Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye
Abstract
:1. Introduction
2. Results
2.1. Synthesis of HKUST-1
2.1.1. Statistical Studies
2.1.2. Optimum Condition Localization and Its Validation
2.2. Characterization of HKUST-1
2.3. Adsorption of Crystal Violet Dye
3. Materials and Methods
3.1. Materials
3.2. Synthesis of HKUST-1
3.3. Statistical Analysis and Optimization
3.4. Adsorption Experiments
3.5. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Wang, J. Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores. J. Mater. 2021, 7, 440–459. [Google Scholar] [CrossRef]
- Cui, X.; Sun, X.; Liu, L.; Huang, Q.; Yang, H.; Chen, C.; Nie, S.; Zhao, Z.; Zhao, Z. In-situ fabrication of cellulose foam HKUST-1 and surface modi fi cation with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem. Eng. J. 2019, 369, 898–907. [Google Scholar] [CrossRef]
- Bhattarai, D.P.; Pant, B.; Acharya, J.; Park, M.; Ojha, G.P. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021, 26, 4948. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Kirillov, A.M.; Zhang, Y.; Hu, M.; Liu, W.; Yang, L.; Fang, R.; Liu, W. Covalent Construction of Sustainable Hybrid UiO-66-NH2@Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustain. Chem. Eng. 2019, 7, 3203–3212. [Google Scholar] [CrossRef]
- Iqbal, K.; Iqbal, A.; Kirillov, A.M.; Wang, B.; Liu, W.; Tang, Y. A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants. J. Mater. Chem. A 2017, 5, 6716–6724. [Google Scholar] [CrossRef]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Mu, X.; Lester, E.; Wu, T. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog. Nat. Sci. Mater. Int. 2018, 28, 584–589. [Google Scholar] [CrossRef]
- Ediati, R.; Setyani, M.A.; Sulistiono, D.O.; Santoso, E.; Hartanto, D.; Abdullah, M.M.A.B. Optimization of the use of mother liquor in the synthesis of HKUST-1 and their performance for removal of chromium (VI) in aqueous solutions. J. Water Process Eng. 2021, 39, 101670. [Google Scholar] [CrossRef]
- Moghadam, P.Z.; Li, A.; Liu, X.-W.; Bueno-Perez, R.; Wang, S.-D.; Wiggin, S.B.; Wood, P.A.; Fairen-Jimenez, D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chem. Sci. 2020, 11, 8373–8387. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y.; Lester, E.; Wu, T. Optimized synthesis of nano-scale high quality HKUST-1 under mild conditions and its application in CO2 capture. Microporous Mesoporous Mater. 2018, 270, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Domán, A.; Madarász, J.; Sáfrán, G.; Wang, Y.; László, K. Copper benzene-1,3,5-tricarboxylate (HKUST-1)-graphene oxide pellets for methane adsorption. Microporous Mesoporous Mater. 2021, 316, 110948. [Google Scholar] [CrossRef]
- Cortés-Súarez, J.; Celis-Arias, V.; Beltrán, H.I.; Tejeda-Cruz, A.; Ibarra, I.A.; Romero-Ibarra, J.E.; Sánchez-González, E.; Loera-Serna, S. Synthesis and Characterization of an SWCNT@HKUST-1 Composite: Enhancing the CO2 Adsorption Properties of HKUST-1. ACS Omega 2019, 4, 5275–5282. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Dong, H.; Liang, Y.; Yang, J.; Tang, G.; Zhang, W.; Cao, Y. Sustainable synthesis of HKUST-1 and its composite by biocompatible ionic liquid for enhancing visible-light photocatalytic performance. J. Clean. Prod. 2019, 208, 353–362. [Google Scholar] [CrossRef]
