Development and Validation of an Analytical Method for Determination of Al, Ca, Cd, Fe, Mg and P in Calcium-Rich Materials by ICP OES
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reliability of Tested Sample Preparation Procedures
2.1.1. Analytical Lines and Linear Dynamic Range (LDR)
2.1.2. Matrix Effects
2.1.3. Limits of Detection (LODs)
2.1.4. Precision
2.1.5. Trueness
2.1.6. Recovery Test
2.2. Analytical Application
3. Materials and Methods
3.1. Instrumentation
3.2. Reagents and Solutions
3.3. Samples and Their Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binh, T.; Zapata, F. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project. In Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production; IAEA: Vienna, Austria, 2002; pp. 9–23. [Google Scholar]
- Mohammadkhani, M.; Noaparast, M.; Shafaei, S.Z.; Amini, A.; Amini, E.; Abdollahi, H. Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate. Int. J. Min. Process. 2011, 100, 157–165. [Google Scholar] [CrossRef]
- PN-C-87006-2: 1996. Calcium-Magnesium Fertilizers—Classification, Designation and Specification; The Polish Committee for Standardization: Warsaw, Poland, 1996; 4p.
- Sadik, C.; Moudden, O.; El Bouari, A.; El Amrani, I.E. Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J. Asian Ceram. Soc. 2016, 4, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Sanchez-Monedro, M.A.; Bertolone, E.; Bardi, L. Soil application of meat and bone meal. Short-term effects on mineralization dynamics and soil biochemical and microbiological properties. Soil Biol. Biochem. 2008, 40, 462–474. [Google Scholar] [CrossRef]
- Saeid, A.; Labuda, M.; Chojnacka, K.; Górecki, H. Valorization of bones to liquid phosphorus fertilizer by microbial solubilisation. Waste Biomass Valor. 2014, 5, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A.; Abalı, Y.; Mert, E. Recovery of phosphate from calcinated bone by dissolution in hydrochloric acid solutions. Res. Conserv. Rec. 1999, 26, 251–258. [Google Scholar] [CrossRef]
- Urlich, A.E. Cadmium governance in Europe’s phosphate fertilizers: No so fast? Sci. Total Environ. 2019, 650, 541–545. [Google Scholar]
- D’Agostino, F.; Oliveri, E.; Bagnato, E.; Falco, F.; Mazzola, S.; Sprovieri, M. Direct determination of total mercury in phosphate rock using alkaline fusion digestion. Anal. Chim. Acta 2014, 852, 8–12. [Google Scholar] [CrossRef]
- de Madinabeitia, S.G.; Sanchez Lorda, M.E.; Ibarguchi, J.I.G. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal. Chim. Acta 2008, 625, 117–130. [Google Scholar] [CrossRef] [PubMed]
- González-Álvarez, I.; Kerrich, R. Trace element mobility in dolomitic argillites of the Mesoproterozoic Belt-Purcell Supergroup, Western North America. Geochim. Cosmochim. Acta 2011, 75, 1733–1756. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, W.; Lu, L.; Li, R.; Liang, B.; Yue, H.; Tang, S.; Li, C. Study on reactions of gaseous P2O5 with Ca3(PO4)2 and SiO2 during a rotary kiln process for phosphoric acid production. Chin. J. Chem. Eng. 2018, 26, 795–805. [Google Scholar] [CrossRef]
