ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Assessment
2.1.1. Sample Pre-Treatment
2.1.2. ICP-MS Method
2.1.3. Quantification, Quality Assurance and Quality Control
2.2. Validation
2.3. Concentration of 23 Elements in 37 e-Liquids
2.4. Concentration of 23 Elements in PG, VG, Water, and Nicotine Used in the Composition of the e-Liquids
2.5. Principal Components Analysis
3. Materials and Methods
3.1. Samples and Reagents
3.2. Instrumentation
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Williams, M.; Talbot, P. Variability Among Electronic Cigarettes in the Pressure Drop, Airflow Rate, and Aerosol Production. Nicotine Tob. Res. 2011, 13, 1276–1283. [Google Scholar] [CrossRef]
- Breland, A.; Soule, E.; Lopez, A.; Ramôa, C.; El-Hellani, A.; Eissenberg, T. Electronic cigarettes: What are they and what do they do? Ann. N. Y. Acad. Sci. 2017, 1394, 5–30. [Google Scholar] [CrossRef]
- European Commission. Food Additives. E1520. Propane-1,2-Diol (Propylene Glycol). Available online: https://webgate.ec.europa.eu/foods_system/main/index.cfm?event=substance.view&identifier=351 (accessed on 12 October 2021).
- European Commission. Food Additives. E422. Glycerol. Available online: https://webgate.ec.europa.eu/foods_system/main/index.cfm?event=substance.view&identifier=166 (accessed on 12 October 2021).
- European Directive 2014/40/EU of the European Parliament and of the Council of 3 April 2014 on the approximation of the laws, regulations and administrative provisions of the Member States concerning the manufacture, presentation and sale of tobacco and related products and repealing Directive 2001/37/EC Text with EEA relevance. Off. J. Eur. Union. L 2014, 127/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0040&from=EN (accessed on 12 October 2021).
- Talhout, R.; Schulz, T.; Florek, E.; Van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous Compounds in Tobacco Smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jabłońska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control. 2013, 23, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S.; Carmella, S.G.; Kotandeniya, D.; Pillsbury, M.E.; Chen, M.; Ransom, B.W.S.; Vogel, R.; Thompson, E.; Murphy, S.E.; Hatsukami, D.K. Evaluation of Toxicant and Carcinogen Metabolites in the Urine of E-Cigarette Users Versus Cigarette Smokers. Nicotine Tob. Res. 2015, 17, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Grana, R.; Benowitz, N.; Glantz, S.A. E-Cigarettes. Circulation 2014, 129, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Pisinger, C.; Døssing, M. A systematic review of health effects of electronic cigarettes. Prev. Med. 2014, 69, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, W.; Song, W. Toxicity assessment of electronic cigarettes. Inhal. Toxicol. 2019, 31, 259–273. [Google Scholar] [CrossRef]
- Sapru, S.; Vardhan, M.; Li, Q.; Guo, Y.; Li, X.; Saxena, D. E-cigarettes use in the United States: Reasons for use, perceptions, and effects on health. BMC Public Health 2020, 20, 1518. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, D.; Ma, Y.; Ma, X.; Wang, S.; Li, F.; Li, M.; Zhang, T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. Sci. Total. Environ. 2021, 772, 145475. [Google Scholar] [CrossRef]
- Chun, L.F.; Moazed, F.; Calfee, C.S.; Matthay, M.A.; Gotts, J.E. Pulmonary toxicity of e-cigarettes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L193–L206. [Google Scholar] [CrossRef] [PubMed]
- Leigh, N.J.; Tran, P.L.; O’Connor, R.J.; Goniewicz, M.L. Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tob. Control. 2018, 27, s26–s29. [Google Scholar] [CrossRef] [Green Version]
- Putzhammer, R.; Doppler, C.; Jakschitz, T.; Heinz, K.; Förste, J.; Danzl, K.; Messner, B.; Bernhard, D. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells. PLoS ONE 2016, 11, e0157337. [Google Scholar] [CrossRef]
