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Abstract: In this paper, we analyzed the mass transfer model with chemical reactions during the
absorption of carbon dioxide (CO2) into phenyl glycidyl ether (PGE) solution. The mathematical
model of the phenomenon is governed by a coupled nonlinear differential equation that corresponds
to the reaction kinetics and diffusion. The system of differential equations is subjected to Dirichlet
boundary conditions and a mixed set of Neumann and Dirichlet boundary conditions. Further, to
calculate the concentration of CO2, PGE, and the flux in terms of reaction rate constants, we adopt
the supervised learning strategy of a nonlinear autoregressive exogenous (NARX) neural network
model with two activation functions (Log-sigmoid and Hyperbolic tangent). The reference data
set for the possible outcomes of different scenarios based on variations in normalized parameters
(α1, α2, β1, β2, k) are obtained using the MATLAB solver “pdex4”. The dataset is further interpreted by
the Levenberg–Marquardt (LM) backpropagation algorithm for validation, testing, and training. The
results obtained by the NARX-LM algorithm are compared with the Adomian decomposition method
and residual method. The rapid convergence of solutions, smooth implementation, computational
complexity, absolute errors, and statistics of the mean square error further validate the design
scheme’s worth and efficiency.

Keywords: carbon dioxide; phenyl glycidyl ether; reaction mechanisms; reaction kinetics and
diffusion; chemical reactivity concentration of CO2 and PGE; artificial intelligence; machine learning;
NARX networks

1. Introduction

Carbon dioxide is a generally useful gas made up of a carbon and two oxygen atoms.
It is essential in plant photosynthesis, manufacturing carbonated soft drinks, powering
pneumatic systems in robots, fire extinguishers, removing caffeine from coffee [1,2], etc.
Carbon dioxide has the potential to be a significant and inexpensive carbon source. Its
environmental impact as a greenhouse gas could be reduced by converting it into valuable
products. The chemical conversion and fixation of carbon dioxide into valuable substances
with desirable solutions has become an essential topic of research because of the danger
posed by global warming. The conversion of carbon dioxide into useful chemicals is a very
appealing approach [3].

Well-known examples include the oxirane reaction leading to a five-member cyclic
carbonate [3], porous polymer bead-supported ionic liquids for the synthesis of cyclic
carbonate [4,5], zeolite-based organic–inorganic hybrid catalysts for phosgene-free and

Molecules 2021, 26, 6041. https://doi.org/10.3390/molecules26196041 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8680-723X
https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0002-4606-7222
https://doi.org/10.3390/molecules26196041
https://doi.org/10.3390/molecules26196041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26196041
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26196041?type=check_update&version=2


Molecules 2021, 26, 6041 2 of 16

solvent-free synthesis of cyclic carbonates, and carbamates [6,7]. Such carbonates are used
as polymer synthesis sources and patented polar solvents.

The reaction kinetics of CO2 and phenyl glycidyl ether (PGE) was investigated by
Park, and Choe [8] in a heterogeneous system during the chemical absorption of carbon
dioxide into PGE solutions containing the catalyst THA–CP–MS41. The phenomena of
absorption is modeled by nonlinear differential equations, which were solved by Wazwaz
and Singh [9] to relate the steady-state concentration of CO2 and PGE using the homotopy
analysis method.

S. Muthukaruppan [10] applied the Adomian decomposition method for the heat
transfer of chemical reaction between CO2 and PGE solutions. Various numerical and
analytical techniques, such as Laplace homotopy analysis method (LHAM) [11], homo-
topy perturbation transform method (HPTM) [12], optimal homotopy analysis method
(OHAM) [13], conformable Adomian decomposition method (CADM) [14], and Haar
wavelet method (HWM) [15], were developed to solve nonlinear differential equations
governing reaction-diffusion equations of chemical kinetics.

