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Abstract: Developing efficient and cheap photocatalysts that are sensitive to indoor light is promis-
ing for the practical application of photocatalysis technology. Here, N-doped TiO2 photocatalyst
with loaded Cu crystalline cocatalyst is synthesized by a simple one-pot method. The structure
is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy analysis,
which exhibit that Cu metal nanocrystalline is uniformly deposited on the surface of N-doped TiO2

material. UV-Vis absorption spectra illustrate that the modified samples possess favorable visible
light absorption properties and suppressed-electron hole separation. The as-fabricated Cu-loaded
N-TiO2 materials show high activity in photocatalytic decomposing isopropanol and inactivating
E. coli under the irradiation of a household white LED lamp. The developed synthetic strategy and
photocatalytic materials reported here are promising for indoor environment purification.

Keywords: photocatalysis; nitrogen-doped TiO2; copper metal; isopropanol degradation; sterilization

1. Introduction

Photocatalysis is regarded as a promising approach for removing pollutants and
harmful microbes [1–4]. To achieve the widespread practical application of photocatalytic
environment remediation, efficient photocatalysts that are sensitive to weak visible light,
especially indoor light, are required [5,6]. Among the various semiconductor photocata-
lysts, titanium dioxide (TiO2) is one of the most promising materials for air purification
and antibacterial functions due to its unique electronic band structures, prominent chem-
ical stability, nontoxicity, and low cost [7,8]. However, TiO2 is a typical wide bandgap
semiconductor (~3.2 eV), and it is only activated by ultraviolet (UV) irradiation [9,10].
Doping TiO2 with other elements is realized as an effective method to change the electronic
band structure and, subsequently, the light absorption properties [11,12]. Over the past
decades, the N-doped TiO2, which possesses hybridization of N 2p and O 2p orbits with
re-constructed valence band, shows decreased bandgap and visible light sensitivity [13,14].
Up to now, the N-doped TiO2 is extensively studied as promising catalysts to decompose
pollutants and microbes [15–17]; however, the activity is still unfavorable due to the easy
recombination between photogenerated electrons and holes in bare materials [18,19]. To
solve such a problem, loading cocatalysts such as Pt, Au, Ag, and other metals are effective
in relieving the recombination of electron–hole pairs [20]. Especially, some non-noble
metals such as Cu are more concerned as high activity and inexpensive cocatalyst materials
to enhance the photocatalytic activity [21,22].

Up to now, the use of Cu metal cocatalysts to improve the photocatalytic activities
over TiO2 materials has been widely reported. For example, Wu et al. prepared Cu particles
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deposited TiO2 by 400 ◦C calcination/reduction under H2 (3 mol% in N2) atmosphere after
incipient-wetness impregnation, and the photocatalytic activity for hydrogen evolution
was significantly enhanced [23]. Chiang et al. synthesized Cu nanoparticles deposited
TiO2 nanorod composites by microwave-assisted sol–gel method and chemically reduced
them with sodium borohydride as the reducing agent. The modified TiO2 enhanced the
photocatalytic degradation of bisphenol A [24]; however, previous fabrication of cocatalyst
of Cu metal on TiO2 is fabricated by mixture TiO2 and Cu2+ based salt at high temperature
in the presence of H2. The TiO2 can also be reduced into TiO2−x and thus possibly decrease
the intrinsic photocatalytic activity. The solvent reduction in the presence of sodium
borohydride to reduce Cu2+ into Cu at mild conditions also seems effective; however, the
process is sophisticated, and the reduced Cu metals usually have weak interaction with
TiO2, which is not beneficial to the photocatalytic process. Developing a facile method to
fabricate Cu catalysts on TiO2 with favorable photocatalytic activity is still limited.