- Carnevale, R.; Sciarretta, S.; Violi, F.; Nocella, C.; Loffredo, L.; Perri, L.; Peruzzi, M.; Marullo, A.G.M.; De Falco, E.; Chimenti, I.; et al. Acute Impact of Tobacco vs. Electronic Cigarette Smoking on Oxidative Stress and Vascular Function. Chest 2016, 150, 606–612. [Google Scholar] [CrossRef]
- Kuntic, M.; Oelze, M.; Steven, S.; Kröller-Schön, S.; Stamm, P.; Kalinovic, S.; Frenis, K.; Vujacic-Mirski, K.; Jimenez, M.T.B.; Kvandova, M.; et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: Evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur. Heart J. 2020, 41, 2472–2483. [Google Scholar] [CrossRef] [Green Version]
- Whittington, J.R.; Simmons, P.M.; Phillips, A.M.; Gammill, S.K.; Cen, R.; Magann, E.F.; Cardenas, V.M. The Use of Electronic Cigarettes in Pregnancy: A Review of the Literature. Obstet. Gynecol. Surv. 2018, 73, 544–549. [Google Scholar] [CrossRef]
- Schweitzer, K.S.; Chen, S.X.; Law, S.; Van Demark, M.; Poirier, C.; Justice, M.J.; Hubbard, W.C.; Kim, E.S.; Lai, X.; Wang, M.; et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L175–L187. [Google Scholar] [CrossRef] [PubMed]
- Vansickel, A.R.; Cobb, C.O.; Weaver, M.F.; Eissenberg, T.E. A Clinical Laboratory Model for Evaluating the Acute Effects of Electronic “Cigarettes”: Nicotine Delivery Profile and Cardiovascular and Subjective Effects. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1945–1953. [Google Scholar] [CrossRef] [Green Version]
- Bodas, M.; Van Westphal, C.; Carpenter-Thompson, R.; Mohanty, D.K.; Vij, N. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic. Biol. Med. 2016, 97, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Bekki, K.; Uchiyama, S.; Ohta, K.; Inaba, Y.; Nakagome, H.; Kunugita, N. Carbonyl Compounds Generated from Electronic Cigarettes. Int. J. Environ. Res. Public Health 2014, 11, 11192–11200. [Google Scholar] [CrossRef] [PubMed]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef]
- Beauval, N.; Antherieu, S.; Soyez, M.; Gengler, N.; Grova, N.; Howsam, M.; Hardy, E.M.; Fischer, M.; Appenzeller, B.M.R.; Goossens, J.-F.; et al. Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols. J. Anal. Toxicol. 2017, 41, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Shin, H.-S. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1291, 48–55. [Google Scholar] [CrossRef]
- Famele, M.; Ferranti, C.; Abenavoli, C.; Palleschi, L.; Mancinelli, R.; Draisci, R. The Chemical Components of Electronic Cigarette Cartridges and Refill Fluids: Review of Analytical Methods. Nicotine Tob. Res. 2015, 17, 271–279. [Google Scholar] [CrossRef]
- Bansal, V.; Kim, K.-H. Review on quantitation methods for hazardous pollutants released by e-cigarette (EC) smoking. TrAC Trends Anal. Chem. 2016, 78, 120–133. [Google Scholar] [CrossRef]
- Ogunwale, M.A.; Li, M.; Raju, M.V.R.; Chen, Y.; Nantz, M.H.; Conklin, D.J.; Fu, X.-A. Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega 2017, 2, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Behar, R.Z.; Davis, B.; Wang, Y.; Bahl, V.; Lin, S.; Talbot, P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. Vitr. 2014, 28, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, R.S.; Polzin, G.M.; Zhang, L.; Watson, C.H.; Paschal, D.C.; Ashley, D.L. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem. Toxicol. 2006, 44, 714–723. [Google Scholar] [CrossRef]
- Fresquez, M.R.; Pappas, R.S.; Watson, C.H. Establishment of Toxic Metal Reference Range in Tobacco from US Cigarettes. J. Anal. Toxicol. 2013, 37, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Hess, C.A.; Olmedo, P.; Navas-Acien, A.; Goessler, W.; Cohen, J.E.; Rule, A.M. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ. Res. 2017, 152, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Badea, M.; Luzardo, O.P.; González-Antuña, A.; Zumbado, M.; Rogozea, L.; Floroian, L.; Alexandrescu, D.; Moga, M.; Gaman, L.; Radoi, M.; et al. Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users. Environ. Res. 2018, 166, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Aravindakshan, A.; Hilpert, M.; Olmedo, P.; Rule, A.M.; Navas-Acien, A.; Aherrera, A. Metal/Metalloid Levels in Electronic Cigarette Liquids, Aerosols, and Human Biosamples: A Systematic Review. Environ. Health Perspect. 2020, 128, 036001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef]
