Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparative Separation of Columns
2.2. Method Validation
2.3. Quantitative Analysis in Miang Extracts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Sample Extraction
3.4. Method Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liang, Y.; Ma, W.; Lu, J.; Wu, Y. Comparison of chemical compositions of Ilex latifolia Thumb and Camellia sinensis L. Food Chem. 2001, 75, 339–343. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, J.; Zhang, L.; Wu, S.; Wu, Y. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 2003, 80, 283–290. [Google Scholar] [CrossRef]
- Da Silva Pinto, M. Tea: A new perspective on health benefits. Food Res. Int. 2013, 53, 558–567. [Google Scholar] [CrossRef]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Yang, C.S.; Lambert, J.D.; Ju, J.; Lu, G.; Sang, S. Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 2007, 224, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, A.A.F.; Haminiuk, C.W.I.; Alberti, A.; Nogueira, A.; Demiate, I.M.; Granato, D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 2014, 60, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Bronner, W.E.; Beecher, G.R. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromatogr. A. 1998, 805, 137–142. [Google Scholar] [CrossRef]
- Burana-osot, J.; Yanpaisan, W. Catechins and caffeine contents of green tea commercialized in Thailand. J. Pharm. Biomed. Sci. 2012, 22, 1–7. [Google Scholar]
- Toschi, T.G.; Bordoni, A.; Hrelia, S.; Bendini, A.; Lercker, G.; Biagi, P.L. The protective role of different green tea extracts after oxidative damage is related to their catechin composition. J. Agric. Food Chem. 2000, 48, 3973–3978. [Google Scholar] [CrossRef]
- Ashihara, H.; Crozier, A. Caffeine: A well-known but little mentioned compound in plant science. Trends Plant Sci. 2001, 6, 407–413. [Google Scholar] [CrossRef]
- Sampanvejsobha, S.; Theppakorn, T.; Winyayong, P.; Eungwanichayapant, P. A study on the current status of tea in Thailand; Thailand Reserch Fund: Bangkok, Thailand, 2008. [Google Scholar]
- Sampanvejsobha, S.; Laohakunjit, N.; Sumonpun, P. A Study on the Current Status of Tea in Thailand; Thailand Reserch Fund: Bangkok, Thailand, 2012. [Google Scholar]
- Khanongnuch, C.; Unban, K.; Kanpiengjai, A.; Saenjum, C. Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis varassamica) of northern Thailand. J. Ethn. Foods. 2017, 4, 135–144. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Chui-Chai, N.; Chaikaew, S.; Khanongnuch, C. Distribution of tannin-′tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand. Int. J. Food Microbiol. 2016, 238, 121–131. [Google Scholar] [CrossRef]
- Sirisa-Ard, P.; Peerakam, N.; Sutheeponhwiroj, S.; Shimamura, T.; Kiatkarun, S. Biological evaluation and application of fermented Miang (Camellia sinensis var. assamica (J.W.Mast.) Kitam.) for tea production. J. Food Nutr. Res. 2017, 5, 48–53. [Google Scholar]
- Unban, K.; Khatthongngam, N.; Pattananandecha, T.; Saenjum, C.; Shetty, K.; Khanongnuch, C. Microbial community dynamics during the non-filamentous fungi growth-based fermentation process of Miang, a traditional fermented tea of north Thailand and their product characterizations. Front. Microbiol. 2020, 11, 1515. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.M.; Xu, W.; Li, J.; Lin, H.Y.; Zhang, Z.; Xiao, J.B.; et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2019, 312, 126043. [Google Scholar] [CrossRef]
