HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Phenolic Compounds in Tomato Samples
2.1.1. Simple Phenolic Acid Derivatives
2.1.2. Hydroxycinnamoylquinic Acid Derivatives
2.1.3. Flavone Derivatives
2.1.4. Flavanone Derivatives
2.1.5. Flavonol Derivatives
2.2. Phenolic Compound Compositional Profile of the Three Tomato Processing Fractions
3. Materials and Methods
3.1. Sample Description
Tomato Samples
3.2. Separation of Tomato Pomace into Different Fractions
3.3. Extraction of Crude Protein from Tomato Seeds
3.4. Protein Content
3.5. Phenolic Compounds Determination by HPLC-DAD-qTOF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Bennett, N.R.; Wallsgrove, M.R. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Saman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Banjerdpongchai, R.; Wudtiwai, B.; Khaw-On, P.; Rachakhom, W.; Duangnil, N.; Kongtawelert, P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumor Biol. 2016, 37, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Barreca, D.; Mandalari, G.; Calderaro, A.; Smeriglio, A.; Trombetta, D.; Felice, M.R.; Gattuso, G. Citrus flavones: An update on sources, biological functions, and health prooting properties. Plants 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Goñi, I.; Hernández-Galiot, A. Intake of nutrient and non-nutrient dietary antioxidants. Contribution of macromolecular antioxidant polyphenols in an elderly mediterranean population. Nutrients 2019, 11, 2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.L.; Xiong, Y.L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef] [PubMed]
- Castel, V.; Andrich, O.; Netto, F.M.; Santiago, L.G.; Carrara, C.R. Total phenolic content and antioxidant activity of different streams resulting from pilot-plant processes to obtain Amaranthus mantegazzianus protein concentrates. J. Food Eng. 2014, 122, 62–67. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef]
- Maziero, G.C.; Baunwart, C.; Toledo, M.C.F. Estimates of the theoretical maximum daily intake of phenolic antioxidants BHA, BHT and TBHQ in Brazil. Food Addit. Contam. 2001, 18, 365–373. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayalaxmi, S.; Jayalakshmi, S.K.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Naczk, M. Phenolic in Food and Nutraceutical; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–558. [Google Scholar] [CrossRef]
- Issenberg, P.; Lustre, A.O. Phenolic components of smoked meat products. J. Agric. Food Chem. 1970, 18, 1056–1060. [Google Scholar] [CrossRef]
- Shahidi, F.; Fereidoon, P.; Wanasundara, C.; Hong, C. Antioxidant activity of phenolic compounds in meat model systems. ACS Symp. Ser. 1992, 506, 214–222. [Google Scholar] [CrossRef]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Pinela, J.; Carvalho, A.M.; Buelga, C.S.; Ferreira, I.C. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardens. Plant Foods Hum. Nutr. 2012, 67, 229–234. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, J.M. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Knoblich, M.; Anderson, B.; Latshaw, D. Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. J. Sci. Food Agric. 2005, 85, 1166–1170. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Jáuregui, O.; Di Lecce, G.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC–ESI-QTOF). Food Chem. 2011, 129, 877–883. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Liang, W.; Fitzloff, J.F.; van Breemen, R.B. Identification of caffeic acid derivatives in Actea racemosa (Cimicifuga racemosa, black cohosh) by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MS n identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Kuhnert, N.; Jaiswal, R.; Matei, M.F.; Sovdat, T.; Deshpande, S. How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovsek, U.; Mozetič Vodopivec, B. Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med. 2018, 24, 551–560. [Google Scholar] [CrossRef]
- Atanassova, M.; Bagdassarian, V. Rutin content in plant products. J. Univ. Chem. Technol. Metall. 2009, 44, 201–203. [Google Scholar]
- Ma, C.; Lv, H.; Zhang, X.; Chen, Z.; Shi, J.; Lu, M.; Lin, Z. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis. Anal. Chim. Acta 2013, 795, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xue, C.; Shang, E.X.; Duan, J.A.; Tang, Y.; Qian, D. Identification of hyperoside metabolites in rat using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J. Chromatogr. B Biomed. Appl. 2011, 879, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Rababah, T.; Ereifej, K.; Brewer, S.; Alli, I. Phenolic–protein interactions in oilseed protein isolates. Food Res. Int. 2013, 52, 178–184. [Google Scholar] [CrossRef]
- Health Survey for England. Official Statistics, National Statistics, Survey: Health Survey for England 2019 [NS]-NHS Digital; Health Survey for England: London, UK, 2019.