In recent times, stochastic computing paradigms based on artificial intelligence have
been used extensively to find numerical solutions for different problems arising in various
fields, such as fuzzy systems [16–18], petroleum engineering [19], carbon capture process
[20–22], wire coating dynamics [23], biological systems [24,25], civil engineering [26,27],
coal-fired power plant retrofitted [28], and electrical and thermal engineering [29–31].
These contributions motivated the authors to investigate the absorption of carbon dioxide
(CO2) into solutions of phenyl glycidyl ether (PGE) by strengthening the computational
ability of neural networks. Salient features of the presented study are summarized as:

• A mathematical model for chemical analysis and absorption of carbon dioxide (CO2)
into phenyl glycidyl ether (PGE) solutions is presented. Furthermore, a novel stochas-
tic technique based on nonlinear autoregressive exogenous (NARX) neural networks
with the Levenberg–Marquardt algorithm is utilized to optimize the system of singular
nonlinear differential equations for the normalized concentration of CO2 and PGE.

• The design scheme NARX-LM algorithm with two different activations function
(Log-sigmoid and Hyperbolic tangent) is implemented to investigate the influence of
variations in normalized parameters such α1, α2, β1 and β2 on concentration profiles
of CO2 and PGE.

• To validate the accuracy of the design supervised learning mechanism, the results ob-
tained are compared with the residual method, the Adomian decomposition method,
machine learning algorithms, and numerical solution.

• Extensive graphical analysis based on absolute errors, fitting of numerical and approx-
imate solutions, absolute errors, and performance graphs of mean square error are
plotted to further validate the worth of the design scheme.

2. Problem Formulation

Figure 1 demonstrates the experimental setup for stirred-cell absorber, where A, B, C
are valves, D is the absorber, E is the impeller, F shows the bottle of liquid, G represents the
funnel, H is the soap film meter, and I is the gas chromatographer [8]. The chemical reaction
between carbon dioxide and phenyl glycidyl ether for the formation of a five membered
cyclic carbonate is shown in Figure 2. Here, R is a functional group (−CH2 −O−C6H5).
An overall reaction in Figure 2 consists of two steps, a reversible reaction between PGE(B)
and THA-CP-MS41 (QX) is used to form an intermediate complex C1 in the first step. In the
second step, QX and five membered cyclic carbonate (C) is formed by a reversible reaction
between CO2 and C1.
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Figure 1. The schematic view of the stirred cell absorber.
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Figure 2. The overall reaction between CO2 and PGE.

B + QX
ξ1←→
ξ2

C1, (1)

A + C1 −→ ξ3C + QX, (2)

In a steady state, the chemical reaction rate of CO2 to C1 is given as

rA,cons =
StCB

1
Θ1ξ3CA

+ 1
ξ1

+ CB
ξ3CA

, (3)

where CA and CB denotes the concentration of CO2 and PGE, St is the surface area of the
catalyst, and Θ1 denotes the reaction equilibrium. ξ1 and ξ2 denote the forward reaction
constants in Equations (2) and (3), respectively. The nonlinear mass balances of CO2 and
PGE as a result of the subsequent chemical reactions are shown in Equations (4) and (5) as

DA
d2CA(z)

dz2 =
StCB(z)

1
Θ1ξ3CA(z)

+ 1
ξ1

+ CB(z)
ξ3CA(z)

, (4)

DB
d2CB(z)

dz2 =
StCB(z)

1
Θ1ξ3CA(z)

+ 1
ξ1

+ CB(z)
ξ3CA(z)

, (5)

where DA and DB are parameters for the measure of diffusion of CO2 and PGE, respectively,
z is distance. Boundary conditions for problem are

at z = 0; CA = CAi,
dCB
dz

= 0, (6)

at z = zL; CA = CAL, CB = CBo, (7)
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The following dimensionless parameters are defined to normalize Equations (4) and (5)
along with the boundary conditions.

u = CA
CAi

, v = CB
CBo

; x = z
zL

, α1 =
z2

LstCBoΘ1ξ3
DA

α2 =
z2

LstCAiΘ1ξ3
DB

, β1 = CAiΘ1ξ3
ξ1

, β2 = CBoΘ1ξ1
ξ1

,
(8)

Now, using Equation (8), the nonlinear equations for diffusion of CO2 and PGE can be
written as

d2u(x)
dx2 − α1u(x)v(x)

1 + β1u(x) + β2v(x)
= 0, (9)

d2(v)
dx2 −

α2u(x)v(x)
1 + β1u(x) + β2v(x)

= 0, (10)

The dimensionless boundary conditions are given as

At x = 0 u = 1,
dv
dx

= 0, (11)