- Palazzolo, D.L.; Crow, A.P.; Nelson, J.M.; Johnson, R.A. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel. Front. Physiol. 2017, 7, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Nelson, J.; Dada, O.; Pyrgiotakis, G.; Kavouras, I.G.; Demokritou, P. Assessing electronic cigarette emissions: Linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal. Toxicol. 2018, 30, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Mikheev, V.B.; Brinkman, M.C.; Granville, C.A.; Gordon, S.M.; Clark, P.I. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis. Nicotine Tob. Res. 2016, 18, 1895–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halstead, M.; Gray, N.; Gonzalez-Jimenez, N.; Fresquez, M.; Valentin-Blasini, L.; Watson, C.; Pappas, R.S. Analysis of Toxic Metals in Electronic Cigarette Aerosols Using a Novel Trap Design. J. Anal. Toxicol. 2020, 44, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Beauval, N.; Howsam, M.; Antherieu, S.; Allorge, D.; Soyez, M.; Garçon, G.; Goossens, J.F.; Lo-Guidice, J.M.; Garat, A. Trace elements in e-liquids—Development and validation of an ICP-MS method for the analysis of electronic cigarette refills. Regul. Toxicol. Pharmacol. 2016, 79, 144–148. [Google Scholar] [CrossRef]
- Flora, J.W.; Meruva, N.; Huang, C.B.; Wilkinson, C.T.; Ballentine, R.; Smith, D.C.; Werley, M.S.; McKinney, W.J. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 2016, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-J.; Go, Y.Y.; Mun, J.Y.; Lee, S.; Im, G.J.; Kim, Y.Y.; Lee, J.H.; Chang, J. Effect of electronic cigarettes on human middle ear. Int. J. Pediatr. Otorhinolaryngol. 2018, 109, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Tayyarah, R.; Long, G.A. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharmacol. 2014, 70, 704–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Zhao, D.; Navas-Acien, A.; Ilievski, V.; Slavkovich, V.; Olmedo, P.; Adria-Mora, B.; Domingo-Relloso, A.; Aherrera, A.; Kleiman, N.J.; Rule, A.M.; et al. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ. Res. 2019, 174, 125–134. [Google Scholar] [CrossRef]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; To, A.; Bozhilov, K.; Talbot, P. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol. PLoS ONE 2015, 10, e0138933. [Google Scholar] [CrossRef]
- Williams, M.; Bozhilov, K.; Ghai, S.; Talbot, P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS ONE 2017, 12, e0175430. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Bozhilov, K.N.; Talbot, P. Analysis of the elements and metals in multiple generations of electronic cigarette atomizers. Environ. Res. 2019, 175, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamilari, E.; Farsalinos, K.; Poulas, K.; Kontoyannis, C.G.; Orkoula, M.G. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food Chem. Toxicol. 2018, 116, 233–237. [Google Scholar] [CrossRef]
- AFNOR. XP D90-300-2—Electronic Cigarettes and E-Liquids-Part 2: Requirements and Test Methods for E-Liquids; European Association for the Co-ordination of Consumers Representation in Standardisation; AISBL Press: Brussels, Belgium, 2015. [Google Scholar]
- BSI. PAS 54115:2015—Vaping Products, including Electronic Cigarettes, e-Liquids, e-Shisha and Directly-Related Products. In Manufacture, Importation, Testing and Labelling Guide; British Standards Institution (BSI) Press: London, UK, 2015. [Google Scholar]
- European Association for the Coordination of Consumer Representation in Standardization (ANEC). E-Cigarettes and E-Liquids—Limits for Chemicals; Basis for discussion. Position Paper ANEC-PT-2019-CEG-005. ANEC: Brussels, Belgium, 2019. Available online: https://www.anec.eu/images/Publications/position-papers/Chemicals/ANEC-PT-2019-CEG-005.pdf (accessed on 12 October 2021).