- Baker, P. Shared Experience on Protein Analysis in Crops and Derived Protein Extracts. New Food Magazine. 9 April 2020. Available online: https://www.newfoodmagazine.com/article/108511/protein-analysis/ (accessed on 12 October 2021).
- Miklavčič Višnjevec, A.; Baker, P.; Charlton, A.; Preskett, D.; Peeters, K.; Tavzes, Č.; Schwarzkopf, M. Developing an Olive Biorefinery in Slovenia: Analysis of Phenolic Compounds Found in Olive Mill Pomace and Wastewater. Molecules 2021, 26, 7. [Google Scholar] [CrossRef]
Peak Number | Compound | Extract * | RT | m/z [M]− | Fragments | Molecular Formula |
---|---|---|---|---|---|---|
1 | Coumaric acid 1 | 1 2 | 3.4 2.3 | 163.0406 | 163.0361, 119.0484 | C9H8O3 |
2 | 5-O-caffeoylchlorogenic acid | 1 | 5.3 | 353.0890 | 191.0549, 179.036, 135.0435 | C16H18O9 |
3 | Caffeic acid-O-hexoside 1 | 1 3 | 5.5 5.1 | 341.0880 | 179.0343, 119.0300 | C15H18O9 |
4 | Homovanillic acid glucoside | 1 3 | 5.9 5.9 | 343.1036 | 343.1941, 137.0625, 109.0597 | C15H20O9 |
5 | Chlorogenic acid | 1 2 3 | 6.1 6.1 5.8 | 363.0880 | 191.0540 | C16H18O9 |
6 | Caffeic acid-O-hexoside 2 | 1 3 | 6.1 5.8 | 341.0879 | 179.0345, 135.0406 | C15H18O9 |
7 | Rutin-O-hexoside | 1 3 | 6.2 6.0 | 771.2006 | 771.2017, 609.1429, 300.0212 | C33H40O21 |
8 | Cryptochlorogenic acid | 1 3 | 6.3 6.0 | 353.0875 | 191.0576, 173.0459, 135.0433 | C16H18O9 |
9 | Naringenin-C-diglycoside | 1 2 | 6.4 6.5 | 595.1675 | 505.1202, 475.1244, 385.0929, 355.0846 | C27H32O15 |
10 | Coumaric acid glucoside | 1 | 6.4 | 325.0927 | 163.0396, 119.0510 | C15H18O8 |
11 | Caffeic acid | 1 3 | 6.6 6.3 | 179.0358 | 135.0442, 179.0329 | C9H8O4 |
12 | Ferulic acid glucoside 1 | 1 3 | 6.7 5.7 | 355.1060 | 193.0489, 178.0345, 149.0512 | C16H20O9 |
13 | Vicenin-2 | 3 | 6.6 | 593.1517 | 473.0995, 353.0639 | C27H30O15 |
14 | Protocatechuic acid | 1 2 3 | 6.7 6.5 6.1 | 153.0194 | 153.0188 109.029 | C7H6O4 |
15 | Ferulic acid Glucoside 2 | 1 | 6.7 | 356.1107 | 193.0489, 178.0345, 149.0512 | C16H20O9 |
16 | Caffeic acid-O-hexoside 3 | 1 | 6.8 | 341.0893 | 135.0386, 179.0339 | C15H18O9 |
17 | Coumaroylquinic acid | 1 | 6.9 | 337.0948 | 191.0521, 163.0376 | C16H18O8 |
18 | Coumaric acid 2 | 1 2 3 | 7.2 7.6 7.3 | 163.0397 | 163.0416, 119.0502 | C9H8O3 |
19 | Rutin-O-pentoside | 1 2 3 | 7.2 7.4 7.3 | 741.1891 | 300.0239, 741.1882 | C32H38O20 |
20 | Feruloylquinic acid | 2 | 7.3 | 367.1042 | 191.0516 | C16H18O8 |
21 | Naringenin-C-glucoside | 2 3 | 7.3 7.5 | 433.1168 | 433.1228, 343.0811, | C21H22O10 |
22 | Naringenin-O-glucoside 1 | 3 | 7.6 | 433.1147 | 433.1203, 271.0590 | C21H22O10 |
23 | Rutin | 1 2 3 | 7.7 7.9 7.8 | 609.1469 | 609.1444, 300.0347, 179.0006 | C27H30O16 |
24 | Eriodyctyol-O-glucoside 1 | 3 | 7.7 | 449.1097 | 287.0549 | C21H22O11 |
