Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Pretreatment Conditions on the Material
2.2. Effect of the Defatting Pretreatment Step on the Phenolic Content and Profile of OP Extracts
2.3. Effect of Extract Drying on Phenolic Retention
2.4. Evaluation for Ophthalmic Applications of Aqueous Solutions of Selected OP Extracts, OL, and HT
2.4.1. Selection of the OP Extracts
2.4.2. HPLC-DAD-MS/MS Phenolic Characterization of Aqueous Solutions of CONV and OPT3
2.4.3. In Vitro Genotoxicity
2.4.4. Long-Term Storage Stability
Effect on % HT and OL Content
HPLC-DAD-MS/MS Profile Comparison
3. Materials and Methods
3.1. Plant Material and Pretreatment Conditions
3.2. Materials, Reagents and Solvents
3.3. Phenolic Extraction
3.3.1. Conventional Process: Effect of Different Pretreatment Conditions
3.3.2. Conventional Process: Defatting Pretreatment Step Selection
3.3.3. PLE Process
3.4. Extract Drying
3.5. Extract Characterization: Pretreatment Effect, Defatting Process and Extract Drying
3.6. HPLC-DAD Analysis
3.7. Composition, Stability and Genotoxicity Characterization towards Ophthalmic Applications of Aqueous Solutions of Selected Extracts (CONV, OPT3) and Pure Compounds (HT and OL)
3.7.1. HPLC-DAD-MS/MS Analysis
3.7.2. In vitro genotoxicity Assay
Cell Culture
Preparation of Treatment Phenolic Solutions
Comet Assay
3.7.3. Long-Term Storage Stability
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
%EtOH | Percentage (%) of ethanol in water |
%TDNA | Percentage (%) of DNA present in the comet tail |
AA | Antioxidant Activity |
AAPH | 2,2′-azobis(2-methylpropionamidine)dihydrochloride |
ANOVA | Analysis of Variances |
CATE | Catechin Equivalents |
CONV | Conventional olive pomace extract |
DE | Dry Extract |
DMEM/F-12 | Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 |
DMSO | Dimethyl Sulfoxide |
EMA | European Medicines Agency |
ESI- | Electrospray Ionization Source in negative ion mode |
EtOH | Ethanol |
EY | Extraction Yield |
GAE | Gallic Acid Equivalents |
HCE | Human Corneal Epithelial cells |
HT | Hydroxytyrosol |
IM-ConjEpi | Immortalized Human Conjunctival Epithelial cells |
kobs | Degradation constant |
MeOH | Methanol |
OL | Oleuropein |
OL+HT | Combination of Oleuropein and Hydroxytyrosol |
OLC | Oleacein |
OLE | Oleuropein Equivalents |
OP | Olive Pomace |
OPT3 | Optimized olive pomace extract |
ORAC | Oxygen Radical Absorbance Capacity |
PLE | Pressurized Liquid Extraction |
RH | Relative Humidity |
S/L | Solid/Liquid ratio |
scCO2 | supercritical carbon CO2 |
SD | Standard Deviation |
T | Temperature |
t1/2 | Half-life period |
TE | Trolox Equivalents |
TFC | Total Flavonoid Content |
tlag | Lag time |
TPC | Total Phenolic Content |
Trolox | 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid |
TY | Tyrosol |
References
- FAOSTAT. Available online: http://www.fao.org/home/search/en/?q=Olivemillwastesproduction (accessed on 7 May 2021).
