Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Methyl 3-Amino-1-benzothiophene-2-carboxylate (1)
3.3. Synthesis of Methyl 3-Iodo-1-benzothiophene-2-carboxylate (2)
3.4. Synthesis Procedure for the Preparation of Compounds 3a–o
3.4.1. Methyl 3-[(4-Methoxyphenyl)amino]-1-benzothiophene-2-carboxylate (3a)
3.4.2. Methyl 3-[(2-Methoxyphenyl)amino]-1-benzothiophene-2-carboxylate (3b)
3.4.3. Methyl 3-[(4-Flourophenyl)amino]-1-benzothiophene-2-carboxylate (3c)
3.4.4. Methyl 3-[(2-Fluorophenyl)amino]-1-benzothiophene-2-carboxylate (3d)
3.4.5. Methyl 3-{[4-(Trifluoromethyl)phenyl]amino}-1-benzothiophene-2-carboxylate (3e)
3.4.6. Methyl 3-{[3-(Trifluoromethyl)phenyl]amino}-1-benzothiophene-2-carboxylate (3f)
3.4.7. Methyl 3-{[2-(Trifluoromethyl)phenyl]amino}-1-benzothiophene-2-carboxylate (3g)
3.4.8. Methyl 3-[(3-Methoxyphenyl)amino]-1-benzothiophene-2-carboxylate (3h)
3.4.9. Methyl 3-[(4-Nitrophenyl)amino]-1-benzothiophene-2-carboxylate (3i)
3.4.10. Methyl 3-[(3-Nitrophenyl)amino]-1-benzothiophene-2-carboxylate (3j)
3.4.11. Methyl 3-[(2-Nitrophenyl)amino]-1-benzothiophene-2-carboxylate (3k)
3.4.12. Methyl 3-(Phenylamino)-1-benzothiophene-2-carboxylate (3l)
3.4.13. Methyl 3-[(4-Hydroxyphenyl)amino]-1-benzothiophene-2-carboxylate (3m)
3.4.14. Methyl 3-[(4-Aminophenyl)amino]-1-benzothiophene-2-carboxylate (3n)
3.4.15. Methyl 3-{[4-(Acetylamino)phenyl]amino}-1-benzothiophene-2-carboxylate (3o)
3.5. Synthesis of 5a,7-Dihidro-6H-[1]benzothieno[2,3-b][1,5]benzodiazepin-6-one (4)
3.6. Synthesis of Dimethyl 3,3′-Iminobis(benzo[b]thiophene-2-carboxylate) (5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Duc, D.X. Recent Progress in the Synthesis of Benzo[b]Thiophene. Curr. Org. Chem. 2020, 24, 2256–2271. [Google Scholar] [CrossRef]
- Hu, L.; Liu, S.; Xie, G.; Yang, W.; Zhang, B. Bis(benzothiophene-S,S-dioxide) fused small molecules realize solution-processible, high-performance and non-doped blue organic light-emitting diodes. J. Mater. Chem. C 2020, 8, 1002–1009. [Google Scholar] [CrossRef]
- Cho, W.; Kim, H.; Gal, Y.S.; Jin, S.H. Highly reliable benzothiophene-phenylquinoline based heteroleptic Ir(III) complexes; The solution process NIR phosphorescence organic light-emitting diodes. Mol. Cryst. Liq. Cryst. 2017, 654, 62–72. [Google Scholar] [CrossRef]
- Seo, C.; Choi, J.M.; Hong, S.S.; Lee, J.Y.; Seo, S.Y. Synthesis of novel benzothiophene derivative as a host material for blue phosphorescent organic light-emitting diodes. Dyes Pigm. 2017, 136, 145–149. [Google Scholar] [CrossRef]
- Keri, R.S.; Chand, K.; Budagumpi, S.; Somappa, S.B.; Patil, S.A.; Nagaraja, B.M. An Overview of Benzo[b]Thiophene-Based Medicinal Chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Bassetto, M.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Bortolozzi, R.; et al. Synthesis and Biological Evaluation of 2-(Alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and Thieno[2,3-b]pyridines as New Potent Anticancer Agents. J. Med. Chem. 2013, 56, 2606–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, T.; Xu, Y.; Qiu, L.; Geraghty, R.J.; Chen, L. Hydroxamic Acids Block Replication of Hepatitis C Virus. J. Med. Chem. 2015, 58, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, I.M.I.; Radwan, M.A.A.; El-Batran, S.; El-Salam, O.A.M.E.; El-Shenawy, S.M. Synthesis and pharmacological evaluation of 2-substituted benzo[b]thiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 1718–1725. [Google Scholar] [CrossRef]
- Metwally, M.A.; Khalifa, M.E.; El-Hiti, G.A. Recent trends in the chemistry of aminobenzo[b]thiophenes. J. Sulfur Chem. 2010, 31, 205–229. [Google Scholar] [CrossRef]
- Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and Antioxidant Activity of Novel Series of Naphthoquinone Derivatives Attached to Benzothiophene Moiety. Med. Chem. 2013, 3, 2228–2232. [Google Scholar] [CrossRef] [Green Version]