- Langasco, I.; Caredda, M.; Sanna, G.; Panzanelli, A.; Pilo, M.I.; Spano, N.; Petretto, G.; Urgeghe, P.P. Chemical Characterization of Craft Filuferru Spirit from Sardinia, Italy. Beverages 2018, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Spanu, A.; Valente, M.; Langasco, I.; Leardi, R.; Orlandoni, A.M.; Ciulu, M.; Deroma, M.A.; Spano, N.; Barracu, F.; Pilo, M.I.; et al. Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice. Sci. Total. Environ. 2020, 748, 142484. [Google Scholar] [CrossRef]
- Langasco, I.; Barracu, F.; Deroma, M.A.; López-Sánchez, J.F.; Mara, A.; Meloni, P.; Pilo, M.I.; Estrugo, À.S.; Sanna, G.; Spano, N.; et al. Assessment and validation of ICP-MS and IC-ICP-MS methods for the determination of total, extracted and speciated As. Application to samples from a soil-rice system at varying the irrigation method. J. Env. Manag. 2021. submitted. [Google Scholar]
- May, T.W.; Wiedmeyer, R.H. A Table of Polyatomic Interferences in ICP-MS. At. Spectrosc. 1998, 19, 150–155. [Google Scholar]
- Spanu, A.; Langasco, I.; Valente, M.; Deroma, M.A.; Spano, N.; Barracu, F.; Pilo, M.I.; Sanna, G. Tuning of the Amount of Se in Rice (Oryza sativa) Grain by Varying the Nature of the Irrigation Method: Development of an ICP-MS Analytical Protocol, Validation and Application to 26 Different Rice Genotypes. Molecules 2020, 25, 1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalves, D.A.; Jones, B.T.; Donati, G.L. The reversed-axis method to estimate precision in standard additions analysis. Microchem. J. 2016, 124, 155–158. [Google Scholar] [CrossRef]
- Andersen, J.E.T. The standard addition method revisited. TrAC Trends Anal. Chem. 2017, 89, 21–33. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman: New York, NY, USA, 2010. [Google Scholar]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Anal. Chim. Acta 1999, 391, 105–126. [Google Scholar] [CrossRef]
- Chemnitzer, R. Strategies for Achieving the Lowest Possible Detection Limits in ICP-MS. Spectrosc. (St. Monica) 2019, 34, 12–16. Available online: https://www.spectroscopyonline.com/view/strategies-achieving-lowest-possible-detection-limits-icp-ms (accessed on 12 October 2021).
- Council of the European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union. L 1998, 330, 32–54. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=IT (accessed on 12 October 2021).
- Water quality—Application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 1: General Guidelines. In International Organization for Standardization: Method ISO 17294-1; ISO: Geneva, Switzerland, 2004.
- Water quality—Application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 2, determination of selected elements including uranium isotopes. In International Organization for Standardization: Method ISO 17294-2; ISO: Geneva, Switzerland, 2016.
- CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 12 October 2021).