In this study, the Cu-loaded on N-doped TiO2 were synthesized by the one-pot
reaction method. In such a fabrication process, the TiO2 and Cu2+ salt simply mixed and
then be nitridized in the presence of NH3 at 775 K. The NH3 at a high temperature can
not only nitridize the TiO2 into N-doped TiO2, but also reduce the Cu2+ salt into Cu metal.
The Cu metal loaded on N-TiO2 could thus be achieved by the one-pot procedure. The
interaction between catalyst and cocatalyst was difficult using such a synthetic process,
which benefits the photocatalytic reactions. The UV-Vis absorption spectrum shows that
fabricated materials exhibit favorable visible light absorption. The modified samples have
a remarkable enhancement in remediating gaseous pollutants and microbes under indoor
commercial LED irradiation. The developed one-pot synthetic strategy and Cu-loaded N-
TiO2 materials reported here are promising for the development of efficient photocatalysts
for indoor environment purification.

2. Results and Discussion

The one-pot synthetic process is illustrated in Figure 1. Firstly, the Cu(NO3)2 and TiO2
were mixed and ground; the Cu(NO3)2 thus adsorbed on the surface of TiO2 nanoparticles.
After that, the mixture was calcined under an ammonia atmosphere. The Cu(NO3)2 was
reduced to Cu metal particles on the surface of TiO2 in such a process: NH3→H2 + N2 and
H2 + Cu2+→ Cu + 2H+. Meanwhile, a slight amount of N was doped into TiO2 to generate
N-doped TiO2 (N-TiO2). Finally, the Cu metal-supported N-doped TiO2 was produced by
the designed one-pot synthetic method. The products were expressed as xCu-N-TiO2 (the
x represented the weight ratio of loaded Cu to N-TiO2).
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The X-ray diffraction (XRD) patterns of the pristine TiO2, N-TiO2, and xCu-N-TiO2
samples are shown in Figure 2. All peaks of the as-prepared samples consist of anatase
phases TiO2 (JCPDS card. 21-1272) without other impurity peaks observed [25]. The
half-peak width of all products is not changed significantly, indicating that the crystallinity
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and grain size are almost kept. The copper and copper oxide are not observed, which is
probably due to the fact that the amount of loaded Cu-based materials is too low to be
detected by the XRD technical.
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Figure 2. XRD pattern of TiO2, N-TiO2, and xCu-N-TiO2 (x = 0.5%, 1%, and 2%).

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
were employed to characterize the morphologies and compositions of the as-prepared
samples. Figure 3a and Figure S1 show the typical SEM images, which demonstrate that
1%Cu-N-TiO2, N-TiO2, and pristine TiO2 photocatalysts have nanoparticle-like morphology
where the size of these particles is about 20–50 nm. After nitridation and Cu loading, the
size and morphology of the TiO2 are not changed obviously. The TEM image in Figure 3b
exhibits that materials of 1%Cu-N-TiO2 are uniformly dispersed nanoparticles, which
is identical to the SEM results. The selected area electronic diffraction (SAED) pattern
displays well resolved (101), (004), and (205) diffraction rings (inset of Figure 3b), which
corresponds to the structural characteristic of anatase TiO2 [26]. The enlarged TEM image
in Figure 3c further shows that the shape of each particle is an irregular shape with a
narrow-distributed size from 20–50 nm. The high-resolution TEM (HRTEM) image of
the product (Figure 3d) shows that the lattice fringe distance of the nanoparticles was
measured as 0.35 and 0.36 nm, which corresponds to the (101) and (101) face of anatase
TiO2, respectively. In addition, some nanoparticles with a size of about 4 nm are loaded
on the surface of TiO2. As the HRTEM image illustrated, the lattice fringe is measured
as 0.20 nm, which is consistent with the copper phase of Cu metal (111). Such a result
indicates that the Cu metal nanoparticles are loaded on TiO2 nanocrystals. To further
confirm that the Cu(NO3)2·3H2O can be converted into Cu metal under the designed
synthetic condition, proper Cu(NO3)2·3H2O powder was calcined in ammonia atmosphere
under 500 ◦C without the addition of TiO2. The XRD pattern in Figure S2 shows that all
peaks were assigned to Cu metal. So, the Cu nanocrystalline loaded on N-doped TiO2
nanoparticles is reasonable in our materials synthesis route.
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Figure 3. (a) SEM, (b–d) TEM, and SAED (inset) images of 1%Cu-N-TiO2.