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Galanakis, C.M. Olive Mill Waste: Recent Advances for the Sustainable Management; Academic Press, Elsevier: London, UK, 2017. [Google Scholar]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K.; Stockmann, R. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Romero-García, J.M.; Niño, L.; Martínez-Patiño, C.; Álvarez, C.; Castro, E.; Negro, M.J. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 2014, 159, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Moral, P.; Ruiz Méndez, M.V. Production of pomace olive oil. Grasas y Aceites 2006, 57, 47–55. [Google Scholar] [CrossRef]
- Kapellakis, I.E.; Tsagarakis, K.P.; Avramaki, C.; Angelakis, A.N. Olive mill wastewater management in river basins: A case study in Greece. Agric. Water Manag. 2006, 82, 354–370. [Google Scholar] [CrossRef]
- Niaounakis, M.; Halvadakis, C.P. Waste Management Series: Volume 5—Olive Processing Waste Management, Literature Review and Patent Survey; Elsevier: Amsterdam, The Netherlands, 2006; pp. 65–81. [Google Scholar]
- Lozano-Sánchez, J.; Giambanelli, E.; Quirantes-Piné, R.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds. J. Agric. Food Chem. 2011, 59, 11491–11500. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 2007, 603, 176–189. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef]
- Álvarez, A. Development of a Microwave Pretreatment for the Extraction of Active Compounds from Natural by-Products (Chapter 6). Ph.D. Thesis, University of Valladolid (UVa), Valladolid, Spain, 2018. [Google Scholar]
- Schievano, A.; Adani, F.; Buessing, L.; Botto, A.; Casoliba, E.N.; Rossoni, M.; Goldfarb, J.L. An integrated biorefinery concept for olive mill waste management: Supercritical CO2 extraction and energy recovery. Green Chem. 2015, 17, 2874–2887. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef]
- Antónia Nunes, M.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Katsinas, N.; Bento da Silva, A.; Enríquez-de-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Katsinas, N.; Rodríguez-Rojo, S.; Enríquez-de-Salamanca, A. Olive Pomace Phenolic Compounds and Extracts Can Inhibit Inflammatory- and Oxidative-Related Diseases of Human Ocular Surface Epithelium. Antioxidants 2021, 10, 1150. [Google Scholar] [CrossRef]
- Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D’antona, N. Polyphenolic fraction from olive mill wastewater: Scale-up and in vitro studies for ophthalmic nutraceutical applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Wakamatsu, T.H.; Dogru, M.; Matsumoto, Y.; Kojima, T.; Kaido, M.; Ibrahim, O.M.A.; Sato, E.A.; Igarashi, A.; Ichihashi, Y.; Satake, Y.; et al. Evaluation of lipid oxidative stress status in Sjögren syndrome patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Dogru, M.; Kojima, T.; Simsek, C.; Tsubotav, K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES163–DES168. [Google Scholar] [CrossRef] [Green Version]
