Development of a Novel Ultrasonic Spectroscopy Method for Estimation of Viscosity Change during Milk Clotting
Abstract
:1. Introduction
2. Results
2.1. Viscosity Estimation
2.2. Individual Viscosity Change
2.3. Overall Viscosity Change Estimation
3. Discussion
4. Materials and Methods
4.1. Milk Clotting Measurements
4.2. Ultrasonic Measurements
4.3. Reference Measurement of Viscosity
4.4. Viscosity Estimation in Time
4.5. Viscosity Estimation Based on Ultrasonic Response Signals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rao, N.A.H.K.; Mehra, S.; Bridges, J.; Venkatraman, S. Experimental point spread function of FM pulse imaging scheme. Ultrason. Imaging 1995, 17, 14–141. [Google Scholar] [CrossRef]
- Tobocman, W.; Driscoll, D.; Shokrollahi, N.; Izatt, J.A. Free of speckle ultrasound images of small tissue structures. Ultrasonics 2002, 40, 983–996. [Google Scholar] [CrossRef]
- Amirmazlaghani, M.; Amindavar, H. Wavelet domain Bayesian processor for speckle removal in medical ultrasound images. IET Image Process. 2012, 6, 580–588. [Google Scholar] [CrossRef]
- Rao, N.A.H.K. Investigation of a pulse compression technique for medical ultrasound: A simulation study. Med. Biol. Eng. Comput. 1994, 32, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.H.; Hutchins, D.A.; Billson, D.R.; Schindel, D.W. The use of broadband acoustic transducers and pulse compression techniques for air-coupled ultrasonic imaging. Ultrasonics 2001, 39, 181–194. [Google Scholar] [CrossRef]
- Gan, T.H.; Hutchins, D.A.; Billson, D.R. Preliminary studies of a novel air-coupled ultrasonic inspection system for food containers. J. Food Eng. 2002, 53, 315–323. [Google Scholar] [CrossRef]
- Izuka, Y. High signal to noise ratio ultrasonic testing system using chirp pulse compression. Insight 1998, 40, 282–285. [Google Scholar]
- Moreau, A.; Lévesque, D.; Lord, M.; Dubois, M.; Monchalin, J.-P.; Padioleau, C.; Bussière, J.F. On-line measurement of texture, thickness and plastic strain ratio using laser-ultrasound resonance spectroscopy. Ultrasonics 2002, 40, 1047–1056. [Google Scholar] [CrossRef]
- Potter, M.D.G.; Dixon, S.; Morrison, J.P.; Suliamann, A.S. Development of an advanced multimode automatic ultrasonic texture measurement system for laboratory and production line application. Ultrasonics 2006, 44, e813–e817. [Google Scholar] [CrossRef]
- Leemans, V.; Destain, M.-F. Ultrasonic internal defect detection in cheese. J. Food Eng. 2009, 90, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Hæggstrom, E.; Luukkala, M. Ultrasound detection and identification of foreign bodies in food products. Food Control 2001, 12, 37–45. [Google Scholar] [CrossRef]
- Létang, C.; Piau, M.; Verdier, C.; Lefebvre, L. Characterization of wheat-flour–water doughs: A new method using ultrasound. Ultrasonics 2001, 39, 133–141. [Google Scholar] [CrossRef]
- Vanevenhoven, D.W. A Characterization of the Rheology of Raw Milk Gouda Cheese. Master’s Thesis, University of Wisconsin-Stout, Menomonie, WI, USA, 2012. [Google Scholar]
- Benedito, J.; Cárcel, J.; Clemente, G.; Mulet, A. Cheese maturity assessment using ultrasonics. J. Dairy Sci. 2000, 83, 248–254. [Google Scholar] [CrossRef]
- Benedito, J.; Cárcel, J.A.; Sanjuan, N.; Mulet, A. Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 2000, 38, 727–730. [Google Scholar] [CrossRef]
- Benedito, J.; Simal, S.; Clemente, G.; Mulet, A. Manchego cheese texture evaluation by ultrasonics and surface probes. Int. Dairy J. 2006, 16, 431–438. [Google Scholar] [CrossRef]
- Cho, B.K.; Irudayaraj, J.M.K. A noncontact ultrasound approach for mechanical property determination of cheeses. J. Food Sci. 2003, 68, 2243–2247. [Google Scholar] [CrossRef]
- El Kadi, Y.A.; Moudden, A.; Faiz, B.; Gerard Maze, G.; Decultot, D. Ultrasonic monitoring of fish thawing process optimal time of thawing and effect of freezing/thawing. Acta Sci. Pol. Technol. Aliment. 2013, 12, 273–281. [Google Scholar]
- Aparicio, C.; Otero, L.; Guignon, B.; Molina-Garcia, A.D.; Sanz, P.D. Ice content and temperature determination from ultrasonic measurements in partially frozen foods. J. Food Eng. 2008, 88, 272–279. [Google Scholar] [CrossRef]
- Gülseren, I.; Coupland, J.N. Ultrasonic velocity measurements in frozen model food solutions. J. Food Eng. 2007, 79, 1071–1078. [Google Scholar] [CrossRef]