- Tran, T.V.; Nguyen, D.T.C.; Nguyen, T.T.; Le, H.T.N.; Nguyen, C.V.; Nguyen, T.D. Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation. J. Water Process Eng. 2020, 36, 101319. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Karimi, M.; Daasbjerg, K. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrason. Sonochem. 2017, 37, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Iqbal, A.; Kirillov, A.M.; Liu, W.; Tang, Y. Hybrid Metal-Organic-Framework/Inorganic Nanocatalyst toward Highly Efficient Discoloration of Organic Dyes in Aqueous Medium. Inorg. Chem. 2018, 57, 13270–13278. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Fakhrefatemi, M. Synthesis of magnetic HKUST-1 metal-organic framework for efficient removal of mefenamic acid from water. J. Mol. Struct. 2021, 1224, 129041. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Q.-W.; Zhuang, C.; Tang, P.-P.; Lin, N.; Wei, L.-Q. Controlled release of drug molecules in metal–organic framework material HKUST-1. Inorg. Chem. Commun. 2017, 79, 78–81. [Google Scholar] [CrossRef]
- Lin, K.-S.; Adhikari, A.K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 13865–13871. [Google Scholar] [CrossRef]
- Pangestu, T.; Kurniawan, Y.; Soetaredjo, F.E.; Santoso, S.P.; Irawaty, W.; Yuliana, M.; Hartono, S.B.; Ismadji, S. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J. Environ. Chem. Eng. 2019, 7, 103277. [Google Scholar] [CrossRef] [Green Version]
- DeCoste, J.B.; Denny, M.S.; Peterson, G.W.; Mahle, J.J.; Cohen, S.M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 2016, 7, 2711–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.; Shui, Y.; Bai, Y.; Cheng, Y.; Wang, Q.; Zheng, X.; Zhao, Y.; Wang, S.; Dong, W.; Yang, T.; et al. Bottom-up formation of carbon-based magnetic honeycomb material from metal-organic framework-guest polyhedra for the capture of rhodamine B. ACS Omega 2019, 4, 5578–5585. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, S.-H.; Yang, S.-T.; Ahn, W.-S. Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous Mesoporous Mater. 2012, 161, 48–55. [Google Scholar] [CrossRef]
- Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater. 2010, 132, 121–127. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680. [Google Scholar] [CrossRef]
- Steenhaut, T.; Grégoire, N.; Barozzino-Consiglio, G.; Filinchuk, Y.; Hermans, S. Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation. RSC Adv. 2020, 10, 19822–19831. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921–2926. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, M.R.; Senthilnathan, S.; Balzer, C.J.; Shan, B.; Chen, L.; Mu, B. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrason. Sonochem. 2017, 34, 365–370. [Google Scholar] [CrossRef]
- Van Assche, T.R.C.; Desmet, G.; Ameloot, R.; De Vos, D.E.; Terryn, H.; Denayer, J.F.M. Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous Mesoporous Mater. 2012, 158, 209–213. [Google Scholar] [CrossRef]
- Vehrenberg, J.; Vepsäläinen, M.; Macedo, D.S.; Rubio-Martinez, M.; Webster, N.A.S.; Wessling, M. Steady-state electrochemical synthesis of HKUST-1 with polarity reversal. Microporous Mesoporous Mater. 2020, 303, 110218. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Macedo, D.S.; Gong, H.; Rubio-Martinez, M.; Bayatsarmadi, B.; He, B. Electrosynthesis of HKUST-1 with flow-reactor post-processing. Appl. Sci. 2021, 11, 3340. [Google Scholar] [CrossRef]
- Zou, F.; Yu, R.; Li, R.; Li, W. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: Selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. ChemPhysChem 2013, 14, 2825–2832. [Google Scholar] [CrossRef]