At x = 1 u = k, v = 1. (12)

Here, the normalized concentrations of CO2 and PGE are denoted by u(x) and v(x),
respectively. α1, α2, β1, and β2 are normalized parameters. The distance from the center
is x, and k = CAL

CAi
is the concentration of CO2 at the catalyst surface, and its value is less

than 1. The enhancement factor of carbon dioxide and ratio of the flux (β) of the chemical
reaction is defined as

β = −
(

du
dx

)
x=0

. (13)

3. Design Methodology
3.1. Artificial Neural Networks and NARX Model

Artificial Neural Networks (ANN’s) are used for an extensive range of problems in
clustering, pattern classification, function approximation, recognition, optimization, and
prediction [32,33]. ANNs are mathematical tools that are stimulated by the biological brain
system, and they have a tremendous ability to learn, store, and remember data. They are
black-box modelling tool that can perform non-linear mapping from an n-dimensional
input space to an m-dimensional output space while the input and output spaces are
unknown [34].

The choice of ANN model depends on the prior knowledge of the system to be mod-
eled. The basic idea of NARX is a nonlinear version of the Autoregressive Exogenous (ARX)
instrument, which is a common tool for identifying linear black-box systems. The NARX
models are extensively used for modeling number of nonlinear dynamical system, such as
dual response regulators interact with dual sensors [35], chaotic time series prediction [36],
prediction of the daily direct solar radiation [37], and long-term time series prediction [38].
A recurrent dynamic neural network, or NARX, is a type of neural network that learns
from previous experiences. It features feedback links that encircle the network in multiple
levels.

NARX has two different architectures named series-parallel architecture (open-loop)
and parallel architecture (close-loop) as shown in Figure 3. In this study, a parallel architec-
ture NARX model is adopted to study the concentration and absorption of CO2 into a PGE
solution. The general NARX model is given as

ŷ(t + 1) = F
(

y(t), y(t− 1), . . . , y
(
t− ny

)
, x(t + 1)

x(t), x(t− 1), . . . , x(t− nx)

)
(14)
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Figure 3. Architectures of the NARX neural network.

Here, t represents the time period, ŷ(t+ 1) is output of the NARX at time t, and nx and
ny are the input and output delays. F(.) is the mapping function of the neural networks.
The basic advantage of using parallel architecture is that the usual training algorithm
for Multi-Layer Perceptron (MLP) can be used for training neurons. The MLP offers a
powerful structure that allows learning any type of continuous nonlinear mapping. A
traditional MLP has three layers: input, hidden, and output. Neurons, activation functions,
and weights are the other components.

In this study, we used two activation functions named the Log-sigmoid and Hy-
perbolic tangent. The convergence speed of these functions is much higher then other
activation functions. The optimal gradient factors for Logsigmoid and Hyperbolic tangent
are greater than those for Normal, Cauchy, Erf-Logsig and Laplace activations functions,
which make them unique. The mathematical form for these activation functions are given
by Equations (15) and (16), respectively.

f1(x) =
1

1 + e−x , (15)

f2(x) =
ex − e−x

ex + e−x , (16)

The detailed structure of neurons along with different layers of MLP network are
shown in Figure 4. The motivation of using NARX model with respect to other neural
networks model is its speed of convergence and needs of less training cycles [39]. It provides
the description of the system in terms of nonlinear function of delayed inputs, outputs, and
their predicted errors. Thus, NARX model generalizes any nonlinear dynamical system
and can be applied to various problems of different fields, such as nonlinear filtering,
prediction, chaotic time series prediction, control, and time series modeling [40].
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3.2. Learning Procedure and Performance Indicators

In this section, the working and training procedure of neurons is discussed. An
appropriate algorithm is used to train the weights for calculating an approximate solution
for the problem. During the training phase, a network is presented with a set of inputs and
their desired output (also known as target data). A reference solution or target data of 1001
points is generated by using the numerical solver “Pdex4” in MATLAB. Furthermore, the
data and weights are tuned by backpropogated Levenberg–Marquardt algorithm using
"nntool" for proper training, validation, and testing. The sample of 1001 points is divided
as

• 75% (701 samples) are used for training.
• 15% (150 samples) are used for validation.
• 15% (150 samples) are used for testing.