RF power generator (W) | 1300 | KED a mode cell entrance voltage (V) | −8.0 | |
Ar plasma flow (dm3 min−1) | 18.0 | KED mode cell exit voltage (V) | −25.0 | |
Ar auxiliary flow (dm3 min−1) | 1.20 | Resolution (Da) | 0.7 | |
Ar nebulizer flow (dm3 min−1) | 0.91 | Scan mode | Peak hopping | |
Nebulizer | Meinhard®, glass | Detector mode | Dual | |
Spray chamber | Cyclonic, glass | Dwell time (ms) | 50 | |
Skimmer and sampling cones | Nickel | Number of points per peak | 3 | |
Sampling depth (mm) | 0 | Acquisition time (s) | 6 | |
Deflector voltage (V) | −8.00 | Acquisition dead time (ns) | 35 | |
Analog stage voltage (V) | −1750 | KED gas | Helium, 99.999% | |
Pulse stage voltage (V) | +1350 | Masses of optimization | 7Li, 89Y and 205Tl | |
Quantification Ion (% abundance) | Interferents | Analyzing Mode | He Flow (cm3 min−1) | Correction Equation |
27 Al+ (100) | 11B16O+; 13C14N+; 11Be16O+; 26Mg1H+; 12C 15N+; 54Cr2+; 54Fe2+ | KED | 3.5 | none |
75 As+ (100) | 40Ar35Cl+; 59Co16O+; 39K36Ar+; 63Cu12C+; 40Ca35Cl+; 58Ni16O1H+ | KED | 3.0 | none |
11 B+ (80.1) | none | Normal | none | |
138 Ba+ (71.7) | 40Ar258Ni+; 138La+; 122Sn16O+; 137Ba1H+; 121Sb16O1H+ | KED | 4.0 | −0.000901 × 139La −0.002838 × 140Ce |
9 Be+ (100) | none | Normal | none | |
209 Bi+ (100) | none | Normal | none | |
111 Cd+ (12.80) | 95Mo16O+; 97Mo14N+; 79Br16O2+; 94Zr16O1H+; 71Ga40Ar+ | KED | 4.0 | none |
59 Co+(100) | 43Ca16O+; 42Ca16O1H+; 24Mg35Cl+; 40Ar18O1H+; 118Sn2+; 27Al16O2+; 58Ni1H+; 24Mg35Cl+ | KED | 3.5 | none |
52 Cr+ (83.79) | 40Ar12C+; 36Ar16O+; 1H35Cl16O+; 104Pd2+; 51V1H+; 40Ca12C+; 38Ar14N+ | KED | 3.0 | none |
63 Cu+ (69.17) | 40Ar23Na+; 31P16O2+; 47Ti16O+; 28Si35Cl+; 51V12C+ | KED | 4.0 | none |
57 Fe+ (2.12) | 40Ar16O1H+; 40Ca16O1H+; 40K16O1H+ | KED | 3.0 | none |
7 Li+ (92.50) | none | Normal | none | |
202 Hg+ (22.86) | 186W16O+ | Normal | none | |
55 Mn+ (100) | 40Ar14N1H+; 37Cl18O+; 39K16O+ | KED | 3.0 | none |
98 Mo+ (24.13) | 98Ru+; 81Br17O+; 40K218O+; 58Ni40Ar+; 63Cu35Cl+ | Normal | −0.10961 × 101Ru | |
60 Ni+ (26.22) | 44Ca16O+; 43Ca16O1H+; 23Na37Cl+; 25Mg35Cl+; 28Si16O2+ | KED | 3.5 | none |
208 Pb+ (52.40) | none | Normal | none | |
121 Sb+ (57.21) | 107Ag14N+; 109Ag12C+; 105Pd16O+; 81Br40Ar+; 120Sn1H+ | KED | 3.5 | none |
82 Se+ (8.73) | 82Kr+; 81Br1H+; 66Zn16O+; 68Zn14N+; 164Dy2+; 65Cu16O1H+ | KED | 3.5 | −0.00783 × 83Kr |
120 Sn+ (32.58) | 39K81Br+; 80Se40Ar+; 104Pd16O+; 104Ru16O+ | KED | 3.5 | none |