- Blanita, G.; Borodi, G.; Lazar, D.M.; Biris, A.R.; Barbu-Tudoran, L.; Coldea, I.; Lupu, D. Microwave assisted non-solvothermal synthesis of metal-organic frameworks. RSC Adv. 2016, 6, 25967–25974. [Google Scholar] [CrossRef]
- Tian, T.; Zeng, Z.; Vulpe, D.; Casco, M.E.; Divitini, G.; Midgley, P.A.; Silvestre-Albero, J.; Tan, J.-C.; Moghadam, P.Z.; Fairen-Jimenez, D. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat. Mater. 2018, 17, 174–179. [Google Scholar] [CrossRef]
- Tan, P.; Xie, X.-Y.; Liu, X.-Q.; Pan, T.; Gu, C.; Chen, P.-F.; Zhou, J.-Y.; Pan, Y.; Sun, L.-B. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation. J. Hazard. Mater. 2017, 321, 344–352. [Google Scholar] [CrossRef]
- Han, S.; Ciufo, R.A.; Meyerson, M.L.; Keitz, B.K.; Mullins, C.B. Solvent-free vacuum growth of oriented HKUST-1 thin films. J. Mater. Chem. A 2019, 7, 19396–19406. [Google Scholar] [CrossRef]
- Huo, J.; Brightwell, M.; El Hankari, S.; Garai, A.; Bradshaw, D. A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. J. Mater. Chem. A 2013, 1, 15220–15223. [Google Scholar] [CrossRef]
- Mao, Y.; Shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. Chem. Commun. 2013, 49, 5666–5668. [Google Scholar] [CrossRef] [PubMed]
- Toyao, T.; Liang, K.; Okada, K.; Ricco, R.; Styles, M.J.; Tokudome, Y.; Horiuchi, Y.; Hill, A.J.; Takahashi, M.; Matsuoka, M.; et al. Positioning of the HKUST-1 metal-organic framework (Cu3(BTC)2) through conversion from insoluble Cu-based precursors. Inorg. Chem. Front. 2015, 2, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Lis, M.J.; Caruzi, B.B.; Gil, G.A.; Samulewski, R.B.; Bail, A.; Scacchetti, F.A.P.; Moisés, M.P.; Bezerra, F.M. In-situ direct synthesis of HKUST-1 in wool fabric for the improvement of antibacterial properties. Polymers 2019, 11, 713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, T.; Liu, T.; Mo, H.; Yuan, Z.; Cui, F.; Jin, Y.; Chen, X. Cu-based metal-organic framework HKUST-1 as effective catalyst for highly sensitive determination of ascorbic acid. RSC Adv. 2020, 10, 22881–22890. [Google Scholar] [CrossRef]
- Ediati, R.; Dewi, S.K.; Hasan, M.R.; Kahardina, M.; Murwani, I.K.; Nadjib, M. Mesoporous HKUST-1 synthesized using solvothermal method. Rasayan J. Chem. 2019, 12, 1653–1659. [Google Scholar] [CrossRef]
- Rivera-Torrente, M.; Filez, M.; Schneider, C.; Van Der Feltz, E.C.; Wolkersdörfer, K.; Taffa, D.H.; Wark, M.; Fischer, R.A.; Weckhuysen, B.M. Micro-spectroscopy of HKUST-1 metal-organic framework crystals loaded with tetracyanoquinodimethane: Effects of water on host-guest chemistry and electrical conductivity. Phys. Chem. Chem. Phys. 2019, 21, 25678–25689. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sun, F.; Jia, J.; Borjigin, T.; Zhu, G. Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm 2013, 15, 4094–4098. [Google Scholar] [CrossRef] [Green Version]
- Tovar, T.M.; Zhao, J.; Nunn, W.T.; Barton, H.F.; Peterson, G.W.; Parsons, G.N.; LeVan, M.D. Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138, 11449–11452. [Google Scholar] [CrossRef]
- Loera-Serna, S.; Núñez, L.L.; Flores, J.; López-Simeon, R.; Beltrán, H.I. An alkaline one-pot metathesis reaction to give a [Cu3(BTC)2] MOF at r.t., with free Cu coordination sites and enhanced hydrogen uptake properties. RSC Adv. 2013, 3, 10962–10972. [Google Scholar] [CrossRef]