In the following study, the Cu states in 1%Cu-N-TiO2 were determined through the
Cu 2p XPS spectra. As shown in Figure 4a, the product of 1%Cu-N-TiO2 displays one
main peak located at 932.47 eV, which could be assigned to Cu0 state [21]. Such a result
suggests that the synthesized product is loaded with Cu metal. XPS element content
analysis (Table S1) exhibits that the amount of loaded Cu is about 2 wt%, which is higher
than the designed amount in our synthetic experiment. The variety in the amount of
loaded may be because the XPS is a surface analysis technology, which detects the atoms
on and near surface, which leads to the higher value of loaded Cu. The formed Cu metal
nanoparticle on TiO2 may partly be oxidized into the oxidation state of Cu2O or CuO once
it is exposed to air conditions; however, these characterizations show that the oxidation
states of Cu, such as the CuO and Cu2O, are not obvious. Figure 4b presents the XPS
spectra of N1s state in N-TiO2 and 1%Cu-N-TiO2 samples. The binding energy range of
N1s peaks is 396–404 eV, which is a typical N 1s XPS spectra for N-doped TiO2 [27]. The
binding energies of both samples are at 399.6 eV, which is considered as the form of Ti–N–O
bonds [27,28]. So, the N element has been successfully doped into the TiO2. Figure 4c and
d present the XPS spectra of Ti 2p and O1s state in N-TiO2 and 1%Cu-N-TiO2 samples. The
peak strength and peak position of the Ti 2p and O1s XPS spectra of the two samples were
almost unchanged, indicating that Cu nanoparticles were only deposited on the surface of
N-TiO2 photocatalyst, which did not influence the chemical states of Ti and O.
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The UV-Vis absorption spectra of as-prepared materials were studied. Figure 5a shows
that pristine TiO2 have an absorption edge at about 380 nm. The N-doped TiO2 products
have much wider absorption edges. Figure 5b shows the enlarged areas from Figure 5a. It
is observed that the N-TiO2 and the Cu loaded can N-TiO2 reach the absorption edge at
about 540–560 nm. So, the light absorption ability is significantly enhanced. This can be
attributed to the formation of a local intermediate band (N 2p) energy level at the top of
the O 2p valence band in TiO2 by the N introduction. The band gap of the semiconductor
is narrowed so that longer wavelengths of light can be absorbed to form photogenerated
electrons and holes [29,30]. It is worth noting that the loaded Cu metal particles have no
obvious enhancement on the UV–Vis absorption spectra, which is attributed to the fact that
the Cu element was only loaded on the surface of TiO2, which did not change the electronic
energy band structure of TiO2.
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The degradation of gaseous isopropanol (IPA) under white LED light irradiation is
evaluated to reflect the photocatalytic performance of the prepared materials. IPA was
chosen as the target molecule because it is a representative volatile organic compound for
gaseous pollutants [31]. The wavelength of the indoor commercial white LED light used
as a light source with a wavelength of 400–700 nm and light intensity of approximately
8 mW/cm2 (Figure S3). Figure 6a shows a comparative study of the photocatalytic activity
of acetone increases at full speed in the first 80 min over N-TiO2 and different Cu loaded
N-TiO2 products. It could be found that the evolution rates of acetone over 2%Cu-N-
TiO2, 1%Cu-N-TiO2, 0.5%Cu-N-TiO2, and N-TiO2 reach about 420.0, 662.3, 364.5, and
70.0 ppm h−1, respectively. The 1%Cu-N-TiO2 shows the best activity in the decomposing
IPA, which is about 9.5 folds as N-TiO2. Obviously, Cu nanoparticles on the surface of
N-TiO2 can act as cocatalysts and suppresses the recombination of the photogenerated
hole–electron pairs, which improve the photocatalytic activity [32]. Figure 6b shows a
complete process of IPA degradation under an LED light. Firstly, the concentration of IPA
decrease fast with and the concentration of acetone increase rapidly (CH3CHOHCH3 + e−

+ O2 + H+ → CH3COCH3 + HO· + H2O or CH3CHOHCH3 + h+ → CH3COCH3+ 2H+ +
e−) [33]. When the concentration of acetone reaches a maximum level, the concentration of
acetone starts to be decomposed into CO2, and the evolved CO2 increases rapidly. Finally,
the evolved concentration of CO2 reaches about three times as initial concentration of
IPA, indicating that 1%Cu-N-TiO2 photocatalyst can mineralize IPA to CO2 completely
(CH3CHOHCH3 + 5H2O + 18h+ → 3CO2 + 18H+) [33,34].
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TiO2 (x = 0.5%, 1%, and 2%) samples under the same conditions; (b) representative time-dependent
gas concentrations during IPA decomposition over 1%Cu-N-TiO2 sample under LED light irradiation.

