Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antiprotozoal Activity of Crude Extract and Fractions from B. sempervirens L.
2.2. PLS Modeling
2.2.1. PLS-Prediction of Antiplasmodial Compounds from B. sempervirens L.
2.2.2. Identification of the Antiplasmodial Compounds Highlighted by the PLS Model
2.2.3. PLS-Prediction of Antitrypanosomal Compounds from B. sempervirens L.
2.2.4. Identification of the Antitrypanosomal Compounds Highlighted by the PLS Model
2.2.5. PLS-Prediction of Cytotoxic Compounds from B. sempervirens L.
3. Materials and Methods
3.1. Plant Material
3.2. Extraction and Fractionation of B. sempervirens L. Leaves
3.3. UHPLC/+ESI-QqTOF-Mass Spectrometry
3.4. Pretreatment of LC/MS Data
3.5. PLS Modeling
3.6. In Vitro Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ignatius, R.; Burchard, G.-D. Protozoen. In Medizinische Mikrobiologie und Infektiologie; Suerbaum, S., Burchard, G.-D., Kaufmann, S.H., Schulz, T.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 653–675. [Google Scholar]
- World Health Organization. World Malaria Report 2020. Available online: https://www.who.int/publications/i/item/9789240015791 (accessed on 30 August 2021).
- Ignatius, R.; Cramer, J.P. Allgemeine Parasitologie. In Medizinische Mikrobiologie und Infektiologie; Suerbaum, S., Burchard, G.-D., Kaufmann, S.H., Schulz, T.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 651–652. [Google Scholar]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-M.; Kim, M.-S.; Hayat, F.; Shin, D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019, 24, 3886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njoroge, M.; Njuguna, N.M.; Mutai, P.; Ongarora, D.S.B.; Smith, P.W.; Chibale, K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem. Rev. 2014, 114, 11138–11163. [Google Scholar] [CrossRef] [PubMed]
- Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics 2021, 10, 696. [Google Scholar] [CrossRef] [PubMed]
- Flittner, D.; Kaiser, M.; Mäser, P.; Lopes, N.P.; Schmidt, T.J. The Alkaloid-Enriched Fraction of Pachysandra terminalis (Buxaceae) Shows Prominent Activity against Trypanosoma brucei rhodesiense. Molecules 2021, 26, 591. [Google Scholar] [CrossRef] [PubMed]
- Llurba Montesino, N.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Salvia officinalis L.: Antitrypanosomal Activity and Active Constituents against Trypanosoma brucei rhodesiense. Molecules 2021, 26, 3226. [Google Scholar] [CrossRef] [PubMed]
- Ellendorff, T.; Brun, R.; Kaiser, M.; Sendker, J.; Schmidt, T.J. PLS-Prediction and Confirmation of Hydrojuglone Glucoside as the Antitrypanosomal Constituent of Juglans Spp. Molecules 2015, 20, 10082–10094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, N.J.C.; Wang, Y.; Sampson, J.; Davis, W.; Whitcombe, I.; Hylands, P.J.; Croft, S.L.; Holmes, E. Prediction of anti-plasmodial activity of Artemisia annua extracts: Application of 1H NMR spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 2004, 35, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Szabó, L.U.; Schmidt, T.J. Target-Guided Isolation of O-tigloylcyclovirobuxeine-B from Buxus sempervirens L. by Centrifugal Partition Chromatography. Molecules 2020, 25, 4804. [Google Scholar] [CrossRef]
- Musharraf, S.G.; Goher, M.; Ali, A.; Adhikari, A.; Choudhary, M.I.; Atta-ur-Rahman. Rapid characterization and identification of steroidal alkaloids in Sarcococca coriacea using liquid chromatography coupled with electrospray ionization quadropole time-of-flight mass spectrometry. Steroids 2012, 77, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Musharraf, S.G.; Goher, M.; Shahnaz, S.; Choudhary, M.I.; Atta-ur-Rahman. Structure-fragmentation relationship and rapid dereplication of Buxus steroidal alkaloids by electrospray ionization-quadrupole time-of-flight mass spectrometry. RCM 2013, 27, 169–178. [Google Scholar] [PubMed]
- Černý, V.; Šorm, F. Steroid Alkaloids: Alkaloids of Apocynaceae and Buxaceae. In The Alkaloids: Chemistry and Physiology; Academic Press: New York, NY, USA, 1967; pp. 305–426. [Google Scholar]