- Pinto, G.F.; Escalfoni Junior, R.; Saint’Pierre, T.D. Sample preparation for determination of Rare Earth Elements in geological samples by ICP-MS: A critical review. Anal. Lett. 2012, 45, 1537–1556. [Google Scholar] [CrossRef]
- Durand, A.; Chase, Z.; Townsend, A.T.; Noble, T.; Panietz, E.; Goemann, K. Improvement methodology for the microwave digestion of carbonate-rich environmental samples. Int. J. Environ. Anal. Chem. 2016, 96, 119–136. [Google Scholar] [CrossRef]
- Eggins, S.M.; Woodhead, J.D.; Kinsley, L.P.J.; Mortimer, G.E.; Sylvester, P.; McCulloch, M.T.; Hergt, J.M.; Handler, M.R. A simple method for the precise determination of ≥40 trace elements in geological samples by ICP MS using enriched isotope internal standardisation. Chem. Geol. 1997, 134, 311–326. [Google Scholar] [CrossRef]
- Hartmann, T.E.; Moller, K.; Meyer, C.; Muller, T. Partial replacement of rock phosphate by sewage sludge ash for the production of superphosphate fertilizers. J. Plant Nutr. Soil Sci. 2020, 183, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T.; Makishima, A.; Nakamura, E. Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chem. Geol. 1999, 157, 175–187. [Google Scholar] [CrossRef]
- Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Kubtakova, I.V.; Toropchenova, E.S. Microwave sample preparation for geochemical and ecological studies. J. Anal. Chem. 2013, 68, 467–476. [Google Scholar] [CrossRef]
- Muller, E.I.; Mesko, M.F.; Moraes, D.O.; Korn, M.G.A.; Flores, E.M.M. Wet digestion using microwave heating. In Microwave-assisted Sample Preparation for Trace Element Analysis; Moraes Flores, E.M., Ed.; Elsevier: Oxford, UK, 2014; pp. 99–142. [Google Scholar]
- Borkowska-Burnecka, J.; Leśniewicz, A.; Zyrnicki, W. Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry–matrix effects and plasma parameters. Spectrochim. Acta B 2006, 61, 579–587. [Google Scholar] [CrossRef]
- Brenner, I.B.; Zischka, M.; Maichin, B.; Knapp, G. Ca and Na interference effects in an axially viewed ICP using low and high aerosol loadings. J. Anal. Atom. Spectrom. 1998, 13, 1257–1264. [Google Scholar] [CrossRef]
- Borkowska-Burnecka, J.; Szymczycha-Madeja, A.; Zyrnicki, W. Determination of toxic and other elements in calcium-rich materials using cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2010, 182, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.-Y.; Chan, W.-T. Plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry by group I and group II matrix-elements. Spectrochim. Acta B 2003, 58, 1301–1317. [Google Scholar] [CrossRef]