- Fossa, P.; Mosti, L.; Menozzi, G.; Marzano, C.; Baccichetti, F.; Bordin, F. Novel angular furo and thieno-quinolinones: Synthesis and preliminary photobiological studies. Bioorg. Med. Chem. 2002, 10, 743–751. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Bassetto, M.; Brancale, A.; Fu, X.H.; Gao, Y.; et al. Concise Synthesis and Biological Evaluation of 2-Aroyl-5-Amino Benzo[ b ]Thiophene Derivatives As a Novel Class of Potent Antimitotic Agents. J. Med. Chem. 2013, 56, 9296–9309. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.C.F.R.; Calhelha, R.C.; Estevinho, L.M.; Queiroz, M.J.R.P. Screening of antimicrobial activity of diarylamines in the 2,3,5-trimethylbenzo[b]thiophene series: A structure-activity evaluation study. Bioorg. Med. Chem. Lett. 2004, 14, 5831–5833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, R.; Baraldi, P.G.; Cara, C.L.; Hamel, E.; Basso, G.; Bortolozzi, R.; Viola, G. Synthesis and biological evaluation of 2-(3′,4′,5′- trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents. Eur. J. Med. Chem. 2010, 45, 5781–5791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, M.A.A.; Shehab, M.A.; El-Shenawy, S.M. Synthesis and biological evaluation of 5-substituted benzo[b]thiophene derivatives as anti-inflammatory agents. Monatsh. Chem. 2009, 140, 445–450. [Google Scholar] [CrossRef]
- Moreira-Lima, L.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005, 12, 23–49. [Google Scholar] [CrossRef]
- Cimolai, N. The potential and promise of mefenamic acid. Expert Rev. Clin. Pharmacol. 2013, 6, 289–305. [Google Scholar] [CrossRef]
- Osman, S.; Raza, A.; Al-Zaidan, L.; Inchakalody, V.P.; Merhi, M.; Prabhu, K.S.; Abdelaziz, N.; Hydrose, S.; Uddin, S.; Dermime, S. Anti-cancer effects of Tranilast: An update. Biomed. Pharmacother. 2021, 141, 111844. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M. Medicinal chemistry of anthranilic acid derivatives: A mini review. Drug Dev. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Inglis, J.J.; Criado, G.; Andrews, M.; Feldmann, M.; Williams, R.O.; Selley, M.L. The anti-allergic drug, N-(3′,4′-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology 2007, 46, 1428–1432. [Google Scholar] [CrossRef] [Green Version]
- Congiu, C.; Cocco, M.T.; Lilliu, V.; Onnis, V. New Potential Anticancer Agents Based on the Anthranilic Acid Scaffold. Synthesis and Evaluation of Biological Activity. J. Med. Chem. 2005, 48, 8245–8252. [Google Scholar] [CrossRef] [PubMed]
- Hikawa, H.; Mori, Y.; Kikkawa, S.; Azumaya, I. A Radical Pathway for Direct Substitution of Benzyl Alcohols with Water-Soluble Copper Catalyst in Water. Adv. Synth. Catal. 2016, 358, 765–773. [Google Scholar] [CrossRef]
- Bueno, M.A.; Silva, L.R.S.P.; Corrêa, A.G. Microwave-Promoted Synthesis of Novel N-Aryl Anthranilic Acids. J. Braz. Chem. Soc. 2008, 19, 1264–1269. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; August, A.T.; Wolf, C. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives. J. Org. Chem. 2006, 71, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Kumar, A.; Sharma, A.; Kaur, G. Identification of amino acid appended acridines as potential leads to anti-cancer drugs. Bioorg. Med. Chem. Lett. 2015, 25, 3854–3858. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, P. Targeting Tyrosine kinase: Development of acridone–pyrrole–oxindole hybrids against human breast cancer. Bioor. Med. Chem. Lett. 2019, 29, 32–35. [Google Scholar] [CrossRef]
- Velingkar, V.S.; Dandekar, V.D. Microwave-Assisted Synthesis and Evaluation of Substituted Aryl Propyl Acridone-4-Carboxamides as Potential Chemosensitizing Agents for Cancer. Lett. Drug Des. Discov. 2011, 8, 268–275. [Google Scholar] [CrossRef]
- Sambiagio, C.; Marsden, S.P.; Blacker, A.J.; McGowan, P.C. Copper catalysed Ullmann type chemistry: From mechanistic aspects to modern development. Chem. Soc. Rev. 2014, 43, 3525–3550. [Google Scholar] [CrossRef]