- Calonge, M.; Enríquez-de-Salamanca, A.; Diebold, Y.; González-García, M.J.; Reinoso, R.; Herreras, J.M.; Corell, A. Dry Eye Disease as an Inflammatory Disorder. Ocul. Immunol. Inflamm. 2010, 18, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.K.; Wakamatsu, T.H.; Dogru, M.; Ibrahim, O.M.A.; Kaido, M.; Ogawa, Y.; Matsumoto, Y.; Igarashi, A.; Ishida, R.; Shimazaki, J.; et al. The role of oxidative stress and inflammation in conjunctivochalasis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1994–2002. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, T.H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O.M.A.; Okada, N.; Satake, Y.; Fukugawa, K.; Shimazaki, J.; et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol. Vis. 2010, 16, 2465–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbari Shendi, E.; Sivri Ozay, D.; Ozkaya, M.T.; Ustunel, N.F. Changes occurring in chemical composition and oxidative stability of virgin olive oil during storage. OCL—Oilseeds Fats Crop. Lipids 2018, 25, A602. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.; Davis, R.; O’Connor, K.E. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl. Microbiol. Biotechnol. 2019, 103, 5957–5974. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.J.; Wang, C.Z.; Ye, J.Z.; Tao, R.; Zhang, Y.S. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities. Molecules 2015, 20, 2903–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Carranco, N.; Farrés-Cebrián, M.; Saurina, J.; Núñez, O. Authentication and Quantitation of Fraud in Extra Virgin Olive Oils Based on HPLC-UV Fingerprinting and Multivariate Calibration. Foods 2018, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krichene, D.; Allalout, A.; Mancebo-Campos, V.; Salvador, M.D.; Zarrouk, M.; Fregapane, G. Stability of virgin olive oil and behaviour of its natural antioxidants under medium temperature accelerated storage conditions. Food Chem. 2010, 121, 171–177. [Google Scholar] [CrossRef]
- Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of Virgin Olive Oil Phenolic Compounds during Long-Term Storage (18 Months) at Temperatures of 5-50 °C. J. Agric. Food Chem. 2015, 63, 6779–6786. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Gallo, B.; Collado, M.I.; Sasía-Arriba, A.; Viacava, G.E.; García-González, D.L.; Gallina Toschi, T.; Servili, M.; Berrueta, L.Á. 1H–NMR fingerprinting and supervised pattern recognition to evaluate the stability of virgin olive oil during storage. Food Control. 2021, 123, 107831. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Ahmad-Qasem, B.H.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Drying and storage of olive leaf extracts. Influence on polyphenols stability. Ind. Crops Prod. 2016, 79, 232–239. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Topic Q 1 A (R2) Stability Testing of new Drug Substances and Products Step 5 NOTE FOR GUIDANCE ON STABILITY TESTING: STABILITY TESTING OF NEW DRUG SUBSTANCES AND PRODUCTS; European Medicines Agency: Amsterdam, The Netherlands, 2003. [Google Scholar]
- GRAS Notice 876, Hydroxytyrosol; Nova Mentis: Dublin, Ireland, 2019.
- Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15. [Google Scholar] [CrossRef]
- COMMISSION IMPLEMENTING DECISION (EU) 2017/2373—Of 14 December 2017—Authorising the placing on the market of hydroxytyrosol as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council—(notified under document number C (2017) 8423). (Only the Spanish text is authentic). OJ L 2017, 337, 56–59.
- British Pharmacopoeia; Medicines and Healthcare Products Regulatory Agency: London, UK, 2021.