Figure 5 shows the model of the problem, NARX model, and workflow of the de-
sign scheme.

 
Absorption of carbon dioxide ሺࡻሻ into solutions of phenyl 

glycidyl ether (PGE) 

Physical model 

 

Mathematical model 

࢞ࢊሻ࢞ሺ࢛ࢊ െ ሻ࢞ሺ࢜ሻ࢞ሺ࢛ࢻ  ሻ࢞ሺ࢛ࢼ  ሻ࢞ሺ࢜ࢼ ൌ , ࢊ࢛ሺ࢞ሻ࢞ࢊ െ ሻ࢞ሺ࢜ሻ࢞ሺ࢛ࢻ  ሻ࢞ሺ࢛ࢼ  ሻ࢞ሺ࢜ࢼ ൌ , 
࢞ ൌ 			࢛ ൌ , ࢞ࢊ࢜ࢊ ൌ  ࢞ ൌ 			࢛ ൌ ࢜			, ൌ  

NARX Model

 

Working 

Phase I 

Initially, an input and target data is 
generated for the supervised learning of 

the design scheme by using numerical 
solver “Pdex4” using Matlab 

In second phase, NARX model is 
constructed and the neurons in ANN 

structure are optimized by using 
Levenberg–Marquardt algorithm for the 

training, testing and validation of the 
reference solution.

Phase II 

Figure 5. Mathematical model of the problem, NARX model, and workflow of the design scheme.
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The performance of design scheme are measures of the performance indicators in
terms of the mean square error (MSE) of the fitness function of the model, regression R2,
error histograms, and absolute errors (AE). The mathematical formulation of the MSE, R2,
and AE are given as

MSE =
1
m

m

∑
j=1

(
xj(t)− x̂j(t)

)2, (17)

R2 = 1−
∑m

j=1
(
x̂j(t)− x̄j(t)

)2

∑m
j=1
(
xj(t)− x̄j(t)

)2 , (18)

and
AE =

∣∣xj(t)− x̂j(t)
∣∣, j = 1, 2, . . . , m. (19)

where, xj, x̄j, and x̂j denote the reference, approximate, and mean of the solution at the jth
input, and m is the number of mesh points. The desire value of MSE and AE for perfect
fitting is equal to zero, while the value of R2 is one.

4. Reference Solutions

In the literature, various methods have been developed to study the concentration of
carbon dioxide, phenyl glycidyl ether, and enhancement factors.

Approximate solutions obtained by the the Adomian decomposition method and
Duan–Rach modified (ADM and DRM) [41] are

u(x) = 1−
[

x(1− x)α1 + 2(1− k)(1 + β1 + β2)

2(1 + β1 + β2)

]
+

xa1

24(1 + β1 + β2)
3[

5α2(1 + β1) + a1(1 + β2) + 4(1− k)(1 + β2)(1 + β1 + β2)− x
( (

6− x2)α2(1 + β1) + (2− x)xa1(1 + β2)
+4(1− k)x(1 + β2)(1 + β1 + β2)

)] (20)

v(x) = 1−
(
1− x2)α2

2(1 + β1 + β2)
+

α2

24(1 + β1 + β2)
3[

5α2(1 + β1) + α1(1 + β2) + 4(1− k)(1 + β2)(1 + β1 + β2)− x2
( (

6− x2)α2(1 + β1) + (2− x)xα1(1 + β2)
+4(1− k)x(1 + β2)(1 + β1 + β2)

)] (21)

Approximate solutions obtained by the domian decomposition method [10] are

u(x) = (k− 1)x + 1 +
α1x
2β1

(x− 1)− α1(1 + β2)

β3
1(k− 1)2 [log(1 + β2 + β1)− 1](1 + β2 + β1)(x− 1)

α1(1 + β2)

β3
1(k− 1)2

[
(log(1 + β2 + β1((k− 1)x + 1)− 1))(log(1 + β2 + β1((k− 1)x + 1)− 1))

−x(log(1 + β2 + β1k)− 1)(1 + β2 + β1k)

]
,

(22)

v(x) = 1 +
α2

2β1

(
x2 − 1

)
+

α2(1 + β2)(x− 1)
β2

1(k− 1)
[log(1 + β2 + β1)]