The Brunner−Emmet−Teller (BET) specific surface areas of the 1%Cu-N-TiO2 and
N-TiO2 were determined using N2 adsorption and desorption isotherms (Figure S4). The
BET surface area of N-doped TiO2 and 1%Cu-N-TiO2 are approximate 29.7 and 31.9 m2g−1,
which are quite closed. So, the degradation of activity is thus mainly influenced by the
loading of Cu rather than the surface areas.

In the following study, the sterilization performance of 1%Cu-N-TiO2 was evaluated
under irradiation of indoor LED light. E. coli is one of the most common bacteria as a model
microbe to evaluate the inactivation performance for many sterilization materials [35].
Figure 7a shows the corresponding activities of 1%Cu-N-TiO2 and N-TiO2. The survival
rate of E. coli over 1%Cu-N-TiO2 reaches 10−7 after 100 min, shows that the E. coli is
completely sterilized. For comparison, the survival rate of E. coli over N-TiO2 is only
0.33 in 100 min. So, the 1%Cu-N-TiO2 shows much enhanced activity compared to N-
TiO2. In addition, the control experiments were carried out to prove that the sterilization
effect is caused by the photocatalytic process over 1%Cu-N-TiO2. When the 1%Cu-N-TiO2
photocatalyst is placed in the bacterial culture medium under dark conditions, the bacteria
surviving is closer to 100% after 120 min. So, there is no toxic effect of Cu-N-TiO2 on
E. coli cells under dark conditions. When the bacterial medium is placed under LED light
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irradiation without catalyst, there is no obvious decrease in E. coli cells after 120 min.
So, the activity is certain from the photocatalytic effects. Figure 7b,c show the images of
E. coli colonies on agar plates before (diluted 105 times) and after (not diluted) LED light
irradiation for 100 min in the presence of 1%Cu-N-TiO2. During the photocatalytic process,
the photogenerated electrons and holes pairs react with water to produce reactive oxygen
species. The reactive oxygen species include HO•, O2

•−, HO2
•, etc., and can destroy the

E. coli cell and results in bacterial inactivation [3].
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Figure 8 shows a scheme of as-prepared 1% Cu-N-TiO2 for decomposition of IPA
and inactivation of E. coli. Nitrogen doping forms an intermediate energy level on the top
of the valence band in TiO2 semiconductors, which shifts the absorption of light to the
visible light region and induces the semiconductor to generate photogenerated electrons
and holes under LED irradiation. The Cu metal nanoparticles act as a cocatalyst material
on the surface of N-doped TiO2 photocatalysts, which suppress the recombination of
photogenerated electrons and holes. In addition, the metal state Cu can also act as electrons
storage centers to promote multi-electron reactions. The photocatalytic decomposition of
IPA and inactivation of E. coli efficiency is thus significantly improved under the irradiation
of white LED light.
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3. Materials and Methods
3.1. Preparation of Photocatalysts

In a typical process, 1.0 g TiO2 (anatase phase, 10–25 nm grain size, Sigma-Aldrich
Co. St. Louis, MO, USA) and Cu(NO3)2·3H2O (AR, Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China) were well mixed with a certain ratio and ground. The mixture was
calcined at 773 K for about 3 h under an ammonia atmosphere to obtain Cu metal-loaded
N-doped TiO2 nanoparticles (xCu-N-TiO2). For comparison, pure TiO2 powder was also
calcined at 773 K in an ammonia atmosphere for 3 h without Cu, which was expressed as
N-TiO2.