- Wang, F.; Guo, H.; Chai, Y.; Li, Y.; Liu, C. The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”. Microporous Mesoporous Mater. 2013, 173, 181–188. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, J.; Li, X.; Han, Y.; Meng, H.; Wang, T.; Zhang, X. Fabrication of hybrid magnetic HKUST-1 and its high efficient adsorption performance for Congo red dye. RSC Adv. 2015, 5, 19199–19202. [Google Scholar] [CrossRef]
- Parsazadeh, N.; Yousefi, F.; Ghaedi, M.; Dashtian, K.; Borousan, F. Preparation and characterization of monoliths HKUST-1 MOF via straightforward conversion of Cu(OH)2-based monoliths and its application for wastewater treatment: Artificial neural network and central composite design modeling. New J. Chem. 2018, 42, 10327–10336. [Google Scholar] [CrossRef]
- Ediati, R.; Laharto, P.B.F.; Safitri, R.; Mahfudhah, H.; Sulistiono, D.O.; Syukrie, T.D.; Nadjib, M. Synthesis of HKUST-1 with addition of Al-MCM-41 as adsorbent for removal of methylene blue from aqueous solution. Mater. Today Proc. 2021, 46, 1799–1806. [Google Scholar] [CrossRef]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Facile and green synthesis of starfruit-like ZIF-L, and its optimization study. Molecules 2021, 26, 4416. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Sun, Q. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface. Appl. Surf. Sci. 2018, 440, 1219–1226. [Google Scholar] [CrossRef]
- Li, X.; Zheng, L.; Huang, L.; Zheng, O.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Adsorption removal of crystal violet from aqueous solution using a metal-organic frameworks material, copper coordination polymer with dithiooxamide. J. Appl. Polym. Sci. 2013, 129, 2857–2864. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Zeng, Q.; Liu, D. Strategies for overcoming defects of HKUST-1 and its relevant applications. Adv. Mater. Interfaces 2019, 6, 1900423. [Google Scholar] [CrossRef]
- Zhou, L.; Niu, Z.; Jin, X.; Tang, L.; Zhu, L. Effect of lithium doping on the structures and CO2 adsorption properties of metal-organic frameworks HKUST-1. ChemistrySelect 2018, 3, 12865–12870. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Yang, H.; Petit, C.; Hsu, F.-K. Removing oil droplets from water using a copper-based metal organic frameworks. Chem. Eng. J. 2014, 249, 293–301. [Google Scholar] [CrossRef]
- Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. J. Colloid Interface Sci. 2017, 490, 685–694. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.; Duan, X.; Sun, H.; Wang, S.; Fang, X. Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef]
- Xu, F.; Yu, Y.; Yan, J.; Xia, Q.; Wang, H.; Li, J.; Li, Z. Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chem. Eng. J. 2016, 303, 231–237. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, J.-H. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 2019, 130, 104–113. [Google Scholar] [CrossRef]
- Zaheer, Z.; Bawazir, W.A.; Al-Bukhari, S.M.; Basaleh, A.S. Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Mater. Chem. Phys. 2019, 232, 109–120. [Google Scholar] [CrossRef]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Optimization of cellulose nanocrystals from bamboo shoots using Response Surface Methodology. Heliyon 2019, 5, e02807. [Google Scholar] [CrossRef]