25 | Phloretin-C-diglycoside | 2 3 | 7.8 7.9 | 597.1833 | 447, 387.1110, 357.0980, 417.1134 | C27H34O15 |
26 | Dicaffeoylquinic acid 1 | 1 2 3 | 7.9 8.1 7.9 | 515.1179 | 515.1241, 353.0863, 191.0566, 173.0416, 335.0748 | C25H24O12 |
27 | Dicaffeoylquinic acid 2 | 1 2 3 | 8.0 8.2 8.0 | 515.1206 | 515.1241, 353.0863, 191.0571, 173.0402, 335.0758 | C25H24O12 |
28 | Quercetin-3-galactoside | 1 3 | 8.1 7.9 | 463.0917 | 271.0197, 255.0216, 300.0279, 243.0251 | C21H20O12 |
29 | Apigenin-7-O-glucoside | 3 | 8.3 | 431.0996 | 431.1009, 269.0441 | C21H20O10 |
30 | Dicaffeoylquinic acid 3 | 2 | 8.4 | 515.1203 | 515.1054, 353.0859, 191.0570, 173.0429, 335.0619 | C25H24O12 |
31 | Kaempferol-3-O-rutinoside | 1 3 | 8.5 8.4 | 593.1523 | 593.1492, 285.0380 | C27H30O15 |
32 | Eriodityol-O-glucoside 2 | 3 | 8.4 | 449.1111 | 287.0439, 449.1029 | C21H22O11 |
33 | Naringenin-O-glucoside 2 | 3 | 8.5 | 433.1146 | 433.2202, 271.0610 | C21H22O10 |
34 | Naringenin-O-glucoside 3 | 1 3 | 8.6 8.5 | 433.1168 | 433.2202, 271.0581 | C21H22O10 |
35 | Eriodityol-O-glucoside 3 | 3 | 8.7 | 449.1111 | 287.0598 | C21H22O11 |
36 | Eriodictyol | 1 3 | 9.7 9.5 | 287.0563 | 151.0017, 135.0424 | C15H12O6 |
37 | Quercetin | 1 3 | 10.0 9.9 | 301.0360 | 301.036, 150.9920 | C15H12O5 |
38 | Naringenin 1 | 1 2 3 | 10.2 10.5 10.4 | 271.0612 | 151.0029, 119.0504 | C15H10O7 |
39 | Apigenin | 3 | 10.7 | 269.0475 | 269.4560 | C15H10O5 |
40 | Naringenin 2 | 1 | 10.8 | 271.0613 | 151.0045, 191.2330 | C15H12O5 |
Dry Weight (g) | Protein Concentration (mg Per g Dry Material) | Protein Yield (%) | |
---|---|---|---|
Hulls | 113.4 | 58.1 a | 12.0 |
First extract | 42.8 | 245.2 b | 19.2 |
Second extract | 18.6 | 190.7 b | 6.5 |
Third extract | 7.4 | 199.3 b | 2.7 |
Total extracts | 68.9 | - | 28.3 |
Extracts and Hulls | 182.3 | - | 40.4 |
Seeds | 200.0 | 274 c | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklavčič Višnjevec, A.; Baker, P.W.; Peeters, K.; Schwarzkopf, M.; Krienke, D.; Charlton, A. HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing. Molecules 2021, 26, 6403. https://doi.org/10.3390/molecules26216403
Miklavčič Višnjevec A, Baker PW, Peeters K, Schwarzkopf M, Krienke D, Charlton A. HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing. Molecules. 2021; 26(21):6403. https://doi.org/10.3390/molecules26216403
Chicago/Turabian StyleMiklavčič Višnjevec, Ana, Paul W. Baker, Kelly Peeters, Matthew Schwarzkopf, Dominik Krienke, and Adam Charlton. 2021. "HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing" Molecules 26, no. 21: 6403. https://doi.org/10.3390/molecules26216403
APA StyleMiklavčič Višnjevec, A., Baker, P. W., Peeters, K., Schwarzkopf, M., Krienke, D., & Charlton, A. (2021). HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing. Molecules, 26(21), 6403. https://doi.org/10.3390/molecules26216403