− α2(1 + β2)

β3
1(k− 1)2

[
(log(1 + β2 + β1((k− 1)x + 1)− 1))(1 + β2 + β1((k− 1)x + 1)− 1))

−(log(1 + β2 + β1k)− 1)(1 + β2 + β1k)

] (23)

Approximate solutions obtained by the Adomian Daftarder–Jafari method [42] are

u(x) = x +
x4α1

12
+

x7α2
1

504
+

x7α1α2

504
+

x10α2
1α2

12960
− x5a1β1

20
−

x8α2
1β1

672
− x5a1β2

20
− x8α1α2β2

672
, (24)

v(x) = x +
x4α2

12
+

x7α1α2

504
+

x7α2
2

504
+

x10α2
2α1

12960
− x5a2β1

20
− x8a1a2β1

672
− x5a2β2

20
−

x8α2
2β2

672
, (25)
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The approximate solutions obtained by the Residual method [43] are

u(x) = k
sinh

(√
α1

1+β1k+β2
x
)

sinh
(√

α1
1+β1k+β2

) +
sinh

(√
α1

1+β1k+β2
(1− x)

)
sinh

(√
α1

1+β1k+β2

) (26)

v(x) =
cosh

(√
α2k

1+β1k+β2
x
)

cosh
(√

α2k
1+β1k+β2

) , (27)

5. Numerical Experimentation and Discussion

In this section, the design scheme NARX-LM algorithm is applied to study the concen-
tration of CO2 and PGE solution under influence of variations in normalized parameters.
Figure 6a,b represents the effect of variations in k on CO2 and PGE with α1 = α2 = β1 = 1
and β2 = 3. Figure 6c illustrates the influence of variations in α2 with α1, β1 = 100, k = 0.1
and β2 = 10 . Variations in β1 and β2 with fixed values of α1 = α2 = 1 and k = 0.1 are
shown through Figure 6d,e, respectively. It can be seen that concentration of CO2 increases
with increase in k.

The diffusivity of PGE decreases with increases in the surface catalyst. Influence of
variations in flux (Enhancement factor) was investigated and the results are demonstrated
in Figure 7. The value of flux decreases with increase in β1 and β2 while it increase
with increase in α1. Further, to study, the results of design scheme different cases of
Equations (9) and (10) are considered. Csse I: k = 0.1, β1 = 0.1, β2 = 0.001, α1 = 1 and
α2 = 1, Case II: k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2, Case III: k = 0.1, β1 = 100,
β2 = 10, α1 = 1 and α2 = 50 and Case IV: k = 0.5, β1 = 1, β2 = 3, α1 = 2, and α2 = 5.
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Figure 6. Influence of variations in different parameters on the normalized concentration of CO2 and PGE.
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Figure 7. Influence of variations on the normalized parameter flux (enhancement factor).

The statistics of approximate solutions obtained by NARX-NM algorithm for steady
state concentration profiles of CO2 and PGE are compared with the Adomian decom-
position method and Duan–Rach modified (ADM and DRM) [41], Adomian decompo-
sition method (ADM) [10], Residual method [43], and numerical method as shown in
Tables 1 and 2. The results in terms of absolute errors obtained by NARX-LM algorithm are
compared with machine learning techniques, such as feed-forward backpropogated (FF)
and Layer-Recurrent (LR) neural networks. Tables 3 and 4 shows that solutions obtained
by proposed technique are in good agreement with analytical solutions as compared to
other neural networks.

The fitting of approximate solutions by the design algorithm with reference data for
different cases of Equations (9) and (10) are shown in Figure 8. The absolute errors (AE) in
our solutions are shown through Figures 8 and 9. It can be seen that solutions by NARX-LM
algorithm overlaps the numerical solutions with AE that lies around 10−6 to 10−8, 10−7 to
10−9, 10−6 to 10−8 and 10−7 to 10−8, respectively. The performance of the design scheme
for two activation functions in term of mean square error are shown in Figure 10.
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(a) k = 0.1, β1 = 0.1, β2 = 0.001, α1 = 1 and α2 = 1