- Kodchasee, P.; Nain, K.; Abdullahi, A.D.; Unban, K.; Saenjum, C.; Shetty, K.; Khanongnuch, C. Microbial dynamics-links properties and functional metabolites during Miang fermentation using the filamentous fungi growth-based process. Food Biosci. 2021, 41, 100998. [Google Scholar] [CrossRef]
- Yang, X.R.; Ye, C.X.; Xu, J.K.; Jiang, Y.M. Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC. Food Chem. 2007, 100, 1132–1136. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef]
- Lee, B.L.; Ong, C.N. Comparative analysis of tea catechins and theaflavins by high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. A 2000, 881, 439–447. [Google Scholar] [CrossRef]
- Wang, H.; Helliwell, K.; You, X. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 2000, 68, 115–121. [Google Scholar] [CrossRef]
- Dalluge, J.J.; Nelson, B.C.; Brown Thomas, J.; Sander, L.C. Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. J. Chromatogr. A 1998, 793, 265–274. [Google Scholar] [CrossRef]
- Hadad, G.M.; Salam, R.A.; Soliman, R.M.; Mesbah, M.K. Rapid and simultaneous determination of antioxidant markers and caffeine in commercial teas and dietary supplements by HPLC-DAD. Talanta 2012, 101, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Nováková, L.; Spácil, Z.; Seifrtová, M.; Opletal, L.; Solich, P. Rapid qualitative and quantitative ultra-high performance liquid chromatography method for simultaneous analysis of twenty nine common phenolic compounds of various structures. Talanta 2010, 80, 1970–1979. [Google Scholar] [CrossRef] [PubMed]
- Mirasoli, M.; Gotti, R.; Di Fusco, M.; Leoni, A.; Colliva, C.; Roda, A. Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage. Talanta 2014, 129, 32–38. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, D.A.; El-Maali, N.A. Determination of catechin isomers in human plasma subsequent to green tea ingestion using chiral capillary electrophoresis with a high-sensitivity cell. Talanta 2008, 76, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Chaikaew, S.; Baipong, S.; Sone, T.; Kanpiengjai, A.; Chui-Chai, N.; Asano, K.; Khanongnuch, C. Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract. J. Microbiol. 2017, 55, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Phromrukachat, S.; Tiengburanatum, N.; Meechui, J. Assessment of active ingredients in pickled tea. AJOFAI 2010, 3, 312–318. [Google Scholar]
- Dorkbuakaew, N.; Ruengnet, P.; Pradmeeteekul, P.; Nimkamnerd, J.; Nantitanon, W.; Thitipramote, N. Bioactive compounds and antioxidant activities of Camellia sinensis var. assamica in different leave maturity from northern Thailand. Int. Food Res. J. 2016, 23, 2291–2295. [Google Scholar]
- Huang, Y.; Liu, C.; Xiao, X. Quality characteristics of a pickled tea processed by submerged fermentation. Int. J. Food Prop. 2016, 19, 1194–1206. [Google Scholar] [CrossRef]
- Obon, G.; Adewuni, T.M.; Ademiluyi, A.O.; Olasehinde, T.A.; Ademosun, A.O. Phenolic constituents and inhibitory effects of Hibiscus sabdariffa L. (Sorrel) calyx on cholinergic monoaminergic, and purinergic enzyme activities. J. Diet. Suppl. 2018, 15, 910–922. [Google Scholar]
