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Abstract: Based on density functional theory, we have systematically investigated the geometric,
magnetic, and electronic properties of fluorographene with three types of vacancy defects. With
uneven sublattice, the partial defect structures are significantly spin-polarized and present midgap
electronic states. The magnetic moment is mainly contributed by the adjacent C atoms of vacancy
defects. Furthermore, the strain dependence of the bandgap is analyzed and shows a linear trend
with applied strain. This defect-induced tunable narrow bandgap material has great potential in
electronic devices and spintronics applications.

Keywords: fluorographene; vacancy; magnetic moment; strain

1. Introduction

Graphene has received widespread attention for its unique chemical or physical
characteristics and exhibiting great potentials in optics, spintronics, and optoelectronics
since its discovery [1–7]. However, the gapless band structure, which fails to switch current
“on” and “off”, obstructs its applications in electronics such as field-effect transistors (FET).
In order to overcome this obstruction, to date, diverse strategies have been proposed to open
the zero bandgap and one of the effective schemes is chemical functionalization [8–13].
Functional graphene, including graphene oxide and halogenated graphene, has been
proved to possess extraordinary properties as well as an expected tunable bandgap [14–19].
For example, by halogen (F, Cl, Br, I) doping, halogenated graphene is suggested to be
capable to regulate the bandgap in a wide range and also could enhance the reaction
kinetics of the Li–S cathode, leading to a high-performance lithium battery [20,21]. As the F
atom possesses a higher electronegativity than other halogen atoms, fluorinated graphene
(CFx), a typical type of halogenated graphene, has been verified to be more stable than
other types, and its properties are strongly dependent on the degree of fluorination [22–24].
By modulating F/C ratios, graphene, a nonmagnetic semimetal, can be transformed into a
nonmagnetic/magnetic semiconductor/insulator [25]. With an F atom attached to each
C atom, fluorographene (fully fluorinated graphene) was reported to be a high-quality
insulator (resistance >10 GΩ at room-temperature) with a wide optical bandgap (3.8 eV),
large negative magnetic resistance (a factor of 40 in 9T field), and remarkable mechanical
strength, showing great potential in the electronic applications [26,27].

During the past two decades, many efforts have been made to fabricate fluoro-
graphene [27–30]. In 2010, Cheng, et al. reported the synthesis of graphene fluoride
by reacting graphite and fluorine gas. They demonstrated that the band structure and con-
ductivity of CFx were reversible by fluorination or reduction reactions [27]. After that, in
2011, Jeon and his collaborators produced fluorographene with the treatment of graphene
with xenon difluoride (XeF2) and pave the way to develop graphene-based semiconductors
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by the direct chemical fluorination method [28]. Recently, the successful thermal exfolia-
tion of fluorinated graphene at room temperature indicated the feasibility of producing
large-scale fluorographene [30]. However, considering the high temperature involved in
the fluorination processes, structural defects, especially vacancy defects may appear and
deteriorate the performance of structures such as magnetic momentum and conductivity,
which has an important impact on the magnetic and electronic applications [27,31]. Many
calculations also show that defects will have a great influence on electromagnetic proper-
ties of two-dimensional materials [32,33]. Therefore, it is of great meaning to explore the
theoretical mechanism of vacancy defects and deeply understand the defects’ influence
on structural performance. In this article, we studied fluorographene with three types of
vacancy defects, including single F atom vacancy (VF-fluorographene), single C–F vacancy
(VsCF-fluorographene), and double CF vacancy (VdCF-fluorographene) via first-principle
theory. The ab initio molecular dynamics (MD) simulations were performed to estimate
the thermodynamical stability. The spin-charge density was analyzed to figure out how
magnetic moment induced by vacancy defects. Furthermore, band structures, as well as
the density of states, are also investigated. Although fluorographene is an insulator with
a large bandgap, it can be transformed into a semiconductor by introducing appropriate
vacancy defects and the bandgap can be tuned by the external strains.

2. Results and Discussion

To avoid the interactions between defects, 5 × 3 supercell of fluorographene is estab-
lished. We chose three typical vacancy structures (single F, single C–F, and double C–F
vacancy) by referring to the vacancy defect structures in other functional graphene [14,15].
Figure 1 displays the structures of VF-, VCF- and VdCF-fluorographene, respectively.
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Figure 1. The 5 × 3 supercell of (a) fluorographene, and three types of vacancy defects: (b) flu-
orographene with F vacancy (VF-fluorographene), (c) fluorographene with single C–F vacancy
(VsCF-fluorographene), and (d) fluorographene with double C–F vacancy (VdCF-fluorographene).
The brown and light-grey spheres represent C and F atoms, respectively. The blue rectangular in
(a) is the unit cell of fluorographene, while the red rectangular in (b–d) represent the areas greatly
impacted by vacancy defects.
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The C–F bond length (1.384 Å) and angle between adjacent C–C bonds (110.8◦) are
in good agreement with the previous calculation (1.37 Å/111◦) [34]. With an F absence,
the C0 atom in VF-fluorographene connects to three nearest neighbor C1 atoms, and there
is a slight distortion in the lattice, especially in the red rectangular where the lattice is
greatly perturbed by the vacancy defect. The buckling height of the C0 atom decreases
remarkably due to the enhancement of the C0–C1 bonding strength. Similarly, for the
VsCF- and VdCF-fluorographene, the bond strength of C1–C enhanced since C1 atoms move
close to their adjacent C atoms. The vacancy defects break the original symmetry of
fluorographene. VF- and VsCF-fluorographene fluorographene shows mirror symmetry,
while VdCF-fluorographene shows central symmetry.