- de Boer, J.L.M.; Velterop, M. Empirical procedure for the reduction of mixed-matrix effects in inductively coupled plasma atomic emission spectrometry using an internal standard and proportional correction. Fres. J. Anal. Chem. 1996, 356, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Todoli, J.L.; Gras, L.; Hernandis, V.; Mora, J. Elemental matrix effects in ICP-AES. J. Anal. Atom. Spectrom. 2002, 17, 142–169. [Google Scholar] [CrossRef]
- van Veen, E.H.; de Loos-Vollenbregt, M.T.C. On the use of line intensity ratios and power adjustments to control matrix effects in inductively coupled plasma optical emission spectrometry. J. Anal. Atom. Spectrom. 1999, 14, 831–838. [Google Scholar] [CrossRef]
- Konieczka, P.; Namieśnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 16–22. [Google Scholar]
Element | Analytical Lines, nm | LDR a | A b | R2 c |
---|---|---|---|---|
Al | 309.2 | 0.5–10 | 8.26 × 103 | 0.9999 |
0.5–5.0 | 8.50 × 103 | 0.9998 | ||
396.1 | 0.5–10 | 4.18 × 104 | 0.9999 | |
0.5–5.0 | 4.26 × 104 | 0.9999 | ||
Ca | 315.8 | 0.5–10 | 1.18 × 104 | 0.9999 |
0.5–5.0 | 1.18 × 104 | 0.9999 | ||
317.9 | 0.5–10 | 3.86 × 104 | 0.9999 | |
0.5–5.0 | 3.86 × 104 | 0.9999 | ||
Cd | 214.4 | 0.1–10 | 3.94 × 104 | 0.9991 |
0.1–5.0 | 3.98 × 104 | 0.9997 | ||
0.1–2.0 | 4.00 × 104 | 0.9999 | ||
226.5 | 0.1–10 | 3.72 × 104 | 0.9990 | |
0.1–5.0 | 3.73 × 104 | 0.9998 | ||
0.1–2.0 | 3.83 × 104 | 0.9999 | ||
228.8 | 0.1–10 | 1.65 × 104 | 0.9996 | |
0.1–5.0 | 1.65 × 104 | 0.9997 | ||
0.1–2.0 | 1.72 × 104 | 0.9999 | ||
Fe | 238.2 | 0.5–10 | 2.28 × 104 | 0.9999 |
0.5–5.0 | 3.38 × 104 | 0.9999 | ||
259.9 | 0.5–10 | 2.53 × 104 | 0.9998 | |
0.5–5.0 | 2.60 × 104 | 0.9999 | ||
Mg | 280.2 | 0.5–10 | 1.69 × 105 | 0.9992 |
0.5–5.0 | 1.78 × 105 | 0.9996 | ||
285.2 | 0.5–10 | 4.35 × 104 | 0.9998 | |
0.5–5.0 | 4.35 × 104 | 0.9999 | ||
P | 177.4 | 0.5–10 | 8.75 × 101 | 0.9996 |
0.5–5.0 | 7.39 × 101 | 0.9982 | ||
5.0–10 | 1.11 × 102 | 0.9980 | ||
10–100 | 1.43 × 102 | 0.9985 | ||
50–200 | 1.80 × 102 | 0.9912 | ||
213.6 | 0.5–10 | 1.34 × 103 | 0.9999 | |
0.5–5.0 | 1.16 × 103 | 0.9999 | ||
5.0–10 | 1.25 × 103 | 0.9999 | ||
10–100 | 1.39 × 103 | 0.9999 | ||
50–200 | 1.50 × 103 | 0.9999 |
Analyte | DF a | Matrix | Interferent | Concentrations, mg kg−1 | Martix Effect, % | ||
---|---|---|---|---|---|---|---|
Cd | none | 214.4 nm | 226.5 nm | 228.8 nm | |||
A | Ca+P | 3500 + 1300 | −34 | −35 | −35 | ||
B | Na+K | both at 100 | −2 | −5 | −4 | ||
C | Mg | 20 | −1 | −3 | −2 | ||
D | Al | 25 | none | none | none | ||
E | Fe | 15 | none | none | none | ||
F | Ca+P+Na+K+Mg+Al+Fe | as above | −36 | −43 | −41 | ||
Al | ×10 | 309.2 nm | 396.1 nm | ||||
G | Ca+P | 350 + 130 | −19 | −6 | |||
H | Na+K | both at 10 | none | none | |||
I | Ca+P+Na+K | as above | −19 | −6 | |||
Fe | ×10 | 238.2 nm | 259.9 nm | ||||
G | Ca+P | 350 + 130 | −3 | −4 | |||
H | Na+K | both at 10 | none | none | |||
I | Ca+P+Na+K | as above | −3 | −4 | |||
Mg | ×10 | 280.2 nm | 285.2 nm | ||||
G | Ca+P | 350 + 130 | −15 | −8 | |||
H | Na+K | both at 10 | none | none | |||
I | Ca+P+Na+K | as above | −15 | −8 |