- Blaschek, W.; Hager, H. Hagers Enzyklopädie der Arzneistoffe und Drogen; Wiss. Verl.-Ges: Stuttgart, Germany, 2007. [Google Scholar]
- Khuong-Huu-Laine, F.; Magdeleine, M.J. Steroidal alkaloids. XCVI. Buxaceae family. Alkaloids of Buxus malayana: Cycloprotobuxine C, cyclovirobuxine C, N-formyl cyclovirobuxeine B, Ovanillyl cyclovirobuxeine B, and cyclobuxophyllinine M. Ann. Pharm. Fr. 1970, 28, 211. [Google Scholar]
- Bernal, F.A.; Kaiser, M.; Wünsch, B.; Schmidt, T.J. Structure-Activity Relationships of Cinnamate Ester Analogues as Potent Antiprotozoal Agents. Chem. Med. Chem. 2020, 15, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Pf | Tbr | Cytotox. | SI Pf | SI Tbr |
---|---|---|---|---|---|
GBUS | 7.9 ± 0.06 | 14.4 ± 2.7 | 56.4 ± 1.7 | 7 | 4 |
LNB | 16 ± 6.1 | 15 ± 5 | 54 ± 4 | 3 | 4 |
ALOF | 0.99 ± 0.03 | 5 ± 1.4 | 34 ± 11.7 | 34 | 7 |
F1 | 1.5 ± 0.2 | 1.98 ± 0.5 | 48 | 32 | 24 |
F2 | 0.35 ± 0.01 | 0.63 ± 0.03 | 15 | 43 | 24 |
F3 | 0.55 ± 0.04 | 0.92 ± 0.06 | 14 | 26 | 15 |
F4 | 0.92 ± 0.03 | 1.4 ± 0.3 | 12 | 13 | 9 |
F5 | 0.99 ± 0.004 | 1.4 ± 0.04 | 13 | 13 | 9 |
F6 | 1.5 ± 0.4 | 1.7 ± 0.7 | 14 | 9 | 8 |
F7 | 0.75 ± 0.04 | 1.8 ± 0.6 | 15 | 20 | 8 |
F8 | 0.76 ± 0.07 | 1 ± 0.3 | 16 | 21 | 16 |
F9 | 0.62 ± 0.35 * | 2.4 ± 1.41 | 15 | 24 | 6 |
F10 | 0.95 ± 0.19 | 9.8 ± 5.3 | 39 | 41 | 4 |
F11 | 0.65 ± 0.25 | 1.8 ± 0.72 | 15 | 23 | 8 |
F12 | 0.5 ± 0.23 * | 0.8 ± 0.04 | 15 | 30 | 19 |
F13 | 0.49 ± 0.21 * | 2.6 ± 0.9 | 15 | 31 | 6 |
F14 | 1.18 ± 0.54 * | 12 ± 1 | 41 | 35 | 3 |
F15 | 1.0 ± 0.26 | 12 ± 0.1 | 46 | 46 | 4 |
F16 | 1.82 ± 0.53 | 2.7 ± 0.2 | 37 | 20 | 14 |
F17 | 3.0 ± 0.5 | 11 ± 1 | 44 | 15 | 4 |
F18 | 7.11 ± 1.8 | 39.3 ± 0.7 | 48 | 7 | 1 |
F19 | 2.67 ± 0.2 | 14.4 ± 1.7 | 47 | 18 | 3 |
F20 | 1.9 ± 0.7 | 13.5 ± 1 | 55 | 29 | 4 |
Chloroquine | 0.003 ± 0.001 | 3 | |||
Melarsoprol | 0.004 ± 0.001 | 3 | |||
Podophyllotoxin | 0.01 ± 0.004 |
PLS Model | PLS Components | R2 | Q2 * |
---|---|---|---|
Pf | 2 | 0.9 | 0.82 |
Tbr | 4 | 0.98 | 0.89 |
Cytotox. | 3 | 0.96 | 0.83 |
Bucket | Adduct Ions | Structural Formula (DBE) | Core Fragment(s) m/z | Identified Buxus-Alkaloid |
---|---|---|---|---|
4.98 min: 497.416 m/z (1) | [M + H]+ < [M + 2H]2+ | C32H52N2O2 (8) | 321; 295 | O-tigloylcyclovirobuxeine-B |
4.33 min: 501.412 m/z (2) | [M + H]+ < [M + 2H]2+ | C31H52N2O3 (7) | 323 | new compound |
14.73 min: 310.312 m/z (3) | [M + H]+ | C20H39NO (2) | n.i. | n.i.; possibly an oleamide structure |
3.09 min: 445.388 m/z (4) | [M + H]+ < [M + 2H]2+ | C28H48N2O2 (6) | 321; 295 | cyclomicrophylline-A |
Bucket | Adduct Ions | Structural Formula (DBE) | Core Fragment(s) m/z | Identified Buxus-Alkaloid |
---|---|---|---|---|
3.51 min: 370.317 m/z (5) | [M + H]+ | C25H39NO (7) | n.i. | n.i. |
3.09 min: 445.388 m/z (4) | [M + H]+ < [M + 2H]2+ | C28H48N2O2 (6) | 321; 295 | cyclomicrophylline-A |
4.67 min: 483.402 m/z (6) | [M + H]+ < [M + 2H]2+ | C31H50N2O2 (8) | 321; 295 | new compound |
2.51 min: 302.251 m/z (7) | [M + H]+ < [M + 2H]2+ | C20H31NO (6) | n.i. | n.i. |
2.30 min: 443.371 m/z (8) | [M + H]+ < [M + 2H]2+ | C28H46N2O2 (7) | 321; 295 | N-formylcyclovirobuxeine-B |
4.71 min: 354.321 m/z (9) | [M + H]+ < [M + 2H]2+ | C25H39N (7) | n.i. | n.i. |
4.74 min: 385.364 m/z (10) | [M + H]+ < [M + 2H]2+ | C26H44N2 (6) | 323; 297 | new compound |
3.55 min: 415.375 m/z (11) | [M + H]+ < [M + 2H]2+ | C27H46N2O (6) | 321; 295 | cyclovirobuxeine-B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction. Molecules 2021, 26, 6181. https://doi.org/10.3390/molecules26206181
Szabó LU, Kaiser M, Mäser P, Schmidt TJ. Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction. Molecules. 2021; 26(20):6181. https://doi.org/10.3390/molecules26206181
Chicago/Turabian StyleSzabó, Lara U., Marcel Kaiser, Pascal Mäser, and Thomas J. Schmidt. 2021. "Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction" Molecules 26, no. 20: 6181. https://doi.org/10.3390/molecules26206181
APA StyleSzabó, L. U., Kaiser, M., Mäser, P., & Schmidt, T. J. (2021). Identification of Antiprotozoal Compounds from Buxus sempervirens L. by PLS-Prediction. Molecules, 26(20), 6181. https://doi.org/10.3390/molecules26206181