The structural data of fluorographene and fluorographene with vacancy defects are
summarized in Table 1. The decrease of the average bond length dC1−C in all these struc-
tures confirms the enhancement of C1–C bonding strength. With the F defect, the average
C1–F bond length dC1−F in VF-fluorographene show an unexpected increase, which is
quite different from VsCF- and VdCF-fluorographene. This shows that compared to flu-
orographene, the interaction between C1 and F atoms of VF-fluorographene is weaker,
while that of VsCF- and VdCF-fluorographene are stronger. The deviation of lattice angle
θ in VdCF-fluorographene demonstrates that the deformation caused by the double C–F
vacancy is stronger than others.

Table 1. The structural data including lattice information, average bond length (dC1−C and
dC1−F), average angle between adjacent C1–C (ϕC−C1−C) and formation energy of fluorographene,
VF-, VsCF-, and VdCF-fluorographene. C1 is the nearest neighbor C atoms of vacancy defects.
E f = (Etotal − mEC − nEF)/ntot, where EC and EF are the energy of C and F atom obtained from
diamond and F2, respectively. The m and n represent the numbers of the C and F atoms.

dC1−C(Å) dC1−F(Å) ϕC−C1−C(◦) a(Å) b(Å) θ(◦) Ef(eV)

fluorographene 1.575 1.384 110.807 13.015 13.525 90.00 −0.862
VF-fluorographene 1.518 1.412 113.828 12.933 13.442 90.00 −0.840

VsCF-fluorographene 1.52 1.342 109.363 13.035 13.497 90.01 −0.828
VdCF-fluorographene 1.523 1.361 107.185 12.931 13.254 88.47 −0.823

The formation energies of the fluorographene with vacancy defects are shown in
Table 1. Even though the energies of vacancy configurations are slightly larger than that
of fluorographene, the small deviations (less than 40 meV/atom) suggest that VF-, VsCF-,
and VdCF-fluorographene could be stabilized at nonequilibrium conditions. We performed
the ab initio molecular dynamics (AIMD) simulation to verify the thermodynamic stability
of fluorographene with vacancy defects at room temperature (300 K). The results are
shown in Figure 2. As the variations in the total energies are within 0.15 eV/atom and
the atomic structures maintain well during AIMD simulation for 10 ps, VF-, VsCF-, and
VdCF-fluorographene are predicted to be thermodynamically stable at room temperature.

By absorbing the F atom, the depletion of the local π bond causes charge transfer in
fluorographene. Since F atom possesses a higher electronegativity than C atom, electrons
transfer from the C atom to its connected F atom, indicating that C–F is a polar covalent
bond. The calculated charge of the C atom and F atom, obtained by the Hirshfeld-based
method [9], are +0.48, −0.48, respectively. Sounding F atom vacancy, C0 atom remains
~4 by maintaining its unpair electron instead of reducing its electron passes to F atom,
while the charge sharing of C1–F bonds adjacent to the vacancy has some little deviations.
The charge sharing of the C–F bond is closely related to the third-order nonlinear optical
response [35]. The Bader charge of nearest C–F bonds in VsCF- and VdCF-fluorographene
also has been investigated and it is convinced that the charge transfer scheme will be
affected by inducing vacancy. This result is in agreement with the change of bond strength
shown in Table 1.
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Figure 2. Variation of the total energy of (a) VF-fluorographene, (b) VsCF-fluorographene, and
(c) VdCF-fluorographene during the AIMD simulation at room temperature. The inset pictures are
the atomic configurations after 10 ps.