- Rashed, M.S.; Felföldi, J. Ultrasonic method for identifying oil types and their mixtures. Prog. Agric. Eng. Sci. 2018, 14, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Benguigui, L.; Emery, J.; Durand, D.; Busnel, J.B. Ultrasonic study of milk clotting. Lait 1994, 74, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, L. Application of Ultrasound in Classification and Production Technology of Meat Products. Ph.D. Thesis, Corvinus University of Budapest, Budapest, Hungary, 2008. [Google Scholar]
- Espinosa, L.; Bacca, J.; Prieto, F.; Lasaygues, P.; Brancheriau, L. Accuracy on the time-of-flight estimation for ultrasonic waves applied to non-destructive evaluation of standing trees: A comparative experimental study. Acta Acust. United Acust. 2018, 104, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Kertész, I.; Felföldi, J. Comparison of sound velocity estimation and classification methods for ultrasonic testing of cheese. Prog. Agr. Eng. Sci. 2016, 12, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Benedito, J.; Mulet, A.; Velasco, J.; Dobarganes, M.C. Ultrasonic assessment of oil quality during frying. J. Agric. Food Chem. 2002, 50, 4531–4536. [Google Scholar] [CrossRef]
- Santacatalina, J.V.; Garcia-Perez, J.V.; Corona, E.; Benedito, J. Ultrasonic monitoring of lard crystallization during storage. Food Res. Int. 2011, 44, 146–155. [Google Scholar] [CrossRef]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1993, 1, 25–32. [Google Scholar] [CrossRef]
- Bakkali, F.; Moudden, A.; Faiz, B.; Amgha, A.; Maze, G.; de Espinosa, F.M.; Akhnak, M. Ultrasonic measurement of milk coagulation time. Meas. Sci. Technol. 2001, 12, 2154–2159. [Google Scholar] [CrossRef]
- Yang, Y.; Wright, W.M.D.; Hettinga, K.A.; van Ruth, S.M. Exploration of an ultrasonic pulse echo system for comparison of milks, creams, and their dilutions. LWT 2021, 136, 110616. [Google Scholar] [CrossRef]
- Nassar, G.; Nongaillard, B.; Noel, Y. Study by ultrasound of the impact of technological parameters changes in the milk gelation process. J. Food Eng. 2004, 63, 229–236. [Google Scholar] [CrossRef]
- Ay, C.; Gunasekaranm, S. Numerical method for determining ultrasonic wave diffusivity through coagulating milk gel system. J. Food Eng. 2003, 58, 103–110. [Google Scholar] [CrossRef]
- Budelli, E.; Pérez, N.; Negreira, C.; Lema, P. Evaluation of ultrasonic techniques for on line coagulation monitoring in cheesemaking. J. Food Eng. 2017, 209, 83–88. [Google Scholar] [CrossRef]
- Jiménez, A.; Rufo, M.; Paniagua, J.M.; Crespo, A.T.; Guerrero, M.P.; Riballo, M.J. Contributions to ultrasound monitoring of the process of milk curdling. Ultrasonics 2017, 76, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Corredig, M.; Alexander, M.; Dalgleish, D.G. The application of ultrasonic spectroscopy to the study of the gelation of milk components. Food Res. Int. 2004, 37, 557–565. [Google Scholar] [CrossRef]
- Braun, S. Windows. In Encyclopedia of Vibration; Elsevier: Amsterdam, The Netherlands, 2001; Volume 3, pp. 1587–1595. [Google Scholar] [CrossRef]
Fat Content (m/m%) | R2adj |
---|---|
1.5 | 0.9985 |
0.9948 | |
0.9980 | |
0.9792 | |
0.9984 | |
2.8 | 0.9862 |
0.9510 | |
0.9973 | |
0.9858 | |
3.5 | 0.9869 |
0.7251 | |
0.9101 | |
0.9917 |
Fat Content (m/m%) | R2adj | RPD |
---|---|---|
1.5 | 0.9944 | 5.07 |
0.9697 | 4.49 | |
0.9876 | 6.96 | |
0.9966 | 10.88 | |
2.8 | 0.9688 | 5.20 |
0.9758 | 4.53 | |
0.9983 | 14.22 | |
0.9877 | 6.23 | |
3.5 | 0.9632 | 4.38 |
0.9943 | 10.09 | |
0.9973 | 13.99 | |
0.9684 | 4.71 | |
0.9910 | 8.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kertész, I.; Nagy, D.; Baranyai, L.; Pásztor-Huszár, K.; Varsányi, K.; Le Phuong Nguyen, L.; Felföldi, J. Development of a Novel Ultrasonic Spectroscopy Method for Estimation of Viscosity Change during Milk Clotting. Molecules 2021, 26, 5906. https://doi.org/10.3390/molecules26195906
Kertész I, Nagy D, Baranyai L, Pásztor-Huszár K, Varsányi K, Le Phuong Nguyen L, Felföldi J. Development of a Novel Ultrasonic Spectroscopy Method for Estimation of Viscosity Change during Milk Clotting. Molecules. 2021; 26(19):5906. https://doi.org/10.3390/molecules26195906
Chicago/Turabian StyleKertész, István, Dávid Nagy, László Baranyai, Klára Pásztor-Huszár, Kinga Varsányi, Lien Le Phuong Nguyen, and József Felföldi. 2021. "Development of a Novel Ultrasonic Spectroscopy Method for Estimation of Viscosity Change during Milk Clotting" Molecules 26, no. 19: 5906. https://doi.org/10.3390/molecules26195906
APA StyleKertész, I., Nagy, D., Baranyai, L., Pásztor-Huszár, K., Varsányi, K., Le Phuong Nguyen, L., & Felföldi, J. (2021). Development of a Novel Ultrasonic Spectroscopy Method for Estimation of Viscosity Change during Milk Clotting. Molecules, 26(19), 5906. https://doi.org/10.3390/molecules26195906