Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Preparation of Optimal Activated Carbon
2.2.1. Vacuum Pyrolysis Self-Activation
2.2.2. Chemical Activation
2.3. Yields of Carbon Precursor, Bio-Oil, Non-Condensable Gas, and Activated Carbon
2.4. Characterization
2.4.1. Thermogravimetry, Structural, and Morphological Analyses
2.4.2. Proximate and Elemental Analyses
2.4.3. N2 Adsorption–Desorption Profiles at 77 K
2.4.4. Bio-Oil Composition Analysis
3. Results and Discussion
3.1. Thermal Properties of Coffee Grounds
3.2. Proximate and Elemental Analyses
3.3. Effect of Activation Conditions on Various Factors
3.3.1. Yield
3.3.2. Activation Temperature on BET Surface Area
3.3.3. Activation Time on BET Surface Area
3.3.4. Impregnation Ratio on BET Surface Area
3.4. Properties of Optimal Activated Carbon
3.4.1. Morphology
3.4.2. Structure
3.4.3. Pore Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Ferella, F.; Puca, A.; Taglieri, G.; Rossi, L.; Gallucci, K. Separation of carbon dioxide for biogas upgrading to biomethane. J. Clean. Prod. 2017, 164, 1205–1218. [Google Scholar] [CrossRef]
- Co2noworg. 2017. Available online: https://www.co2.earth/ (accessed on 4 November 2016).
- Kaya, M.; Atelge, M.; Bekirogullari, M.; Eskicioglu, C.; Atabani, A.; Kumar, G.; Yildiz, Y.; Unalan, S. Carbon molecular sieve production from defatted spent coffee ground using ZnCl2 and benzene for gas purification. Fuel 2020, 277, 118183. [Google Scholar] [CrossRef]
- Kumar, A.; Anand, R. Progress in biofuel generation and its application in fuel cell. Adv. Biofuels 2019, 371–403. [Google Scholar]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, J.M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Pagalan, E., Jr.; Sebron, M.; Gomez, S.; Salva, S.J.; Ampusta, R.; Macarayo, A.J.; Joyno, C.; Ido, A.; Arazo, R. Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Ind. Crop. Prod. 2019, 145, 111953. [Google Scholar] [CrossRef]
- International Coffee Organization. The Current State of the Global Coffee Trade | #CoffeeTradeStats; International Coffee Organization: London, UK, 2019; Volume 2020. [Google Scholar]
- Atelge, M.; Atabani, A.; Abut, S.; Kaya, M.; Eskicioglu, C.; Semaan, G.; Lee, C.; Yildiz, Y.; Unalan, S.; Mohanasundaram, R.; et al. Anaerobic co-digestion of oilextracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies. Bioresour. Technol. 2020, 322, 124470. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Nazari, L.; Yuan, Z.; Corscadden, K.; Xu, C.; He, Q. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass Bioenergy 2016, 86, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, R.W.; Stageman, N.E.; Fortune, C.M.; Chuck, C.J. Effect of the Type of Bean, Processing, and Geographical Location on the Biodiesel Produced from Waste Coffee Grounds. Energy Fuels 2014, 28, 1166–1174. [Google Scholar] [CrossRef]
- Skreiberg, A.; Skreiberg, J.S.; Sørum, L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel 2011, 90, 2182–2197. [Google Scholar] [CrossRef]
- Kelkar, S.; Saffron, C.M.; Chai, L.; Bovee, J.; Stuecken, T.R.; Garedew, M.; Li, Z.; Kriegel, R.M. Pyrolysis of spent coffee grounds using a screw-conveyor reactor. Fuel Process. Technol. 2015, 137, 170–178. [Google Scholar] [CrossRef]
- Arulrajah, A.; Maghoolpilehrood, F.; Disfani, M.M.; Horpibulsuk, S. Spent coffee grounds as a non-structural embankment fill material: Engineering and environmental considerations. J. Clean. Prod. 2014, 72, 181–186. [Google Scholar] [CrossRef]
- Vardon, D.R.; Moser, B.R.; Zheng, W.; Witkin, K.; Evangelista, R.L.; Strathmann, T.J.; Rajagopalan, K.; Sharma, B. Complete Utilization of Spent Coffee Grounds to Produce Biodiesel, Bio-Oil, and Biochar. ACS Sustain. Chem. Eng. 2013, 1, 1286–1294. [Google Scholar] [CrossRef]
- Wang, D.; Li, B.; Yang, H.; Zhao, C.; Yao, D.; Chen, H. Influence ofbiochar on the steam reforming of biomass volatiles: Effects of activationtemperature and atmosphere. Energy Fuel 2019, 33, 2328–2334. [Google Scholar] [CrossRef]
- Dhir, A.; Sharma, H. Capture of carbon dioxide using solid carbonaceous and non-carbonaceous adsorbents: A review. Environ. Chem. Lett. 2020, 48, 1–23. [Google Scholar]
- Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, M.B.; Dubois, M.; Batisse, N.; Duclaux, L. Carbons prepared from coffee grounds by H3PO4, activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater. 2009, 175, 779–788. [Google Scholar] [CrossRef]
- Ma, X.; Ouyang, F. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Appl. Surf. Sci. 2013, 268, 566–570. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Chen, N.; Ren, J.; Ye, Z.; Xu, Q.; Liu, J.; Sun, S. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis. Bioresour. Technol. 2016, 221, 534. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Chang, C.Y.; Lee, S.L. Preparation and characterization of activated carbons from corn cob. Carbon 1997, 35, 1198–1200. [Google Scholar] [CrossRef]
- Guo, J.; Lua, A.C. Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater. Chem. Phys. 2003, 80, 114–119. [Google Scholar] [CrossRef]
- Girgis, B.S.; El-Hendawy, A.N.A. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater. 2002, 52, 105–117. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; José ATeixeira Mussatto, S.I. Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 2017, 157, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.K.; Theagarajan, K.S. Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Eur. J. Wood Wood Prod. 1997, 55, 383–390. [Google Scholar] [CrossRef]
- Ren, L.; Hemar, Y.; Perera, C.O.; Lewis, G.; Krissansen, G.W.; Buchanan, P.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact. Carbohydr. Diet. Fibre 2014, 3, 41–51. [Google Scholar] [CrossRef]
- Bustin, R.M.; Guo, Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int. J. Coal Geol. 1999, 38, 237–260. [Google Scholar] [CrossRef]
- Arauzo, P.J.; Maziarka, P.; Olszewski, M.; Isemin, R.; Muratova, N.; Ronsse, F.; Kruse, A. Valorization of the poultry litter through wet torrefaction and different activation treatments. Sci. Total Environ. 2020, 732, 139288. [Google Scholar] [CrossRef]
- Zhonghua, H.U.; Srinivasan, M.P.; Yaming, N.I. A simple method for developing mesoporosity in activated carbon. Sep. Purif. Technol. 2003, 31, 47–52. [Google Scholar]
- Sing, K.S.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. In Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1985; pp. 603–619. [Google Scholar]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | Proximate Analysis | Elemental Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | O | N | S | |
Coffee Grounds | 2.69% | 74.82% | 0.56% | 21.93% | 56.94% | 15.23% | 20.88% | 2.76% | 0.98% |
Carbon Precursors | 2.31% | 8.79% | 2.05% | 86.85% | 72.08% | 8.77% | 9.40% | 4.75% | 0.64% |
Activation Conditions | Yield (%) | BET Surface Area SBET (m2·g−1) | |
---|---|---|---|
Other Conditions | T (°C) | ||
T = 30 min | 400 | 29.9 | 102 |
Xp = 150 wt.% | 500 | 28.3 | 651 |
Pressure: 20 kPa | 600 | 27.4 | 1420 |
Heating Rate: 10 °C·min−1 | 700 | 24.6 | 962 |
Activation Conditions | Yield (%) | BET Surface Area SBET (m2·g−1) | |
---|---|---|---|
Other Conditions | t (min) | ||
T = 600 °C | 20 | 28.1 | 923 |
Xp = 150 wt.% | 30 | 27.4 | 1420 |
Pressure: 20 kPa | 40 | 26.7 | 1080 |
Heating Rate: 10 °C·min−1 | 50 | 26.3 | 873 |
Activation Conditions | Yield (%) | BET Surface Area SBET (m2·g−1) | |
---|---|---|---|
Other Conditions | Xp (wt.%) | ||
T = 600 °C | 50 | 28.5 | 628 |
T = 30 min | 100 | 27.7 | 887 |
Pressure: 20 kPa | 150 | 27.4 | 1420 |
Heating Rate: 10 °C·min−1 | 200 | 26.6 | 994 |
Sample Availability: Samples of the High-Performance Activated Carbon are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Chen, N.; Wan, L.; Li, G.; Chen, T.; Yang, F.; Sun, S. Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil. Molecules 2021, 26, 257. https://doi.org/10.3390/molecules26020257
Ren J, Chen N, Wan L, Li G, Chen T, Yang F, Sun S. Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil. Molecules. 2021; 26(2):257. https://doi.org/10.3390/molecules26020257
Chicago/Turabian StyleRen, Jie, Nanwei Chen, Li Wan, Guojian Li, Tao Chen, Fan Yang, and Shuiyu Sun. 2021. "Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil" Molecules 26, no. 2: 257. https://doi.org/10.3390/molecules26020257
APA StyleRen, J., Chen, N., Wan, L., Li, G., Chen, T., Yang, F., & Sun, S. (2021). Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil. Molecules, 26(2), 257. https://doi.org/10.3390/molecules26020257