To figure out whether vacancy can induce magnetic moment in fluorographene,
we analyzed the spin density of defects structures and found that both VF- and VsCF-
fluorographene are magnetic and hold 1µB magnetic moment, whereas VdCF-fluorographene
is nonmagnetic. This is consistent with the reports that only fluorinated graphene with
uneven F atoms in the double sides is magnetic and can be explained by Lieb’s theo-
rem [36]. Figure 3 demonstrates the spin densities of VF- and VsCF-fluorographene. It
is obvious that the magnetic moment of VF-fluorographene mostly comes from the C0
atom (0.72 µB) nearest to F vacancy, while that of VsCF-fluorographene is mainly provided
by C1 atoms (0.48 µB, 0.49 µB, and −0.29 µB) next to the C–F vacancy. The discrep-
ancy can be explained by the asymmetry structure as a consequence of vacancy defects.
Furthermore, the three F atoms adjacent to C1 atoms have nonnegligible contributions:
0.06 µB each F aligned ferromagnetically for VF-fluorographene, (0.09 µB, 0.09 µB,−0.06 µB)
for VsCF-fluorographene.
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The electronic properties of fluorographene and fluorographene with vacancy defects
are investigated to further understand the origin of magnetism. The results are shown
in Figure 4. It is revealed that fluorographene is an insulator with a bandgap of 3.09 eV,
which is in good agreement with early reports (3.10 eV) [23], and VdCF-fluorographene has
a 3.21 eV bandgap. Both fluorographene and VdCF-fluorographene have no spin splitting
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(see Figure S1 in Supplementary Materials). With uneven F atoms in the double sides
induced by a single F vacancy defect, midgap states appear and VF-fluorographene is a
semiconductor with a direct bandgap of 1.48 eV. The bandgap is tuned by the arise of the
spin splitting. The flatness of the midgap band means that electrons are strongly localized
and the localizations mainly come from pz orbital of both C and F atoms, conforming to
the characteristics of defects states. This defect level is caused by spin-down states only.
Different from VF-fluorographene, in VsCF-fluorographene, the valence band maximum
(VBM) and conduction band minimum (CBM) are mainly contributed by px and py or-
bitals of spin-up states. The bandgap decrease to 0.61 eV and VsCF-fluorographene is a
semiconductor with a direct bandgap. For both VF and VsCF-fluorographene, because of
the exchange splitting of the defect states, the p orbital of C and F atoms is hybridized
and produces exchange split bonding and antibonding states which are the origin of the
induced magnetic moment near vacancy.
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Figure 4. The band structure of (a) fluorographene (b) VF-fluorographene (c) VsCF-fluorographene
(d) VdCF-fluorographene. For the magnetic structures, the PDOS is shown; the black line represents
the spin-up and the red line represents the spin-down; in PDOS, the black, red, blue, and green
represent the s, px, py, pz orbital of C and F, respectively. The shadow represents the total density
of states and the light blue dot represents the fermi-level. ∆ε = ε↑ − ε↓, defined as the difference
between spin-up and spin-down, is the exchange splitting energy.

Considering strain is an inevitable factor during fabrication, we further examined
the strain dependence of bandgap and exchange-splitting of VsCF-fluorographene. The
results are shown in Figure 5. By applying strain from −0.02 to 0.02 in zigzag direction,
the bandgap of VsCF-fluorographene shows a linear increase from 0.51 eV to 0.78 eV. It
should be noted that the position of the VBM changes infinitesimally, while the CBM
changes greatly. The strain dependences of exchange-splitting are shown in Figure 5b.
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It is worth mentioning that the defect states related to ∆ε1, which is mostly contributed
from py orbitals, has a significant increase with applied strain, while that of ∆ε2 and ∆ε3
change slightly. The changes of exchange-splitting eventually tune the bandgap of VsCF-
fluorographene. In contrast to the bandgap, the magnetic moment of VsCF-fluorographene
remain 1µB magnetic moment and show no obvious change with the uniaxial strain applied
in the zigzag direction (see Table S1).
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3. Method

Density functional theory (DFT) calculations are completed using the Vienna ab
initio simulation package (VASP). The projector augmented wave (PAW) method and
generalized gradient approximation (GGA) are performed to describe the core valence
interaction and exchange-correlation [37–39]. A grid of 5 × 5 × 1 kpoints generated by
Monkhorst–Packscheme method [40] is used for the defect fluorographene and the cutoff
energy is set as 500 eV to verify the accuracy of energy convergence. All structures are
relaxed to maximum atomic forces allowance of 1 × 10−2 eV/Å and total threshold energy
of 1× 10−7 eV. Spin polarization is considered in all of the calculations by setting ISPIN = 2,
and the non-collinear version of VASP is used to complete the magnetic calculation. The
thickness of the vacuum layer between the monolayers is set as 15 Å to avoid the spurious
interlayer interaction in the out-of-plane direction.

4. Conclusions

In summary, we studied the magnetic and electronic properties of fluorographene
with three types of vacancy defects by using first-principle calculations. Our results
indicate that all the three structures: VF-, VsCF-, VdCF-fluorographene are stable at room
temperature. Due to the uneven F atoms in the double sides caused by defects, VF-, VsCF-
fluorographene has been proved to be magnetic and possesses 1µB magnetic moments. The
magnetic moment is mainly contributed by the adjacent C atoms of vacancy defects. We
also investigated the strain dependence of VdCF-fluorographene, and it is found that the
bandgap, as well as exchange-splitting energy, can be tuned by applied strain, especially
the position of the valence band. The study of fluorographene paves the way for fabricating
and analyzing fluorographene-based devices.

Supplementary Materials: The following are available online, Figure S1: The band structures
and DOS of fluorographene and VdCF-fluorographene, Table S1: Magnetic moment of VsCF-
fluorographene with the uniaxial strain [23].

Author Contributions: Conceptualization, D.L. (Daozhi Li); methodology, D.L. (Daozhi Li); software,
D.L. (Daozhi Li); validation, D.L. (Daozhi Li), X.M. and H.C.; formal analysis, X.M.; investigation,
D.L.; resources, X.M. and H.C.; data curation, D.L. (Daozhi Li); writing—original draft preparation,
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