Procedure | LOD, ng g−1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analytical Lines, nm | |||||||||||||
Al | Ca | Cd | Fe | Mg | P | ||||||||
309.3 | 396.1 | 315.8 | 317.9 | 214.4 | 226.5 | 228.8 | 238.2 | 259.9 | 280.2 | 285.2 | 177.4 | 213.6 | |
P1 | 4.9 | 3.3 | 0.89 | 0.27 | 0.35 | 0.53 | 0.44 | 0.32 | 0.51 | 0.82 | 0.65 | 2.0 | 0.13 |
P2 | 11 | 3.6 | 1.6 | 0.49 | 0.46 | 0.67 | 0.55 | 0.93 | 1.2 | 1.7 | 1.3 | 15 | 1.0 |
P3 | 6.8 | 4.6 | 1.32 | 0.40 | 0.38 | 0.73 | 0.48 | 0.51 | 0.99 | 1.5 | 1.2 | 4.9 | 0.52 |
P4 | 3.8 | 1.8 | 0.81 | 0.25 | 0.33 | 0.40 | 0.43 | 0.29 | 0.32 | 0.74 | 0.60 | 1.2 | 0.08 |
Element | Unit | Certified Value | Determined Value | |||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
Al expressed as Al2O3 | g kg−1 | 5.5 ± 0.6 | 4.7 ± 0.3 | 4.7 ± 0.3 | 4.6 ± 0.3 | 5.2 ± 0.2 |
Ca expressed as CaO | g kg−1 | 518 ± 4 | 500 ± 8 | 490 ± 9 | 485 ± 10 | 511 ± 3 |
Cd | mg kg−1 | 20.8 ± 0.7 | 20.6 ± 0.2 | 20.4 ± 0.2 | 19.2 ± 0.6 | 20.2 ± 0.3 |
Fe expressed as Fe2O3 | g kg−1 | 2.3 ± 0.1 | 2.2 ± 0.1 | 2.1 ± 0.1 | 2.0 ± 0.1 | 2.3 ± 0.1 |
Mg expressed as MgO | g kg−1 | 4.0 ± 0.1 | 4.2 ± 0.2 | 4.1 ± 0.1 | 4.1 ± 0.1 | 4.1 ± 0.1 |
P expressed as P2O5 | g kg−1 | 329.8 ± 1.7 | 331.4 ± 5.1 | 331.1 ± 5.0 | 322.8 ± 5.9 | 330.6 ± 1.0 |
Fcalculated | ||||||
P1 | P2 | P3 | P4 | |||
Al expressed as Al2O3 | 4.00 | 4.00 | 4.00 | 9.00 | ||
Ca expressed as CaO | 4.00 | 5.06 | 6.25 | 1.78 | ||
Cd | 12.25 | 12.25 | 1.36 | 5.44 | ||
Fe expressed as Fe2O3 | 1.00 | 1.00 | 1.00 | 1.00 | ||
Mg expressed as MgO | 4.00 | 1.00 | 1.00 | 1.00 | ||
P expressed as P2O5 | 9.00 | 8.65 | 12.04 | 2.89 | ||
tcalculated | ||||||
P1 | P2 | P3 | P4 | |||
Al expressed as Al2O3 | 4.619 | 4.619 | 5.196 | 2.598 | ||
Ca expressed as CaO | 3.897 | 5.389 | 5.716 | 4.041 | ||
Cd | 1.732 | 3.464 | 4.619 | 3.464 | ||
Fe expressed as Fe2O3 | 1.732 | 3.464 | 5.196 | 0.000 | ||
Mg expressed as MgO | 1.732 | 1.732 | 1.732 | 1.732 | ||
P expressed as P2O5 | 0.543 | 0.450 | 2.055 | 1.386 |
Analyte | DF a | Added, mg kg−1 | Recovery, % | |||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
Al | ×10 ×10 | 1.0 | 85.5 ± 4.2 | 85.2 ± 5.3 | 82.3 ± 7.7 | 99.9 ± 0.9 |
2.0 | 89.1 ± 3.6 | 88.4 ± 3.8 | 86.7 ± 3.9 | 100.0 ± 0.7 | ||
Ca | ×1000 ×1000 | 2.0 | 102.8 ± 3.2 | 87.8 ± 12 | 81.3 ± 9.8 | 101.9 ± 0.5 |
4.0 | 99.3 ± 2.0 | 94.8 ± 9.9 | 83.4 ± 7.3 | 99.5 ± 0.3 | ||
Cd | nonenone | 0.05 | 101.4 ± 1.1 | 96.0 ± 6.3 | 79.9 ± 10 | 99.6 ± 1.3 |
0.10 | 99.6 ± 0.3 | 96.2 ± 9.0 | 84.2 ± 9.0 | 100.2 ± 0.3 | ||
Fe | ×10 ×10 | 1.0 | 101.7 ± 1.1 | 98.7 ± 2.6 | 93.5 ± 3.1 | 99.7 ± 0.9 |
2.0 | 100.3 ± 1.0 | 98.8 ± 1.8 | 94.6 ± 2.7 | 100.1 ± 0.7 | ||
Mg | ×10 ×10 | 1.0 | 102.5 ± 0.5 | 97.6 ± 1.1 | 99.9 ± 1.6 | 99.8 ± 0.4 |
2.0 | 98.3 ± 0.4 | 100.6 ± 1.0 | 100.0 ± 1.2 | 100.9 ± 0.2 | ||
P | ×1000 | 1.0 | 100.2 ± 0.2 | 100.6 ± 0.3 | 99.6 ± 1.0 | 100.0 ± 0.5 |
×1000 | 2.0 | 99.6 ± 1.1 | 99.5 ± 0.7 | 99.0 ± 0.5 | 100.2 ± 0.6 |