205 Tl+ (70.26) | 189Os16O+ | Normal | none | |
238 U+ (99.3) | none | Normal | none | |
66Zn+ (27.90) | 50Ti16O+; 34S16O2+; 132Ba2+; 50Cr16O+; 65Cu1H+; 26Mg40Ar+; 31P35Cl+; 52Cr14N+ | KED | 3.0 | none |
Element | LoD (μg kg−1) | LoQ (μg kg−1) | Repeatability (CV%) | Element | LoD (μg kg−1) | LoQ (μg kg−1) | Repeatability (CV%) |
---|---|---|---|---|---|---|---|
Al | 26 | 84 | 10 | Li | 0.37 | 1.2 | 40 |
As | 0.51 | 1.7 | 40 | Mn | 1.6 | 5.1 | 40 |
B | 37 | 120 | 60 | Mo | 0.45 | 1.5 | 70 |
Ba | 15 | 50 | 30 | Ni | 2.3 | 7.4 | 60 |
Be | 0.057 | 0.19 | 70 | Pb | 0.80 | 2.7 | 40 |
Bi | 0.089 | 0.29 | 80 | Sb | 1.1 | 3.7 | 50 |
Cd | 0.12 | 0.39 | 90 | Se | 4.6 | 15 | 100 |
Co | 0.089 | 0.29 | 60 | Sn | 0.24 | 0.78 | 30 |
Cr | 4.2 | 14 | 70 | Tl | 0.055 | 0.18 | 50 |
Cu | 5.2 | 17 | 100 | U | 0.21 | 0.69 | 30 |
Fe | 53 | 180 | 90 | Zn | 62 | 200 | 30 |
Hg | 4.5 | 15 | 90 |
Elements | All Flavors (n = 37) (Mean; Range; % Samples > LoQ) | Fruity Flavors (n = 9) (Mean; Range; % Samples > LoQ) | Tobacco Flavors (n = 16) (Mean; Range; % Samples > LoQ) | Tonic Flavors (n = 12) (Mean; Range; % Samples > LoQ) | ||||
---|---|---|---|---|---|---|---|---|
Al | <33; <26–160 | 8% | <35; <26–110 | 11% | <37; <26–160 | 13% | <26; <26; <26 | 0% |
As | 5; 0.6–11 | 100% | 6; 0.6–8 | 100% | 5; 1.5–11 | 100% | 6; 0.8–10 | 100% |
B | <61; <37–140 | 54% | <50;<37–100 | 33% | <60; <37–100 | 56% | <70; <37–140 | 67% |
Ba | <27; <15–130 | 62% | <55; <15–130 | 78% | <20; <15–45 | 63% | <18; <15–30 | 50% |
Be | <0.06; <0.057–0.12 | 14% | <0.07; <0.057–0.12 | 33% | <0.058; <0.057–0.06 | 13% | <0.057; <0.057–<0.057 | 0% |
Bi | <0.11; <0.089–0.3 | 27% | <0.09; <0.089–0.1 | 11% | <0.14; <0.089–0.3 | 56% | <0.089; <0.089–<0.089 | 0% |
Cd | <0.14; <0.12–1 | 5% | <0.12; <0.12–<0.12 | 0% | <0.18; <0.12–1 | 6% | <0.12; <0.12–0.13 | 8% |
Co | <0.34; <0.089–0.9 | 84% | <0.3; <0.089–0.9 | 78% | <0.4; 0.1–0.8 | 100% | <0.3; <0.089–0.6 | 67% |
Cr | 34; 20–40 | 100% | 38; 30–40 | 100% | 34; 30–40 | 100% | 32; 20–40 | 100% |
Cu | <7.1; <5.2–20 | 41% | <10; <5.2–20 | 56% | <7; <5.2– 14 | 50% | <5.4; <5.2–7 | 17% |
Fe | <308; <53–3000 | 65% | <66; <53–100 | 56% | <570; <53–3000 | 88% | <140; <53–1000 | 42% |
Hg | <5; <4.5–14 | 8% | <5; <4.5–10 | 11% | <5; <4.5–14 | 6% | <5; <4.5–5 | 8% |
Li | 1.9; 0.7–9 | 100% | 1.5; 0.8–2 | 100% | 2.5; 0.9–9 | 100% | 1.5; 0.7–2.2 | 100% |