- The United States Pharmacopeia; United States Pharmacopeial Convention: Rockville, MD, USA, 2019.
- European Pharmacopeia, 10th ed.; European Pharmacopoeia Commission; European Directorate for the Quality of Medicines & Healthcare: Strasbourg, France, 2020.
- European Medicines Agency. ICH Guideline S2 (R1) on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use; European Medicines Agency: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Tomasello, B.; Malfa, G.; Galvano, F.; Renis, M. DNA damage in normal-weight obese syndrome measured by Comet assay. Med. J. Nutr. Metab. 2011, 4, 99–104. [Google Scholar] [CrossRef]
- Viner, K.J.; Champagne, P.; Jessop, P.G. Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem. 2018, 20, 4330–4338. [Google Scholar] [CrossRef]
- Kot, A.M.; Gientka, I.; Bzducha-Wróbel, A.; Błażejak, S.; Kurcz, A. Comparison of simple and rapid cell wall disruption methods for improving lipid extraction from yeast cells. J. Microbiol. Methods 2020, 176, 105999. [Google Scholar] [CrossRef] [PubMed]
- Kröger, M.; Klemm, M.; Nelles, M. Extraction behavior of different conditioned S. Rubescens. Energies 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Sarikaki, G.; Christoforidou, N.; Gaboriaud-Kolar, N.; Smith, A.B.; Kostakis, I.K.; Skaltsounis, A.L. Biomimetic Synthesis of Oleocanthal, Oleacein, and Their Analogues Starting from Oleuropein, A Major Compound of Olive Leaves. J. Nat. Prod. 2020, 83, 1735–1739. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Li, D.; Chang, Y.; Xiao, Y. Effect of Freeze-Thaw Pretreatment on Extraction Yield and Antioxidant Bioactivity of Corn Carotenoids (Lutein and Zeaxanthin). J. Food Qual. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Zhao, S.; Baik, O.-D.; Choi, Y.J.; Kim, S.-M. Pretreatments for the Efficient Extraction of Bioactive Compounds from Plant-Based Biomaterials. Crit. Rev. Food Sci. Nutr. 2014, 54, 1283–1297. [Google Scholar] [CrossRef]
- Zorić, Z.; Pelaić, Z.; Pedisić, S.; Elez Garofulić, I.; Bursać Kovačević, D.; Dragović–Uzelac, V. Effect of storage conditions on phenolic content and antioxidant capacity of spray dried sour cherry powder. LWT—Food Sci. Technol. 2017, 79, 251–259. [Google Scholar] [CrossRef]
- Lang, G.H.; Lindemann, I. da S.; Ferreira, C.D.; Hoffmann, J.F.; Vanier, N.L.; de Oliveira, M. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chem. 2019, 287, 197–204. [Google Scholar] [CrossRef]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous Humor Dynamics: A. Review. Open, J. Ophthalmol. 2010, 4, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashar, A. Shed Tears for Diagnostics. In Tear Cocktail: Composition of Tears; Springer: Singapore, 2019; pp. 21–49. [Google Scholar]
- Donnenfeld, E.; Pflugfelder, S.C. Topical Ophthalmic Cyclosporine: Pharmacology and Clinical Uses. Surv. Ophthalmol. 2009, 54, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Lallemand, F.; Felt-Baeyens, O.; Besseghir, K.; Behar-Cohen, F.; Gurnya, R. Cyclosporine A delivery to the eye: A pharmaceutical challenge. Eur. J. Pharm. Biopharm. 2003, 56, 307–318. [Google Scholar] [CrossRef]
- Attard, T.M.; Bukhanko, N.; Eriksson, D.; Arshadi, M.; Geladi, P.; Bergsten, U.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. J. Clean. Prod. 2018, 177, 684–698. [Google Scholar] [CrossRef]