- Yuliana, M.; Sutrisno, R.J.; Hermanto, S.; Ismadji, S.; Wijaya, C.J.; Santoso, S.P.; Soetaredjo, F.E.; Ju, Y.-H. Hydrophobic cetyltrimethylammonium bromide-pillared bentonite as an effective palm oil bleaching agent. ACS Omega 2020, 5, 28844–28855. [Google Scholar] [CrossRef]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Hydrophobic modification of cellulose nanocrystals from bamboo shoots using rarasaponins. ACS Omega 2020, 5, 20967–20975. [Google Scholar] [CrossRef]
Run Order | Blocks | Points | Parameters | Responses (mg/g) | |||
---|---|---|---|---|---|---|---|
A | B (h) | C (% v/v) | |||||
1 | 1 | Cube | 0.25 | 18.0 | 2.5 | 338.94 | 334.95 |
2 | 0.75 | 18.0 | 2.5 | 251.15 | 258.95 | ||
3 | 0.25 | 30.0 | 2.5 | 484.57 | 477.17 | ||
4 | 0.75 | 30.0 | 2.5 | 389.77 | 390.49 | ||
5 | 0.25 | 18.0 | 7.5 | 489.23 | 483.71 | ||
6 | 0.75 | 18.0 | 7.5 | 389.08 | 390.19 | ||
7 | 0.25 | 30.0 | 7.5 | 684.29 | 687.01 | ||
8 | 0.75 | 30.0 | 7.5 | 580.39 | 582.81 | ||
9 | Axial | 0.08 | 24.0 | 5.0 | 500.98 | 500.88 | |
10 | 0.92 | 24.0 | 5.0 | 339.33 | 349.35 | ||
11 | 0.75 | 13.9 | 5.0 | 592.45 | 600.81 | ||
12 | 0.75 | 34.1 | 5.0 | 875.66 | 882.37 | ||
13 | 0.75 | 24.0 | 0.8 | 131.36 | 131.32 | ||
14 | 0.75 | 24.0 | 9.2 | 404.93 | 418.14 | ||
15 | Center | 0.75 | 24.0 | 5.0 | 976.09 | 972.02 | |
16 | 0.75 | 24.0 | 5.0 | 961.66 | 972.02 | ||
17 | 0.75 | 24.0 | 5.0 | 965.93 | 972.02 | ||
18 | 0.75 | 24.0 | 5.0 | 971.97 | 972.02 | ||
19 | 0.75 | 24.0 | 5.0 | 970.63 | 972.02 | ||
20 | 0.75 | 24.0 | 5.0 | 958.03 | 972.02 | ||
21 | 2 | Cube | 0.25 | 18.0 | 2.5 | 342.49 | 334.95 |
22 | 0.75 | 18.0 | 2.5 | 265.27 | 258.95 | ||
23 | 0.25 | 30.0 | 2.5 | 484.69 | 477.17 | ||
24 | 0.75 | 30.0 | 2.5 | 396.58 | 390.49 | ||
25 | 0.25 | 18.0 | 7.5 | 473.75 | 483.71 | ||
26 | 0.75 | 18.0 | 7.5 | 396.92 | 390.19 | ||
27 | 0.25 | 30.0 | 7.5 | 696.10 | 687.01 | ||
28 | 0.75 | 30.0 | 7.5 | 569.87 | 582.81 | ||
29 | Axial | 0.08 | 24.0 | 5.0 | 509.95 | 500.88 | |
30 | 0.92 | 24.0 | 5.0 | 354.74 | 349.35 | ||
31 | 0.75 | 13.9 | 5.0 | 590.16 | 600.81 | ||
32 | 0.75 | 34.1 | 5.0 | 901.98 | 882.37 | ||
33 | 0.75 | 24.0 | 0.8 | 124.22 | 131.32 | ||
34 | 0.75 | 24.0 | 9.2 | 427.06 | 418.14 | ||
35 | Center | 0.75 | 24.0 | 5.0 | 975.51 | 972.02 | |
36 | 0.75 | 24.0 | 5.0 | 991.12 | 972.02 | ||
37 | 0.75 | 24.0 | 5.0 | 981.30 | 972.02 | ||
38 | 0.75 | 24.0 | 5.0 | 976.08 | 972.02 | ||
39 | 0.75 | 24.0 | 5.0 | 974.89 | 972.02 | ||
40 | 0.75 | 24.0 | 5.0 | 974.91 | 972.02 | ||
41 | 3 | Cube | 0.25 | 18.0 | 2.5 | 332.64 | 334.95 |
42 | 0.75 | 18.0 | 2.5 | 270.52 | 258.95 | ||
43 | 0.25 | 30.0 | 2.5 | 458.79 | 477.17 | ||
44 | 0.75 | 30.0 | 2.5 | 382.67 | 390.49 | ||
45 | 0.25 | 18.0 | 7.5 | 491.90 | 483.71 | ||
46 | 0.75 | 18.0 | 7.5 | 389.29 | 390.19 | ||
47 | 0.25 | 30.0 | 7.5 | 671.83 | 687.01 | ||
48 | 0.75 | 30.0 | 7.5 | 590.31 | 582.81 | ||
49 | Axial | 0.08 | 24.0 | 5.0 | 491.95 | 500.88 | |
50 | 0.92 | 24.0 | 5.0 | 351.95 | 349.35 | ||
51 | 0.75 | 13.9 | 5.0 | 604.00 | 600.81 | ||
52 | 0.75 | 34.1 | 5.0 | 883.50 | 882.37 | ||
53 | 0.75 | 24.0 | 0.8 | 131.01 | 131.32 | ||
54 | 0.75 | 24.0 | 9.2 | 427.96 | 418.14 | ||
55 | Center | 0.75 | 24.0 | 5.0 | 954.05 | 972.02 | |
56 | 0.75 | 24.0 | 5.0 | 972.29 | 972.02 | ||
57 | 0.75 | 24.0 | 5.0 | 973.07 | 972.02 | ||
58 | 0.75 | 24.0 | 5.0 | 978.76 | 972.02 | ||
59 | 0.75 | 24.0 | 5.0 | 963.96 | 972.02 | ||
60 | 0.75 | 24.0 | 5.0 | 976.38 | 972.02 |
Sources | DF | Sum of Squares | Mean Squares | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 11 | 4,624,604 | 420,419 | 5492.81 | <0.0001 | Significant |