Mn | <10; <1.6– 80 | 73% | <2; <1.6–4 | 67% | <18; <1.6–80 | 69% | <5; <1.6–20 | 83% |
Mo | <0.8; <0.45–3 | 57% | <0.6; <0.45–1 | 44% | <1; <0.45–3 | 81% | <0.7; <0.45–2 | 33% |
Ni | <3.5; <2.3–14 | 46% | <3.4; <2.3–7 | 67% | <3.8; <2.3–14 | 44% | <3.2; <2.3–6 | 33% |
Pb | <1.0; <0.8–3 | 19% | <1.4; <0.8–3 | 44% | <0.84; <0.8–1.3 | 13% | <0.81; <0.8–1 | 8% |
Sb | <2.9; <1.1–10 | 73% | <1.8; <1.1–4 | 78% | <3.1; <1.1–7 | 75% | <3.4; <1.1–10 | 67% |
Se | <4.6; <4.6–<4.6 | 0% | <4.6; <4.6–<4.6 | 0% | <4.6; <4.6–<4.6 | 0% | <4.6; <4.6–<4.6 | 0% |
Sn | <0.6; <0.24–4 | 65% | <1; <0.24–4 | 67% | <0.5; <0.24–1.6 | 81% | <0.37; <0.24–1.5 | 42% |
Tl | <0.07; <0.055–0.16 | 46% | <0.07; <0.055–0.16 | 22% | <0.06; <0.055–0.15 | 38% | <0.08; <0.055–0.15 | 75% |
U | <0.29; <0.21–0.7 | 41% | <0.29; <0.21–0.6 | 44% | <0.31; <0.21–0.6 | 44% | <0.26; <0.21–0.7 | 33% |
Zn | <109; <62–300 | 76% | <150; <62–300 | 89% | <90; <62–220 | 63% | <100; <62– 170 | 83% |
Elements | Ref. [25] a (n = 6) | Ref. [33] b (n = 5) | Ref. [36] c (n = 56) | Ref. [37] d (n = 1) | Ref. [41] a (n = 27) | Ref. [42] e (n = 2) | Ref. [43] f (n = 3) | This Study (n = 37) |
---|---|---|---|---|---|---|---|---|
Al | 12; 10–15 | 50.3; 46.22–59.6 | 7.7 ± 0.5 | 12.9; 8.82–30.7 | <33; <26–160 | |||
As | 1.2; <1–1.5 | 0.08 ± 0.04 | 1.57; <1–3.42 | <430 | 2.18; 0.83–3.04 | 5; 0.6–11 | ||
B | <61; <37–140 | |||||||
Ba | <27; <15–130 | |||||||
Be | <0.1 | <0.1 | <0.06; <0.057–0.12 | |||||
Bi | <0.11; <0.089–0.3 | |||||||
Cd | <0.4 | 43.5; 0.137–755 | <0.1 | <0.01 | <0.4 | <220 | 0.54; <0.25–1.28 | <0.14; <0.12–1 |
Co | 0.15; <0.1–0.27 | 0.262; <0.1–0.884 | <0.34; <0.089–0.9 | |||||
Cr | 5.2; 4.1–7.7 | 669; 41.5–16900 | 12; 12–14.26 | 7.16; 4.08–11.5 | 34; 20–40 | |||
Cu | 23; <20–32 | 5.14; <1.0–16.1 | <0.01 | 27.0; <20–30.6 | <7.1; <5.2–20 | |||
Fe | 66.5; 48.74–130.9 | 4.1 ± 0.2 | <308; <53–3000 | |||||
Hg | <4 | 4.38; <4–4.54 | <5; <4.5–14 | |||||
Li | 1.9; 0.7–9 | |||||||
Mn | 2.1; <1.6–3.3 | 1627; 11.8–31500 | 1.09; <1.0–2.74 | 0.159 ± 0.006 | 3.99; <1.6–8.42 | <10; <1.6– 80 | ||
Mo | <0.8; <0.45–3 | |||||||
Ni | <16 | 7613; 13.7–72700 | 7.33; 5.30–47.4 | 0.161 ± 0.007 | <16 | 3.43; 1.42–5.11 | <3.5; <2.3–14 | |
Pb | <1 | 444; 3.17–4870 | 0.476; 0.243–1.05 | <0.01 | <1 | 12.28; <0.25–23.49 | <1.0; <0.8–3 | |
Sb | 1.6; 1.2–1.5 | 1.0; 1.0–1.219 | 7.21; 0.400–214 | <2.9; <1.1–10 | ||||
Se | <4.6; <4.6–<4.6 | |||||||
Sn | 1.53; 0.689–3.75 | <0.6; <0.24–4 | ||||||
