3, 11041–11049. [Google Scholar] [CrossRef] [PubMed]
- Ladele, B.A.L.; Kpoviessi, S.D.S.; Assogba, F. Comparative study of chemical composition, physico-chemical and antioxidant properties of oils extracted by traditional and hexane methods from Terminalia catappa L. kernels. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2017, 18, 233–242. [Google Scholar]
Fermentation Treatment | pH |
---|---|
UFTC | 7.8 |
FTC | 7.5 |
LAB Isolates | Lactic Acid Bacterial | |
---|---|---|
Biochemical Characterisation | 16sRNA Sequencing (Accession Numbers) | |
ProbtB1a | Lactobacillus pentosus | Enterococcus faecum (MW481697) |
ProbtB1b | Lactobacillus casei | Enterococcus faecalis (MW481698) |
ProbtB2a | Lactobacillus casei | Enterococcus faecalis (MW481701) |
ProbtB2b | Lactobacillus casei | Enterococcus faecalis (MW481699) |
ProbtB3 | Lactobacillus casei | Enterococcus faecalis (MW481695) |
ProbtB4a | Unidentified † | Enterococcus faecalis (MW481696) |
ProbtB4b | Lactobacillus plantarum | Unidentified ¥ |
S/N | Peaks | Tr | Area (%) | Similarity Index (%) | Class of Compound | IUPAC Name | Common Name |
---|---|---|---|---|---|---|---|
1 | 16 | 11.83 | 6.03 | 89 | Phenol | Phenol, 2,6-dimethoxy- | Syringol |
2 | 18 | 12.32 | 1.71 | 90 | Amino acid | (2S)-2,5-diamino-5-oxopentanoic acid | Glutamine |
3 | 20 | 13.63 | 1.79 | 89 | Fatty acid | Methyl dodecanoate | Methyl laurate |
4 | 36 | 16.87 | 1.53 | 90 | Fatty acid ester | Methyl hexadecanoate | Methyl palmitate |
5 | 38 | 17.17 | 5.20 | 94 | Fatty acid | Hexadecanoic acid | Palmitic acid |
6 | 39 | 17.74 | 2.80 | 85 | Fatty acid | Cis-9-Hexadecenoic acid | Palmitoleic acid |
7 | 40 | 18.03 | 2.97 | 91 | Fatty acid ester | Methyl (Z)-octadec-9-enoate | Methyl oleate |
S/N | Peaks | Tr | Area (%) | Similarity Index (%) | Class of Compound | IUPAC Name | Common Name |
---|---|---|---|---|---|---|---|
1 | 1 | 4.51 | 1.81 | 91 | Alcohol | Butane-2,3-diol | 2,3-butanediol |
2 | 3 | 4.89 | 16.20 | 87 | Fatty acid | Butanoic acid | Butyric acid |
3 | 4 | 5.29 | 19.66 | 89 | Alcohol | Propane-1,3-diol | Trimethylene glycol |
4 | 7 | 8.35 | 2.89 | 85 | Alcohol | 2,2-dimethylpentan-1-ol | Neoheptanol |
5 | 12 | 10.06 | 6.63 | 96 | Piperidones (delta-lactam) | 2-Piperidinone | Valerolactam |
6 | 34 | 17.08 | 1.18 | 91 | Fatty acid | cis-9-Hexadecenoic acid | Palmitoleic acid |
7 | 35 | 17.19 | 4.19 | 94 | Fatty acid | hexadecanoic acid | Palmitic acid |
8 | 37 | 17.76 | 1.48 | 87 | Fatty acid | cis-9-Hexadecenoic acid | Palmitoleic acid |
9 | 39 | 18.17 | 2.80 | 86 | Amide | Tyramine, N-formyl- | Formamide, N-(p-hydroxyphenethyl)- |
10 | 40 | 18.35 | 1.69 | 89 | Fatty acid | (Z)-octadec-11-enoic acid | Cis-vaccenic acid |
S/N | Substrates | Probt B1a | Probt B1b | Probt B4a | Probt B4b |
---|---|---|---|---|---|
0 | Control | - | - | - | - |
1 | Glycerol | - | + | - | + |
2 | Erythritol | - | - | - | - |
3 | D-Arabinose | - | - | - | - |
4 | L-Arabinose | + | - | - | - |
5 | D-Ribose | + | + | - | + |
6 | D-Xylose | + | - | - | - |
7 | L-Xylose | - | - | - | - |
8 | D-Adonitol | - | - | - | - |
9 | Methyl-βD-xylopyranoside | - | - | - | - |
10 | D-Galactose | + | + | - | + |
11 | D-Glucose | + | + | - | + |
12 | D-Fructose | + | + | - | + |
13 | D-Mannose | + | + | - | + |
14 | L-Sorbose | - | - | - | - |
15 | L-Rhamnose | - | - | - | - |
16 | Dulcitol | - | - | - | - |
17 | Inositol | - | - | - | - |
18 | D-Mannitol | + | + | - | + |
19 | D-Sorbitol | + | + | - | + |
20 | Methyl-αD-Mannopyranoside | - | - | - | - |
21 | Methyl-αD-Glucopyranoside | - | - | - | - |
22 | N-Acetylglucosamine | + | + | - | + |
23 | Amygdalin | + | + | - | + |
24 | Arbutin | + | + | - | + |
25 | Esculin ferric citrate | + | + | - | + |
26 | Salicin | + | + | - | + |
27 | D-Cellobiose | + | + | - | + |
28 | D-Maltose | + | + | - | + |
29 | D-Lactose | + | - | - | + |
30 | D-Mellibiose | + | - | - | + |
31 | D-Saccharose | + | + | - | + |
32 | D-Trehalose | + | + | - | + |
33 | Inulin | - | - | - | - |
34 | D-Melezitose | + | + | - | + |
35 | D-Raffinose | + | - | - | + |
36 | Amidon | - | - | - | - |
37 | Glycogen | - | - | - | - |
38 | Xylitol | - | - | - | - |
39 | Gentiobiose | + | + | - | + |
40 | D-Turanose | - | - | - | - |
41 | D-Lyxose | - | - | - | - |
42 | D-Tagatose | + | + | - | + |
43 | D-Fucose | - | - | - | - |
44 | L-Fucose | - | - | - | - |
45 | D-Arabitol | - | - | - | - |
46 | L-Arabitol | - | - | - | - |
47 | Potassium gluconate | + | + | - | + |
48 | Potassium 2-ketogluconate | - | - | - | - |
49 | Potassium 5-ketogluconate | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odutayo, O.E.; Adegboye, B.E.; Omonigbehin, E.A.; Olawole, T.D.; Ogunlana, O.O.; Afolabi, I.S. Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa. Molecules 2021, 26, 5874. https://doi.org/10.3390/molecules26195874
Odutayo OE, Adegboye BE, Omonigbehin EA, Olawole TD, Ogunlana OO, Afolabi IS. Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa. Molecules. 2021; 26(19):5874. https://doi.org/10.3390/molecules26195874
Chicago/Turabian StyleOdutayo, Oluwatofunmi E., Bose E. Adegboye, Emmanuel A. Omonigbehin, Tolulope D. Olawole, Olubanke O. Ogunlana, and Israel S. Afolabi. 2021. "Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa" Molecules 26, no. 19: 5874. https://doi.org/10.3390/molecules26195874
APA StyleOdutayo, O. E., Adegboye, B. E., Omonigbehin, E. A., Olawole, T. D., Ogunlana, O. O., & Afolabi, I. S. (2021). Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa. Molecules, 26(19), 5874. https://doi.org/10.3390/molecules26195874