(b) k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

(c) k = 0.1, β1 = 100, β2 = 10, α1 = 1 and α2 = 50

(d) k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

Figure 8. (a,b) The fitting of numerical solution with the results obtained by the NARX-LM algorithm
for the concentration of CO2 and (c,d) the concentration of PGE.
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(a) k = 0.1, β1 = 0.1, β2 = 0.001, α1 = 1 and α2 = 1

(b) k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

(c) k = 0.1, β1 = 100, β2 = 10, α1 = 1 and α2 = 50

(d) k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

Figure 9. (a,b) The error histogram analysis for the concentration of CO2 and (c,d) the errors in
solution for the concentration of PGE.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

(e) Case I (f) Case II

(g) Case III (h) Case IV

Figure 10. (a–d) The convergence value of the performance function using the hyperbolic tangent
sigmoid function and (e–h) the results of the performance function with the Log-sigmoid activation
function.

The values of the mean square error obtained with the hyperbolic tangent sigmoid func-
tion for different cases are 1.4774× 10−08, 2.1953× 10−08, 4.1685× 10−09 and 1.3712× 10−08

with gradient 5.7587× 10−08, 9.2706× 10−08, 9.1040× 10−08 and 8.1414× 10−08, respectively.
The statistics of the performance function with the Log-sigmoid activation function for differ-
ent cases are 1.0854× 10−09, 1.2073× 10−08, 1.0856× 10−09 and 5.8732× 10−09 with gradient
5.6208× 10−07, 2.2750× 10−09, 9.7326× 10−08, and 9.9145× 10−08, respectively.
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Table 1. Comparison of the solutions obtained by the NARX-LM algorithm with the numerical results, NM, ADM, and
DRM for the steady state concentration of CO2.

k = 0.1, β1 = 0.1, β2 = 0.001, α1 = 1 and α2 = 1 k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

x ADM & DRM ADM RM Numerical NARX-LM ADM & DRM ADM RM Numerical NARX-LM

0 1 1 1 1 1 1 1 1 1 1
0.2 0.7721 0.7722 0.7733 0.7754 0.7754 8734 8734 8730 8740 8740
0.4 0.5746 0.5746 0.5773 0.5797 0.5797 7614 7614 7610 7620 7620
0.6 0.401 0.4011 0.4042 0.4061 0.4061 6629 6629 6626 6629 6629
0.8 0.2451 0.2451 0.2472 0.2482 0.2482 5762 5762 5761 5758 5758
1.0 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5

Table 2. Comparison of the solutions obtained by the NARX-LM algorithm with the numerical results, NM, ADM, and
DRM for the steady state concentration of PGE.

k = 0.1, β1 = 100, β2 = 10, α1 = 1 and α2 = 50 k = 0.5, β1 = 1, β2 = 3, α1 = 2 and α2 = 2

x ADM & DRM ADM RM Numerical NARX-LM ADM & DRM ADM RM Numerical NARX-LM

0 0.8199 0.8098 0.8199 0.8173 0.8173 0.8426 0.842 0.8426 0.842 0.842
0.2 0.827 0.8188 0.827 0.826 0.826 0.8497 0.8491 0.8497 0.8489 0.8489
0.4 0.8483 0.8459 0.8483 0.8478 0.8478 0.8701 0.8698 0.8701 0.8688 0.8688
0.6 0.8839 0.881 0.8839 0.8849 0.8849 0.9026 0.9021 0.9026 0.9023 0.9023
0.8 0.9342 0.9331 0.9342 0.9345 0.9345 0.9462 0.9459 0.9462 0.9471 0.9471
1.0 1 1 1 1 1 1 1 1 1 1

Table 3. Comparison of the absolute errors in solutions for the concentration of CO2 obtained by the NARX-LM algorithm
with different machine learning techniques for Case I and II.