Tl | <0.1 | <0.1 | <0.07; <0.055–0.16 | |||||
V | 0.45; <0.4–0.64 | 0.602; <0.4–1.36 | - | |||||
U | <0.29; <0.21–0.7 | |||||||
Zn | <200 | 18.2; 11.94–28.2 | 0.51 ± 0.03 | 418; <200–510 | <109; <62–300 |
Element | VG | PG | Water | Nicotine |
---|---|---|---|---|
Al | <26 | <26 | <5 | 5000 ± 1000 |
As | 7 ± 2 | 2.6 ± 0.6 | 0.020 ± 0.005 | 0.8 ± 0.2 |
B | <37 | 110 ± 10 | 470 ± 70 | <37 |
Ba | <15 | <15 | 0.18 ± 0.02 | <15 |
Be | <0.057 | <0.057 | <0.01 | <0.057 |
Bi | <0.089 | <0.089 | <0.005 | <0.089 |
Cd | <0.12 | <0.12 | 0.04 ± 0.02 | <0.12 |
Co | 0.2 ± 0.1 | <0.089 | <0.005 | <0.089 |
Cr | 56 ± 7 | 49 ± 6 | <0.1 | 59 ± 8 |
Cu | 22 ± 4 | <5.2 | <0.1 | <5.2 |
Fe | 0.6 ± 0.1 | 100 ± 20 | <1 | 0.6 ± 0.1 |
Hg | <4.5 | <4.5 | <0.005 | <4.5 |
Li | 6 ± 1 | <0.37 | 0.374 ± 0.001 | <1.2 |
Mn | <1.6 | <1.6 | 2.8 ± 0.2 | 11 ± 2 |
Mo | <0.45 | <0.45 | 0.8 ± 0.2 | <0.45 |
Ni | <2.3 | <2.3 | 2.5 ± 0.6 | <2.3 |
Pb | <0.80 | <0.80 | 1.6 ± 0.1 | <0.80 |
Sb | <3.7 | <1.1 | 0.67 ± 0.01 | 120 ± 20 |
Se | <4.6 | <4.6 | 0.035 ± 0.015 | <4.6 |
Sn | <0.24 | <0.24 | <0.01 | <0.24 |
Tl | <0.18 | <0.055 | <0.001 | <0.055 |
U | <0.21 | <0.21 | <0.003 | <0.21 |
Zn | 180 ± 40 | 41 ± 9 | 5 ± 1 | 160 ± 30 |
e-Liquid Flavor Class | PG (%) | VG (%) | Concentrated Flavor (%) | Water (%) |
---|---|---|---|---|
Fruity | 50 | 40 | 8 | 2 |
Tobacco | 50 | 40 | 6 | 4 |
Tonic | 50 | 40 | 7 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mara, A.; Langasco, I.; Deidda, S.; Caredda, M.; Meloni, P.; Deroma, M.; Pilo, M.I.; Spano, N.; Sanna, G. ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples. Molecules 2021, 26, 6680. https://doi.org/10.3390/molecules26216680
Mara A, Langasco I, Deidda S, Caredda M, Meloni P, Deroma M, Pilo MI, Spano N, Sanna G. ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples. Molecules. 2021; 26(21):6680. https://doi.org/10.3390/molecules26216680
Chicago/Turabian StyleMara, Andrea, Ilaria Langasco, Sara Deidda, Marco Caredda, Paola Meloni, Mario Deroma, Maria I. Pilo, Nadia Spano, and Gavino Sanna. 2021. "ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples" Molecules 26, no. 21: 6680. https://doi.org/10.3390/molecules26216680
APA StyleMara, A., Langasco, I., Deidda, S., Caredda, M., Meloni, P., Deroma, M., Pilo, M. I., Spano, N., & Sanna, G. (2021). ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples. Molecules, 26(21), 6680. https://doi.org/10.3390/molecules26216680