- Tirado, D.F.; de la Fuente, E.; Calvo, L. A selective extraction of hydroxytyrosol rich olive oil from alperujo. J. Food Eng. 2019, 263, 409–416. [Google Scholar] [CrossRef]
- Sólyom, K.; Solá, R.; Cocero, M.J.; Mato, R.B. Thermal degradation of grape marc polyphenols. Food Chem. 2014, 159, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Cocero, M.J.; Rodríguez-Rojo, S. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food Bioprod. Process. 2018, 112, 96–107. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Meas. Antioxid. Act. Capacit. Recent Trends Appl. 2017, 107–115. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Gómez-Cruz, I.; Romero, I.; Castro, E. Olive Pomace-Derived Biomasses Fractionation through a Chemical Characteristics. Foods 2021, 10, 111. [Google Scholar]
- Tóth, G.; Alberti, Á.; Sólyomváry, A.; Barabás, C.; Boldizsár, I.; Noszál, B. Phenolic profiling of various olive bark-types and leaves: HPLC-ESI/MS study. Ind. Crops Prod. 2015, 67, 432–438. [Google Scholar] [CrossRef]
- Napolitano, A.; De Lucia, M.; Panzella, L.; d’Ischia, M. The Chemistry of Tyrosol and Hydroxytyrosol: Implications for Oxidative Stress. Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Cayman Chemical Company. Oleuropein—Product Information Sheet, Item No. 21220; Cayman Chemical Company: Ann Arbor, MA, USA, 2017. [Google Scholar]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Wang, Z.; Klaunig, J.E. Alkaline comet assay for assessing DNA damage in individual cells. Curr. Protoc. Toxicol. 2015, 65, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, J.; Bendini, A.; Quirantes-Piné, R.; Cerretani, L.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Monitoring the bioactive compounds status of extra-virgin olive oil and storage by-products over the shelf life. Food Control. 2013, 30, 606–615. [Google Scholar] [CrossRef]
- Attya, M.; Benabdelkamel, H.; Perri, E.; Russo, A.; Sindona, G. Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay. Molecules 2010, 15, 8734–8746. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Gómez, A.; Luzón-Toro, B.; Capel-Cuevas, S.; Morales, J.C. Stability of Hydroxytyrosol in Aqueous Solutions at Different Concentration, Temperature and with Different Ionic Content: A Study Using UPLC-MS. Food Nutr. Sci. 2011, 02, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.L.; Yuan, J.J. Thermal decomposition behavior of hydroxytyrosol (HT) in nitrogen atmosphere based on TG-FTIR methods. Molecules 2018, 23, 404. [Google Scholar] [CrossRef] [Green Version]
- Vogna, D.; Pezzella, A.; Panzella, L.; Napolitano, A.; D’Ischia, M. Oxidative chemistry of hydroxytyrosol: Isolation and characterisation of novel methanooxocinobenzodioxinone derivatives. Tetrahedron Lett. 2003, 44, 8289–8292. [Google Scholar] [CrossRef]
- De Lucia, M.; Panzella, L.; Pezzella, A.; Napolitano, A.; D’Ischia, M. Oxidative chemistry of the natural antioxidant hydroxytyrosol: Hydrogen peroxide-dependent hydroxylation and hydroxyquinone/o-quinone coupling pathways. Tetrahedron 2006, 62, 1273–1278. [Google Scholar] [CrossRef]
- Araki-Sasaki, K.; Ohashi, Y.; Sasabe, T.; Hayashi, K.; Watanabe, H.; Tano, Y.; Handa, H. An SV40-immortalized human corneal epithelial cell line and its characterization. Investig. Ophthalmol. Vis. Sci. 1995, 36, 614–621. [Google Scholar]