- Acar, E.T.; Celep, M.E.; Charehsaz, M.; Akyüz, G.S.; Yeşіlada, E. Development and validation of a high-performance liquid chomatography-diode-array detection method for the determination of eight phenolic constituents in extracts of deferent wine species. Turk. J. Pharm. Sci. 2018, 15, 22–28. [Google Scholar]
- Goto, T.; Yoshida, Y.; Kiso, M.; Nagashima, H. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr. A 1996, 749, 295–299. [Google Scholar] [CrossRef]
- Nishitani, E.; Sagesaka, Y.M. Simultaneous determination of catechins, caffeine and other phenolic compounds in tea using new HPLC method. J. Food Compost. Anal. 2004, 17, 675–685. [Google Scholar] [CrossRef]
- Saito, S.T.; Welzel, A.; Suyenaga, E.S.; Bueno, F. A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC. Food Sci. Technol. 2006, 26, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Marczyń, Z.; Skibska, B.; Nowak, S.; Jambor, J.; Zgoda, M. Actual solubility (S|real.|), level of hydrophilic-lipophilic balance (HLBRequ., HLBD, HLBG) and partition coefficient (log P) of phytochemicals contained in Ext. Camellia sinensis L. aqu. siccum in the light of general Hildebrand-Scatchared-Fedors theory of solubility. Herba Pol. 2018, 64, 47–59. [Google Scholar]
- Ziaedini, A.; Jafai, A.; Zakeri, A. Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: Kinetics and modeling. Food Sci. Technol. Int. 2010, 16, 505–510. [Google Scholar] [CrossRef]
- Liang, H.; Liang, Y.; Dong, J.; Lu, J. Tea extraction methods in relation to control of epimerization of tea catechins. J. Sci. Food Agric. 2007, 87, 1748–1752. [Google Scholar] [CrossRef]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Teddington, UK, 2014; ISBN 978-91-87461-59-0. [Google Scholar]
Column | Condition | ||
---|---|---|---|
(1) Column A Deactivated, non-endcapped monomeric C18 4.6 mm × 250 mm, 5 µm particle size with no silica purity provided | MeOH: 0.05% HOAc in H2O | ||
Mobile phase Gradient elution | Time (min) % of MeOH | ||
0 | 3 | ||
1 | 3 | ||
21 | 50 | ||
26 | 55 | ||
40 | 95 | ||
Wavelength | 270 nm | ||
Flow rate | 0.5 mL/min | ||
(2) Column B Deactivated, endcapped monomeric C18, High-purity silica, 3.0 mm × 250 mm, 5 µm particle size and a 2 µm filter attached to both ends of column | Mobile phase Isocratic elution | A: 1% ethyl acetate in MeOH B: 0.1% H3PO4 in H2O | |
A:B = 15:85 (v/v) | |||
Wavelength | 270 nm | ||
Flow rate | 0.45 mL/min | ||
(3) Column C Deactivated, extra dense bonding, double endcapped monomeric C18, high-purity silica, 3.0 mm × 250 mm, 5 µm particle size, and 10% carbon loading | Mobile phase Gradient elution | A: (90:10 MeOH-ACN) + 0.1% HOAc B: 0.1% HOAc in H2O | |
Time (min) | %A | ||
0 | 10 | ||
2 | 10 | ||
25 | 21 | ||
28 | 25 | ||
30 | 100 | ||
35 | 10 | ||
- | 40 | 10 | |
Wavelength | 210 nm | ||
Flow rate | 1.0 mL/min |
Compounds | Molecular Weight | Log P | Precision (% RSD) | Linear Range (mg/L) | Correlation Coefficient | LOD (mg/L) | LOQ (mg/L) | |||
---|---|---|---|---|---|---|---|---|---|---|
Retention Time | Peak Area | |||||||||
Intraday | Interday | Intraday | Interday | |||||||
GA | 170.12 | 0.70 | 1.02 | 1.25 | 0.69 | 0.87 | 2–20 | 0.9993 | 0.58 | 2.01 |
GC | 306.27 | 1.49 | 0.89 | 1.07 | 0.77 | 0.92 | 2–15 | 0.9998 | 0.52 | 1.77 |
EGC | 306.27 | 1.49 | 0.86 | 1.26 | 0.86 | 1.06 | 2–15 | 0.9994 | 0.64 | 2.09 |
C | 290.27 | 1.80 | 1.05 | 1.28 | 0.82 | 0.98 | 2–20 | 0.9997 | 0.49 | 1.59 |