Samples | Concentration | |||||
---|---|---|---|---|---|---|
Al, g kg−1 | Ca, g kg−1 | Cd, mg kg−1 | Fe, g kg−1 | Mg, g kg−1 | P, g kg−1 | |
NIST 1400 (Bone Ash) | 0.515 ± 0.004 | 380 ± 1 | 0.035 ± 0.002 | 0.651 ± 0.001 | 6.83 ± 0.06 | 177 ± 1 |
Value from certificate | 0.530 iv | 382 ± 1 | 0.03 iv | 0.660 ± 0.027 | 6.84 ± 0.13 | 179 ± 2 |
CTA-AC-1 (Apatite Concentrate Kola Peninsula) | 4.12 ± 0.03 | 332 ± 2 | 0.313 ± 0.004 | 4.91 ± 0.06 | 0.442 ± 0.005 | 159 ± 1 |
Value from certificate | 4.10 iv | 327 ± 31 | no data | 5.00 iv | 0.435 iv | no data |
NCS DC70308 (Carbonate Rock) | 0.964 ± 0.018 | 272 ± 5 | 0.402 ± 0.010 | 3.11 ± 0.03 | 91.2 ± 1.2 | 0.040 ± 0.001 |
Value from certificate | 0.953 ± 0.105 | 272 ± 1 | 0.390 ± 0.12 | 3.13 ± 0.06 | 90.2 ± 0.4 | 0.039 ± 0.008 |
Dolomite | 0.650 ± 0.014 | 226 ± 3 | 9.67 ± 0.03 | 7.23 ± 0.06 | 121 ± 1 | 0.171 ± 0.005 |
Value from manufacturer | no data | 214–229 | no data | no data | 109–133 | no data |
Phosphate rock b | 2.65 ± 0.07 | 347 ± 2 | 15.4 ± 0.4 | 1.59 ± 0.03 | 2.47 ± 0.06 | 138 ± 1 |
Value from BCR-032 c | 2.91 ± 0.32 | 370 ± 3 | 20.8 ± 0.7 | 1.61 ± 0.07 | 2.41 ± 0.06 | 144 ± 1 |
Enriched superphosphate fertilizer | 4.22 ± 0.07 | 214 ± 4 | 8.33 ± 0.22 | 3.98 ± 0.06 | 5.20 ± 0.16 | 172 ± 1 |
Value from manufacturer | no data | 71.5 | no data | no data | no data | 175 |
Pork bones | 0.011 ± 0.001 | 51.0 ± 1.2 | 0.413 ± 0.020 | 0.055 ± 0.002 | 1.25 ± 0.02 | 27.6 ± 1.1 |
Pork bones after incineration | 0.036 ± 0.001 | 344 ± 2 | 0.218 ± 0.013 | 0.155 ± 0.002 | 7.56 ± 0.05 | 171 ± 1 |
Pork bones after steam gasification | 0.111 ± 0.002 | 308 ± 2 | 0.154 ± 0.007 | 0.186 ± 0.005 | 8.08 ± 0.07 | 177 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczycha-Madeja, A.; Welna, M.; Zabłocka-Malicka, M.; Pohl, P.; Szczepaniak, W. Development and Validation of an Analytical Method for Determination of Al, Ca, Cd, Fe, Mg and P in Calcium-Rich Materials by ICP OES. Molecules 2021, 26, 6269. https://doi.org/10.3390/molecules26206269
Szymczycha-Madeja A, Welna M, Zabłocka-Malicka M, Pohl P, Szczepaniak W. Development and Validation of an Analytical Method for Determination of Al, Ca, Cd, Fe, Mg and P in Calcium-Rich Materials by ICP OES. Molecules. 2021; 26(20):6269. https://doi.org/10.3390/molecules26206269
Chicago/Turabian StyleSzymczycha-Madeja, Anna, Maja Welna, Monika Zabłocka-Malicka, Pawel Pohl, and Włodzimierz Szczepaniak. 2021. "Development and Validation of an Analytical Method for Determination of Al, Ca, Cd, Fe, Mg and P in Calcium-Rich Materials by ICP OES" Molecules 26, no. 20: 6269. https://doi.org/10.3390/molecules26206269
APA StyleSzymczycha-Madeja, A., Welna, M., Zabłocka-Malicka, M., Pohl, P., & Szczepaniak, W. (2021). Development and Validation of an Analytical Method for Determination of Al, Ca, Cd, Fe, Mg and P in Calcium-Rich Materials by ICP OES. Molecules, 26(20), 6269. https://doi.org/10.3390/molecules26206269