Blocks | 2 | 612 | 306 | 4.00 | 0.0247 | Significant |
1 | 83,149 | 83,149 | 1086.35 | <0.0001 | Significant | |
1 | 287,069 | 287,069 | 3750.58 | <0.0001 | Significant | |
1 | 297,919 | 297,919 | 3892.34 | <0.0001 | Significant | |
1 | 1,616,395 | 1,616,395 | 21,118.34 | <0.0001 | Significant | |
1 | 286,940 | 286,940 | 3748.90 | <0.0001 | Significant | |
1 | 2,627,639 | 2,627,639 | 34,330.33 | <0.0001 | Significant | |
1 | 170 | 170 | 2.23 | 0.1421 | Insignificant | |
1 | 460 | 460 | 6.01 | 0.0179 | Significant | |
1 | 5599 | 5599 | 73.15 | <0.0001 | Significant | |
Error | 48 | 3674 | 77 | |||
Lack-of-Fit | 33 | 2815 | 85 | 1.49 | 0.2072 | Insignificant |
Pure Error | 15 | 859 | 57 | |||
Total | 59 | 4,628,278 |
Runs | Parameters | (mg/g) | (mg/g) | Error (%) | ||
---|---|---|---|---|---|---|
A | B (h) | C (% v/v) | ||||
1 | 0.4703 | 27.2 | 5.5 | 1005.22 | 980.75 | 2.43 |
2 | 970.56 | 3.45 | ||||
3 | 982.66 | 2.24 | ||||
(mg/g) | 977.99 ± 6.51 | |||||
Mean Error (%) | 2.71 ± 0.65 |
Materials | Relative Intensity | Crystallinity (%) | Ratio | Ref. | ||||
---|---|---|---|---|---|---|---|---|
HKUST-1 synthesized with 1% v/v acetic acid | 0.242 | 0.345 | 1.000 | 0.332 | 0.117 | 104.5 | 0.70 | This study |
HKUST-1 synthesized with 2.5% v/v acetic acid | 0.222 | 0.327 | 1.000 | 0.305 | 0.098 | 100.2 | 0.68 | |
HKUST-1 synthesized under optimum condition | 0.362 | 0.344 | 1.000 | 0.327 | 0.152 | 112.2 | 1.05 | |
HKUST-1 synthesized with 7.5% v/v acetic acid | 0.253 | 0.326 | 1.000 | 0.307 | 0.110 | 102.5 | 0.78 | |
HKUST-1 synthesized with 10% v/v acetic acid | 0.224 | 0.338 | 1.000 | 0.303 | 0.107 | 101.1 | 0.66 | |
Basolite C300 | 0.160 | 0.476 | 1.000 | 0.274 | 0.038 | 100.0 | 0.34 | Mu et al. [11] |
Models | Equations | Constants | Values |
---|---|---|---|
Pseudo-first order | (mg/g) | 868.3959 | |
(1/min) | 0.0308 | ||
0.9141 | |||
Pseudo-second order | (mg/g) | 998.4670 | |
(g/mg·min) | 4.0202 × 10−5 | ||
0.9624 | |||
Intra-particle diffusion | (mg/g·min0.5) | 60.1069 | |
(mg/g) | 128.9734 | ||
0.9625 |
Models | Equations | Constants | Values |
---|---|---|---|
Langmuir | (mg/g) | 997.3250 | |
(L/mg) | 0.0247 | ||
0.0358 | |||
0.9482 | |||
Freundlich | ((mg/g)(mg/L)−n) | 98.6877 | |
2.3733 | |||
0.9958 | |||
Dubinin-Radushkevich | (mg/g) | 719.4296 | |
(mol2/kJ2) | 5.8866 × 10−5 | ||
(kJ/mol) | 92.1622 | ||
0.7328 |
Parameters | Symbols | Levels | ||||
---|---|---|---|---|---|---|
−1.68 | −1 | 0 | +1 | +1.68 | ||
Molar ratio of ligand to metal | 0.08 | 0.25 | 0.50 | 0.75 | 0.92 | |
Reaction time (h) | 13.9 | 18.0 | 24.0 | 30.0 | 34.1 | |
Acetic acid concentration (% v/v) | 0.8 | 2.5 | 5.0 | 7.5 | 9.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye. Molecules 2021, 26, 6430. https://doi.org/10.3390/molecules26216430
Wijaya CJ, Ismadji S, Aparamarta HW, Gunawan S. Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye. Molecules. 2021; 26(21):6430. https://doi.org/10.3390/molecules26216430
Chicago/Turabian StyleWijaya, Christian J., Suryadi Ismadji, Hakun W. Aparamarta, and Setiyo Gunawan. 2021. "Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye" Molecules 26, no. 21: 6430. https://doi.org/10.3390/molecules26216430
APA StyleWijaya, C. J., Ismadji, S., Aparamarta, H. W., & Gunawan, S. (2021). Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye. Molecules, 26(21), 6430. https://doi.org/10.3390/molecules26216430