Case I Case II

x FF-NN LR-NN NARX-LM FF-NN LR-NN NARX-LM

0.0 7.567414 ×10−04 1.976408×10−03 3.664701×10−04 1.853876×10−03 1.611739×10−03 1.594322×10−04

0.1 2.294808×10−05 3.465679×10−05 2.856463×10−06 4.781680×10−05 2.421558×10−05 1.214353×10−06

0.2 8.805666×10−07 3.535741×10−05 1.233261×10−06 8.706504×10−06 3.312607×10−05 3.532873×10−08

0.3 5.146110×10−06 2.495271×10−05 8.119822×10−07 1.454172×10−05 1.755399×10−05 4.475227×10−07

0.4 2.780715×10−06 2.560681×10−05 7.753534×10−07 4.615430×10−06 1.804920×10−05 2.842042×10−07

0.5 1.359414×10−06 2.127227×10−05 5.663649×10−07 4.426592×10−06 1.888973×10−05 2.552623×10−07

0.6 9.394572×10−07 1.570394×10−05 5.437249×10−07 9.599460×10−06 1.659002×10−05 1.624006×10−07

0.7 4.026649×10−07 9.583692×10−06 3.555038×10−08 8.586999×10−06 1.037132×10−05 1.193209×10−07

0.8 9.554468×10−07 1.991985×10−05 1.297162×10−08 1.651644×10−05 1.402911×10−05 3.752629×10−07

0.9 6.361145×10−07 5.625482×10−05 1.278474×10−07 4.498823×10−05 7.522469×10−05 9.783728×10−07

1.0 1.073576×10−03 1.483420×10−03 3.995772×10−04 9.093789×10−04 1.069798×10−03 2.023171×10−04

Table 4. Comparison of the absolute errors in solutions for the concentration of PGE obtained by the NARX-LM algorithm
with different machine learning techniques for Case III and IV.

Case III Case IV

x FF-NN LR-NN NARX-LM FF-NN LR-NN NARX-LM

0.0 5.662392×10−05 1.282375×10−04 2.454875×10−06 9.311650×10−05 2.660996×10−04 8.705075×10−07

0.1 7.540143×10−06 3.653438×10−05 1.241626×10−07 5.827090×10−05 9.107916×10−05 8.132946×10−08

0.2 2.002106×10−05 2.879628×10−05 5.167114×10−09 3.032041×10−05 1.850514×10−04 6.939629×10−09

0.3 3.071841×10−05 4.926253×10−05 9.863673×10−08 5.746880×10−05 3.007176×10−05 5.252565×10−08

0.4 1.557625×10−05 5.678588×10−05 6.458083×10−08 4.507465×10−05 1.119539×10−04 5.121962×10−08

0.5 2.451808×10−05 4.759676×10−05 7.378733×10−08 1.396936×10−05 6.004553×10−05 4.057286×10−08

0.6 7.209635×10−06 2.690070×10−05 6.402087×10−08 5.687769×10−05 1.139300×10−04 7.379871×10−08

0.7 2.222096×10−05 1.090769×10−04 4.285971×10−08 5.169435×10−05 1.277712×10−04 2.756274×10−08

0.8 1.854701×10−05 2.853953×10−05 1.863085×10−07 7.419310×10−07 3.113386×10−05 5.949529×10−09

0.9 4.618550×10−09 1.901168×10−04 5.167832×10−07 3.146698×10−05 1.796623×10−04 3.940062×10−08

1.0 1.150652×10−03 1.836329×10−03 7.934356×10−05 1.193031×10−03 2.681365×10−03 2.036388×10−04
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6. Conclusions

In this paper, we examined the system of nonlinear differential equations that relates
the steady state concentration of carbon dioxide and phenyl glycidyl ether. To study
the chemical analysis and absorption of carbon dioxide (CO2) into phenyl glycidyl ether
(PGE) solutions, a novel stochastic technique based on nonlinear autoregressive exogenous
(NARX) neural networks with the Levenberg–Marquardt algorithm was designed. The
design scheme NARX-LM algorithm with two different activations function (Log-sigmoid
and Hyperbolic tangent) was implemented to investigate the influence of variations in nor-
malized parameters, , such as α1, α2, β1, and β2 on concentration profiles of CO2 and PGE.

Extensive graphical and statistical analysis illustrated that increases in k increased
the concentration of CO2. The diffusivity of PGE decreased with increases in β1 and
β2. The approximate solutions obtained by the NARX-LM algorithm were compared
with state-of-the-art techniques. Statistics dictates that the designs scheme overlapped
the numerical solutions with minimum absolute errors. Convergence graphs and error
histograms analysis further validated the worth of the design scheme.
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