3.2. Photocatalytic Degradation of Pollutants

The photocatalytic decomposition of gaseous isopropanol (IPA) was evaluated under
white LED illumination. Figure S5 shows the reaction cell used in IPA degradation exper-
iments. In a typical procedure, a 600 mL glass container was used as the photocatalytic
vessel reactor. A commercial white LED (30 W, OPPLE, Shanghai, China) was located at
10 cm from the vessel reactor. About 100 mg photocatalysts were dispersed in a 9.5 cm2

circular glass dish, which was located in the center of the vessel reactor. The reactor was
filled with fresh synthetic air (20% oxygen and 80% nitrogen) for 1 h. The pressure inside
the reactor was kept at 1 Kpa (Atmospheric pressure). Then, about 1000 ppm of gaseous
IPA was injected into the reactor. The reactor was placed in darkness for 3 h to reach
adsorption equilibrium. When the concentration of IPA remained constant, the adsorp-
tion equilibrium of IPA was considered to have been reached. During the process of IPA
adsorption equilibrium, no products such as acetone or CO2 were detected, indicating
that the gaseous IPA could not be degraded by photocatalyst under dark conditions. The
reactor was then irradiated with an LED lamp, and 0.5 mL products along the reactions
were regularly extracted from the reactor. The concentrations of IPA, acetone, and CO2
were measured by a gas chromatograph (GC-2014, Shimadzu, Kyoto, Japan).

3.3. Evaluation of Anti-Bacteria

The anti-bacteria activities of photocatalysts were evaluated by killing E. coli cells.
The E. coli was cultured in Luria Bertani (LB) nutrient medium at 37 ◦C and shocked for
24 h. Then, the cultured E. coli cells were washed by centrifugation at 5000 rpm and were
resuspended and diluted to ~1× 107 cfu (colony forming unit)/mL in sterilized 0.9% saline
solution. All glass apparatuses and consumables used in the experiments were sterilized
in an autoclave at 121 ◦C for 25 min. About 30 mg photocatalyst was added to a glass
reactor containing 30 mL diluted E. coli suspension. The reaction mixture was covered with
quartz glass and stirred during the experiment. The light source was also produced from a
commercial white LED (30 W, OPPLE) which was located 15 cm from the E. coli solution.
The experimental temperature of photocatalysis was kept at about 25 ◦C by circulating
cooling water. At regular intervals, an aliquot of the reaction solution was collected and
diluted with saline solution, and 0.1 mL of the diluted solution was spread on a nutrient
agar plate. The diluted E. coli cells were incubated at 37 ◦C for 24 h and then the number of
viable cells was determined by counting colonies.

4. Conclusions

In summary, the Cu metal nanocrystalline-loaded N-TiO2 photocatalysts were synthe-
sized by a simple one-pot method. TEM, XPS, and UV-Vis absorption spectra confirm that
Cu metal nanocrystalline is successfully deposited on N-doped TiO2 photocatalysts and ex-
hibits favorable visible light absorption ability. Under the irradiation of indoor white LED
light, the IPA photodegradation rate over optimal 1%Cu-N-TiO2 is about 662.3 ppm h−1,
which is about 9.5 folds as N-doped TiO2 (70.0 ppm h−1). The E. coli could be completely
killed by 1%Cu-N-TiO2 under LED light irradiation in 120 min, which is significantly im-
proved in comparison with N-TiO2. The developed synthetic strategy and photocatalytic
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materials reported here are promising for the development of photocatalysts for indoor
environment purification.

Supplementary Materials: Figure S1: SEM images of (a–c) pristine TiO2, (d–f) N-TiO2, and (g–h)
1%Cu-N-TiO2. Figure S2: XRD pattern of product by nitridizing Cu(NO3)2·3H2O powder under
773 K for about 3 h under NH3 gas atmosphere. Figure S3: The irradiation spectrum of used white
LED lamp. Figure S4: Nitrogen adsorption-desorption isotherms and calculated BET specific surface
areas of the 1%Cu-N-TiO2 and N-TiO2. Figure S5: The reaction cell used for isopropanol degradation
experiments. Table S1: XPS element content analysis of 1%Cu-N-TiO2.
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