Caf. | 194.19 | −0.55 | 0.49 | 0.97 | 0.49 | 0.88 | 2–20 | 0.9998 | 0.23 | 0.67 |
EC | 290.27 | 1.80 | 0.77 | 0.93 | 0.87 | 1.33 | 2–20 | 0.9995 | 0.68 | 2.18 |
EGCG | 458.37 | 3.08 | 1.02 | 1.13 | 0.79 | 1.07 | 2–15 | 0.9994 | 0.58 | 1.86 |
GCG | 458.37 | 3.08 | 0.65 | 0.88 | 0.95 | 1.17 | 2–20 | 0.9997 | 0.62 | 2.13 |
ECG | 442.37 | 3.88 | 0.58 | 0.70 | 0.48 | 1.29 | 2–20 | 0.9997 | 0.33 | 1.07 |
Compounds | Miang Extract-1 | Miang Extract-2 | Miang Extract-3 | |||
---|---|---|---|---|---|---|
Recovery (%) | % RSD | Recovery (%) | % RSD | Recovery (%) | % RSD | |
GA | 87–106 | 7 | 90–101 | 6 | 85–101 | 6 |
GC | 85–101 | 6 | 85–98 | 4 | 85–97 | 5 |
EGC | 89–101 | 5 | 85–97 | 7 | 88–102 | 6 |
C | 88–102 | 5 | 93–102 | 5 | 95–105 | 5 |
Caf. | 90–102 | 5 | 92–102 | 6 | 92–102 | 5 |
EC | 86–96 | 4 | 89–98 | 5 | 91–102 | 6 |
EGCG | 87–101 | 5 | 87–97 | 5 | 85–101 | 5 |
GCG | 88–102 | 5 | 85–98 | 6 | 88–102 | 6 |
ECG | 90–101 | 6 | 88–101 | 5 | 86–95 | 4 |
Compounds | - | S1T1 | S1T2 | S1T3 | S2T1 | S2T2 | S2T3 | S3T1 | S3T2 | S3T3 |
---|---|---|---|---|---|---|---|---|---|---|
GA | Mean | 0.64 | 1.58 | 0.86 | 1.70 | 1.96 | 0.80 | 2.85 | 1.40 | 3.23 |
%RSD | 1.52 | 3.78 | 4.58 | 3.33 | 3.59 | 3.79 | 2.20 | 4.08 | 2.89 | |
GC | Mean | 3.52 | 3.47 | 4.23 | 2.61 | 1.64 | 1.35 | 3.62 | 1.98 | 1.18 |
%RSD | 2.21 | 1.75 | 2.15 | 3.67 | 3.40 | 1.52 | 2.82 | 4.29 | 4.58 | |
EGC | Mean | 8.90 | 19.41 | 9.51 | 4.75 | 1.04 | 1.76 | 4.71 | 4.07 | 4.41 |
%RSD | 3.38 | 1.09 | 1.47 | 1.49 | 4.24 | 3.45 | 1.95 | 1.48 | 4.35 | |
C | Mean | 45.05 | 18.19 | 16.75 | 8.16 | 5.44 | 6.21 | 8.49 | 8.16 | 9.46 |
%RSD | 1.10 | 2.04 | 3.58 | 2.63 | 4.25 | 3.76 | 2.64 | 2.63 | 2.93 | |
Caf. | Mean | 13.68 | 23.89 | 5.69 | 35.63 | 25.84 | 26.20 | 41.82 | 40.81 | 30.69 |
%RSD | 3.53 | 1.76 | 3.76 | 1.20 | 2.21 | 1.19 | 1.27 | 1.85 | 1.59 | |
EC | Mean | 2.91 | 13.04 | 15.62 | 1.14 | 0.82 | 3.23 | 7.78 | 3.55 | 10.48 |
%RSD | 4.67 | 4.61 | 4.41 | 4.14 | 3.08 | 3.96 | 3.96 | 3.93 | 4.79 | |
EGCG | Mean | 4.36 | 12.89 | 10.69 | 8.76 | 3.58 | 4.92 | 5.86 | 11.22 | 7.26 |
%RSD | 4.53 | 2.47 | 2.96 | 2.55 | 2.25 | 2.80 | 3.42 | 2.22 | 2.85 | |
GCG | Mean | 1.07 | 1.03 | 2.80 | 1.08 | 0.84 | 0.99 | 2.03 | 1.34 | 2.10 |
%RSD | 5.17 | 2.33 | 4.93 | 5.09 | 4.29 | 2.22 | 3.66 | 4.25 | 3.72 | |
ECG | Mean | 0.72 | ND | 1.62 | ND | ND | 0.39 | 0.52 | 0.81 | 0.86 |
%RSD | 2.76 | - | 5.12 | - | - | 3.74 | 3.83 | 4.44 | 4.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangkarn, S.; Grudpan, K.; Khanongnuch, C.; Pattananandecha, T.; Apichai, S.; Saenjum, C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules 2021, 26, 6052. https://doi.org/10.3390/molecules26196052
Wangkarn S, Grudpan K, Khanongnuch C, Pattananandecha T, Apichai S, Saenjum C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules. 2021; 26(19):6052. https://doi.org/10.3390/molecules26196052
Chicago/Turabian StyleWangkarn, Sunanta, Kate Grudpan, Chartchai Khanongnuch, Thanawat Pattananandecha, Sutasinee Apichai, and Chalermpong Saenjum. 2021. "Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand)" Molecules 26, no. 19: 6052. https://doi.org/10.3390/molecules26196052
APA StyleWangkarn, S., Grudpan, K., Khanongnuch, C., Pattananandecha, T., Apichai, S., & Saenjum, C. (2021). Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules, 26(19), 6052. https://doi.org/10.3390/molecules26196052