Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. Antiviral Activity
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Williams, B.G.; Lima, V.; Gouws, E. Modelling the Impact of Antiretroviral Therapy on the Epidemic of HIV. Curr. HIV Res. 2011, 9, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, E.J.; Hazuda, D.J. HIV-1 Antiretroviral Drug Therapy. Cold Spring Harb. Perspect. Med. 2012, 2, a007161. [Google Scholar] [CrossRef]
- Molina, J.-M.; Capitant, C.; Spire, B.; Pialoux, G.; Cotte, L.; Charreau, I.; Tremblay, C.; Le Gall, J.-M.; Cua, E.; Pasquet, A.; et al. On-Demand Preexposure Prophylaxis in Men at High Risk for HIV-1 Infection. N. Engl. J. Med. 2015, 373, 2237–2246. [Google Scholar] [CrossRef]
- Broder, S. The Development of Antiretroviral Therapy and Its Impact on the HIV-1/AIDS Pandemic. Antiviral. Res. 2010, 85, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J. Med. Chem. 2015, 59, 2849–2878. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.V.; Staskus, K.; Wietgrefe, S.W.; Rothenberger, M.; Reilly, C.; Chipman, J.G.; Beilman, G.J.; Khoruts, A.; Thorkelson, A.; Schmidt, T.E.; et al. Persistent HIV-1 Replication Is Associated with Lower Antiretroviral Drug Concentrations in Lymphatic Tissues. Proc. Natl. Acad. Sci. USA 2014, 111, 2307–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science 1997, 278, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Bruner, K.M.; Hosmane, N.N.; Siliciano, R.F. Towards an HIV-1 Cure: Measuring the Latent Reservoir. Trends Microbiol. 2015, 23, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Perreau, M.; Savoye, A.-L.; De Crignis, E.; Corpataux, J.-M.; Cubas, R.; Haddad, E.K.; De Leval, L.; Graziosi, C.; Pantaleo, G. Follicular Helper T Cells Serve as the Major CD4 T Cell Compartment for HIV-1 Infection, Replication, and Production. J. Exp. Med. 2013, 210, 143–156. [Google Scholar] [CrossRef]
- Lee, G.Q.; Lichterfeld, M. Diversity of HIV-1 Reservoirs in CD4+ T-Cell Subpopulations. Curr. Opin. HIV AIDS 2016, 11, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Granich, R.; Crowley, S.; Vitoria, M.; Smyth, C.; Kahn, J.G.; Bennett, R.; Lo, Y.R.; Souteyrand, Y.; Williams, B. Highly Active Antiretroviral Treatment as Prevention of HIV Transmission: Review of Scientific Evidence and Update. Curr. Opin. HIV AIDS 2010, 5, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, S.A.; Appelgren, K.E.; Kourtis, A.P. Prevention of Mother-to-Child Transmission of HIV Type 1: The Role of Neonatal and Infant Prophylaxis. Expert Rev. Anti. Infect. Ther. 2015, 13, 169–181. [Google Scholar] [CrossRef]
- Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′-Silylated 3′-1,2,3-Triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. J. Med. Chem. 2015, 58, 4016–4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raic-Malic, S.; Mescic, A. Recent Trends in 1,2,3-Triazolo-Nucleosides as Promising Anti-Infective and Anticancer Agents. Curr. Med. Chem. 2015, 22, 1462–1499. [Google Scholar] [CrossRef]
- Hein, J.E.; Fokin, V.V. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) and beyond: New Reactivity of Copper(I) Acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.R.; Beke-Somfai, T.; Stålsmeden, A.S.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem. Rev. 2016, 116, 14726–14768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, V.; Obikhod, A.; Zhang, H.-W.; Coats, S.J.; Herman, B.D.; Sluis-Cremer, N.; Agrofoglio, L.A.; Schinazi, R.F. Synthesis and Anti-HIV Evaluation of 3′-Triazolo Nucleosides. Nucleosides Nucleotides Nucleic Acids 2011, 30, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Hosono, H.; Kitade, Y.; Maki, Y.; Chu, C.K.; Schinazi, R.F.; Nakane, H.; Ono, K. Synthesis and Anti-Human Immunodeficiency Virus (HIV-1) Activity of 3′-Deoxy-3′-(Triazol-1-Yl)Thymidines and 2′, 3′-Dideoxy-3′-(Triazol-1-Yl)Uridines, and Inhibition of Reverse Transcriptase by Their 5′-Triphosphates. Chem. Pharm. Bull. 1990, 38, 2597–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danel, K.; Larsen, L.M.; Pedersen, E.B.; Sanna, G.; La Colla, P.; Loddo, R. Synthesis and Antiviral Activity of New Dimeric Inhibitors against HIV-1. Bioorg. Med. Chem. 2008, 16, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Sirivolu, V.R.; Vernekar, S.K.V.; Ilina, T.; Myshakina, N.S.; Parniak, M.A.; Wang, Z. Clicking 3′-Azidothymidine into Novel Potent Inhibitors of Human Immunodeficiency Virus. J. Med. Chem. 2013, 56, 8765–8780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitão, M.I.P.S.; Herrera, F.; Petronilho, A. N-Heterocyclic Carbenes Derived from Guanosine: Synthesis and Evidences of Their Antiproliferative Activity. ACS Omega 2018, 3, 15653–15656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitão, M.I.P.S.; Gonzalez, C.; Francescato, G.; Filipiak, Z.; Petronilho, A. On the Reactivity of MRNA Cap0: C-H Oxidative Addition of 7-Methylguanosine to Pt and Base Pairing Studies. Chem. Commun. 2020, 56, 13365–13368. [Google Scholar] [CrossRef] [PubMed]
- Leitão, M.I.P.S.; Francescato, G.; Gomes, C.S.B.; Petronilho, A. Synthesis of Platinum(II) N-Heterocyclic Carbenes Based on Adenosine. Molecules 2021, 26, 5384. [Google Scholar] [CrossRef] [PubMed]
- Yacob, Z.; Liebscher, J. 1,2,3-Triazolium Salts as a Versatile New Class of Ionic Liquids. In Ionic Liquids-Classes and Properties; Handy, S., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, K.F.; Petronilho, A.; Albrecht, M. Application of 1,2,3-Triazolylidenes as Versatile NHC-Type Ligands: Synthesis, Properties, and Application in Catalysis and Beyond. Chem. Commun. 2013, 49, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Aizpurua, J.M.; Fratila, R.M.; Monasterio, Z.; Pérez-Esnaola, N.; Andreieff, E.; Irastorza, A.; Sagartzazu-Aizpurua, M. Triazolium Cations: From the “Click” Pool to Multipurpose Applications. New J. Chem. 2014, 38, 474–480. [Google Scholar] [CrossRef]
- Camerman, A.; Mastropaolo, D.; Camerman, N. Azidothymidine: Crystal Structure and Possible Functional Role of the Azido Group. Proc. Natl. Acad. Sci. USA 1987, 84, 8239–8242. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.; Juliano, A.M.; Charepe, N.; Alenquer, M.; Athayde, D.; Ferreira, F.; Archer, M.; Amorim, M.J.; Serrano, F.; Soares, H. Non-Neutralizing Secretory IgA and T Cells Targeting SARS-CoV-2 Spike Protein Are Transferred to the Breastmilk upon BNT162b2 Vaccination. medRxiv 2021. [Google Scholar] [CrossRef]
- Amaral-Silva, D.; Gonçalves, R.; Torrão, R.C.; Torres, R.; Falcão, S.; Gonçalves, M.J.; Araújo, M.P.; Martins, M.J.; Lopes, C.; Neto, A.; et al. Direct Tissue-Sensing Reprograms TLR4+ Tfh-like Cells Inflammatory Profile in the Joints of Rheumatoid Arthritis Patients. Commun. Biol. 2021, 4, 1–16. [Google Scholar] [CrossRef]
- Silva, J.G.; Martins, N.P.; Henriques, R.; Soares, H. HIV-1 Nef Impairs the Formation of Calcium Membrane Territories Controlling the Signaling Nanoarchitecture at the Immunological Synapse. J. Immunol. 2016, 197, 4042–4052. [Google Scholar] [CrossRef] [Green Version]
- Soares, H.; Henriques, R.; Sachse, M.; Ventimiglia, L.; Alonso, M.A.; Zimmer, C.; Thoulouze, M.-I.; Alcover, A. Regulated Vesicle Fusion Generates Signaling Nanoterritories That Control T Cell Activation at the Immunological Synapse. J. Exp. Med. 2013, 210, 2415–2433. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Alencar, D.M.; Gonçalves, J.; Vieira, A.; Cerqueira, S.A.; Sebastião, C.; Leitão, M.I.P.S.; Francescato, G.; Antenori, P.; Soares, H.; Petronilho, A. Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1. Molecules 2021, 26, 6720. https://doi.org/10.3390/molecules26216720
de Alencar DM, Gonçalves J, Vieira A, Cerqueira SA, Sebastião C, Leitão MIPS, Francescato G, Antenori P, Soares H, Petronilho A. Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1. Molecules. 2021; 26(21):6720. https://doi.org/10.3390/molecules26216720
Chicago/Turabian Stylede Alencar, Daniel Machado, Juliana Gonçalves, Andreia Vieira, Sofia A. Cerqueira, Cruz Sebastião, Maria Inês P. S. Leitão, Giulia Francescato, Paola Antenori, Helena Soares, and Ana Petronilho. 2021. "Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1" Molecules 26, no. 21: 6720. https://doi.org/10.3390/molecules26216720
APA Stylede Alencar, D. M., Gonçalves, J., Vieira, A., Cerqueira, S. A., Sebastião, C., Leitão, M. I. P. S., Francescato, G., Antenori, P., Soares, H., & Petronilho, A. (2021). Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1. Molecules, 26(21), 6720. https://doi.org/10.3390/molecules26216720