- Di Mauro, M.D.; Ferrito, V.; Scifo, C.; Renis, M.; Tomasello, B. Effectiveness of Natural Compounds on DNA Damage in Coris julis (Linneaus 1758) from a Polluted Marine Area. Water Air Soil Pollut. 2017, 228, 228. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity Fixed Points of Binary Saturated Aqueous Solutions. J. Res. Natl. Bur. Stand. 1977, 81, 89–96. [Google Scholar] [CrossRef]
Material | AA (mmolTE/gDE) | TPC (mgGAE/gDE) | TFC (mgCATE/gDE) | OL (mg/gDE) | OLC (mgOLE/gDE) | HT (mg/gDE) | TY (mg/gDE) | EY (mgDE/gDRY OP) |
---|---|---|---|---|---|---|---|---|
Fresh | 3.64 ± 0.15 bc | 117 ± 11 a | 8.0 ± 0.7 b | 6.0 ± 0.8 b | 3.7 ± 0.7 b | 1.0 ± 0.3 bc | 1.5 ± 0.3 ab | 134 ± 15 b |
De-frozen | 3.8 ± 0.3 b | 130 ± 1 a | 10.9 ± 0.4 a | 10.1 ± 1.3 c | 5.2 ± 0.3 b | 1.4 ± 0.5 ac | 1.3 ± 0.2 b | 116 ± 4 ab |
Freeze-dried | 4.36 ± 0.08 a | 131 ± 27 a | 11.2 ± 1.3 a | 3.4 ± 0.5 a | 12.0 ± 3.3 a | 1.9 ± 0.3 a | 1.9 ± 0.2 a | 94 ± 6 a |
Dried | 3.2 ± 0.12 c | 105.0 ± 0.5 a | 5.0 ± 0.2 c | 2.53 ± 0.01 a | 2.4 ± 0.3 b | 0.17 ± 0.07 b | 0.28 ± 0.01 c | 112 ± 6 ab |
Material | AA (mmolTE/gDE) | TPC (mgGAE/gDE) | TFC (mgCATE/gDE) | OL (mg/gDE) | OLC (mgOLE/gDE) | HT (mg/gDE) | TY (mg/gDE) | EY (mgDE/gDRY OP) |
---|---|---|---|---|---|---|---|---|
Non-defatted freeze-dried OP (Reference) | 4.36 ± 0.08 a | 131 ± 27 a | 11.2 ± 1.3 a | 3.4 ± 0.5 a | 12.0 ± 3.3 a | 1.9 ± 0.3 a | 1.9 ± 0.2 a | 94 ± 6 a |
Freeze-dried OP defatted with n-hexane | 4.8 ± 0.5 a | 152 ± 15 a | 9 ± 3 a | 2.6 ± 0.2 a | 12.1 ± 1.3 a | 1.9 ± 0.2 a | 1.8 ± 0.2 a | 93 ± 11 a |
Freeze-dried OP defatted with Supercritical CO2 | 4.66 ± 0.14 a | 180 ± 11 b | 11.2 ± 1.3 a | 3.3 ± 0.8 a | 11.8 ± 1.6 a | 1.80 ± 0.1 a | 1.78 ± 0.10 a | 121 ± 25 a |
AA (mmolTE/gDE) | TPC (mgGAE/gDE) | TFC (mgCATE/gDE) | OL (mg/gDE) | OLC (mgOLE/gDE) | HT (mg/gDE) | TY (mg/gDE) | ||
---|---|---|---|---|---|---|---|---|
Reference: Fresh-Liquid Extract | 4.36 ± 0.08 a | 131 ± 27 a | 11.2 ± 1.3 a | 3.4 ± 0.5 a | 12.0 ± 3.3 a | 1.9 ± 0.3 a | 1.9 ± 0.2 a | |
Drying process | Step 1 | 4.24 ± 0.15 a | 128 ± 15 a | 11.3 ± 0.9 a | 3.2 ± 0.3 a | 11.5 ± 2.4 a | 1.65 ± 0.05 a | 1.91 ± 0.10 a |
Step 2 | 2.4 ± 0.2 b | 70 ± 10 b | 10.4 ± 1.0 a | 5.4 ± 0.8 b | 7.8 ± 1.2 a | 1.00 ± 0.12 b | 1.1 ± 0.3 b |
Peak nº | Putative Identification | Chemical Class | Molecular Formula | Retention Time (min) | Precursor Ion [M-H]− (m/z) | Product Ion (m/z) | References | Presence in Sample |
---|---|---|---|---|---|---|---|---|
1 | Quinic acid | Hydroxybenzoic acid | C7H11O6 | 8.22 | 191 | 173, 133, 127, 111, 85 | [59] | CONV, OPT3 |
2 | Hydroxytyrosol glucoside | Glucoside | C14H20O8 | 10.22 | 315 | 153, 135, 123, 89 | [60] | CONV, OPT3 |
3 | Unknown compound 1 | - | - | 10.84 | 407 | 289, 176, 151, 124, 89 | CONV | |
4 | Hydroxytyrosol (HT) | Simple phenol | C8H10O3 | 12.25 | 153 | 123 | [60] | CONV, OPT3 |
18 | Unknown compound 3 | - | - | 12.84 | 143 | 161 (water adduct of 143), 99, 71, 45 | OPT3 | |
5 | Dialdehydic elenolic acid decarboxymethyl (DEDA) | Secoiridoid | C9H12O4 | 13.61 | 183 | 139, 95, 69 | [16] | CONV |
19 | Unknown compound 4 | - | - | 13.84 | 219 | 111, 87, 67 | OPT3 | |
6 | Tyrosol (TY) | Simple phenol | C8H10O2 | 16.78 | 137 | 134, 119, 108, 84, 47 | [59] | CONV, OPT3 |
20 | Vanillin | Aldehyde | C8H7O3 | 18.76 | 151 | 123, 108 | [59,61] | OPT3 |
7 | Secologanoside/Oleoside | Secoiridoid glycosides | C16H22O11 | 18.94 | 389 | 165, 121, 119, 89, 69 | [16,59] | CONV |
8 | Elenolic acid glucoside | Secoiridoid | C17H23O11 | 19.35 | 403 | 223, 179, 119, 101, 89, 59 | [59] | CONV |
9 | Unknown compound 2 | - | - | 20.61 | 671 | 335, 151 | CONV | |
21 | 7-epiloganin | Iridoid | C16H22O11 | 23.83 | 389 | 151, 101, 89 | [59] | OPT3 |
10 | Oleuropein aglycone derivative | Secoiridoid | C19H22O8 | 25.27 | 377 | 217, 197, 153, 84 | [16] | CONV |
22 | Elenolic acid hexoside derivative | Secoiridoid | C20H34O13 | 29.01 | 481 | 371, 165, 151 | [61] | OPT3 |
11 | Hydroxyoleuropein | Secoiridoid | C25H32O14 | 30.60 | 555 | 455, 323, 223, 151 | [59] | CONV |
23 | Unknown compound 5 | - | - | 33.85 | 247 | 139, 111, 87, 41 | OPT3 | |
24 | Hydroxytyrosol acetate | Secoiridoid | C10H11O4 | 35.63 | 195 | 135, 59 | [59] | OPT3 |
12 | Verbascoside | Secoiridoid glycoside | C29H36O15 | 37.78 | 623 | 461, 161 | [16] | CONV |
13 | Elenolic acid derivative | Secoiridoid | C11H14O6 | 41.67 | 241 | 139, 127, 111, 101, 95, 69 | [16] | CONV |
14 | Nüzhenide | Secoiridoid | C31H42O17 | 45.92 | 685 | 523, 453, 432, 421, 348, 299, 223, 119 | [16] | CONV |
25 | Unknown compound 6 | - | - | 46.36 | 239 | 150, 80, 59 | OPT3 | |
15 | Oleacein | Secoiridoid | C17H20O6 | 49.32 | 319 | 195, 139, 95, 69 | [16] | CONV, OPT3 |
16 | Oleuropein (OL) | Secoiridoid glycoside | C25H32O13 | 58.20 | 539 | 441, 377, 341, 307, 275, 223, 179, 149, 119, 89 | [16,59,61] | CONV |
Sample | Storage Conditions | kobs (Days−1) | tlag (Days) | t1/2 (Days) | R2 (-) |
---|---|---|---|---|---|
HT | T = 5 °C/no humidity | 0.0069 | 1.0 | 101.5 | 0.9796 |
T = 25 °C/60% RH | 0.0337 | 1.0 | 21.6 | 0.9846 | |
T = 30 °C/65% RH | 0.1068 | 0 | 6.5 | 0.9691 | |
T = 40 °C/75% RH | 0.1234 | 0 | 5.6 | 0.9800 | |
OL | T = 5 °C/no humidity | 0.0099 | 11.3 | 81.3 | 0.9833 |
T = 25 °C/60% RH | 0.0065 | 9.9 | 116.5 | 0.9732 | |
T = 30 °C/65% RH | 0.4022 | 0 | 1.7 | 0.8992 | |
T = 40 °C/75% RH | 0.3658 | 0 | 1.9 | 0.9694 |
Moisture | Fat | Ash | Protein | Extractives |
---|---|---|---|---|
gH2O/gDRY OP | mg/gDRY OP | mg/gDRY OP | mg/gDRY OP | mg/gDRY OP |
1.48 ± 0.01 | 200 ± 6 | 25.2 ± 1.7 | 143 ± 4 | 479 ± 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsinas, N.; Enríquez-de-Salamanca, A.; Bento da Silva, A.; Bronze, M.R.; Rodríguez-Rojo, S. Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules 2021, 26, 6002. https://doi.org/10.3390/molecules26196002
Katsinas N, Enríquez-de-Salamanca A, Bento da Silva A, Bronze MR, Rodríguez-Rojo S. Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules. 2021; 26(19):6002. https://doi.org/10.3390/molecules26196002
Chicago/Turabian StyleKatsinas, Nikolaos, Amalia Enríquez-de-Salamanca, Andreia Bento da Silva, Maria Rosário Bronze, and Soraya Rodríguez-Rojo. 2021. "Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications" Molecules 26, no. 19: 6002. https://doi.org/10.3390/molecules26196002
APA StyleKatsinas, N., Enríquez-de-Salamanca, A., Bento da Silva, A., Bronze, M. R., & Rodríguez-Rojo, S. (2021). Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules, 26(19), 6002. https://doi.org/10.3390/molecules26196002