- Kiyomori, A.; Marcoux, J.F.; Buchwald, S.L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett. 1999, 40, 2657–2660. [Google Scholar] [CrossRef]
- Klapars, A.; Antilla, J.C.; Huang, X.; Buchwald, S.L. A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles. J. Am. Chem. Soc. 2001, 123, 7727–7729. [Google Scholar] [CrossRef]
- Wolter, M.; Klapars, A.; Buchwald, S.L. Synthesis of N-Aryl Hydrazides by Copper-Catalyzed Coupling of Hydrazides with Aryl Iodides. Org. Lett. 2001, 3, 3803–3805. [Google Scholar] [CrossRef]
- Gujadhur, R.K.; Bates, C.G.; Venkataraman, D. Formation of Aryl-Nitrogen, Aryl-Oxygen, and Aryl-Carbon Bonds Using Well-Defined Copper(I)-Based Catalysts. Org. Lett. 2001, 3, 4315–4317. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. Accelerating Effect Induced by the Structure of α-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides with α-Amino Acids. Synthesis of Benzolactam-V8. J. Am. Chem. Soc. 1998, 120, 12459–12467. [Google Scholar] [CrossRef]
- Ma, D.; Xia, C. CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857. Org. Lett. 2001, 3, 2583–2586. [Google Scholar] [CrossRef]
- Yoo, J.M.; Dao, P.D.Q.; Cho, C.S. Copper-Catalyzed C–N Coupling and Cyclization of 2-(2-Bromophenyl)-1H-Indoles with Primary Amides Leading to Indolo[1,2-c]Quinazolines. Bull. Korean Chem. Soc. 2018, 39, 1105–1108. [Google Scholar] [CrossRef]
- Ding, Z.; Nie, N.; Chen, T.; Meng, L.; Wang, G.; Chen, Z.; Hu, J. L-Proline N-oxide dihydrazides as an efficient ligand for cross-coupling reactions of aryl iodides and bromides with amines and phenols. Tetrahedron 2021, 79, 131826. [Google Scholar] [CrossRef]
- Xu, L.; Peng, Y.; Pan, Q.; Jiang, Y.; Ma, D. Assembly of Substituted 3-Aminoindazoles from 2-Bromobenzonitrile via a CuBr-Catalyzed Coupling/Condensation Cascade Process. J. Org. Chem. 2013, 78, 3400–3404. [Google Scholar] [CrossRef]
- Gaber, H.M.; Bagley, M.C. Regioselective synthesis and biological evaluation of some novel thiophene-containing heterocyclic scaffolds as potential chemotherapeutic agents. Eur. J. Chem. 2011, 2, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.J.R.P.; Begouin, A.; Ferreira, I.C.F.R.; Kirsch, G.; Calhelha, R.C.; Barbosa, S.; Estevinho, L.M. Palladium-Catalysed Amination of Electron-Deficient or Relatively Electron-Rich Benzo[b]Thienyl Bromides—Preliminary Studies of Antimicrobial Activity and SARs. Eur. J. Org. Chem. 2004, 17, 3679–3685. [Google Scholar] [CrossRef] [Green Version]
- Lamanna, G.; Menichetti, S. 2,3-Disubstituted Benzo[b]Thiophenes from Diarylalkynes via Electrophilic Addition-Cyclization and Palladium-Catalyzed Cross-Coupling. Adv. Synth. Catal. 2007, 349, 2188–2194. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Queiroz, M.J.R.P.; Kirsch, G. Palladium-catalyzed amination and cyclization to heteroannellated indoles and carbazoles. Tetrahedron 2003, 59, 3737–3743. [Google Scholar] [CrossRef] [Green Version]
- Salman, G.A.; Hussain, M.; Iaroshenko, V.; Villinger, A.; Langer, P. Thienopyrroles and Benzothienoquinolines via Palladium-Catalyzed Domino Reactions. Synfacts 2011, 5, 0475. [Google Scholar] [CrossRef]
- Queiroz, M.J.R.P.; Calhelha, R.C.; Kirsch, G. Reactivity of several deactivated 3-aminobenzo[b]thiophenes in the Buchwald-Hartwig C-N coupling. Scope and limitations. Tetrahedron 2007, 63, 13000–13005. [Google Scholar] [CrossRef]
- Calhelha, R.C.; Queiroz, M.J.R.P. Synthesis of new thieno[3,2-b]pyridine derivatives by palladium-catalyzed couplings and intramolecular cyclizations. Tetrahedron Lett. 2010, 51, 281–283. [Google Scholar] [CrossRef]
- Egorova, K.S.; Ananikov, V.P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Chen, H.H. 1,1,1-Tris(Hydroxymethyl)Ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols. Org. Lett. 2006, 8, 5609–5612. [Google Scholar] [CrossRef]
- Senra, J.D.; Aguiar, L.C.S.; Simas, A.B.C. Recent Progress in Transition-Metal-Catalyzed C-N Cross-Couplings: Emerging Approaches towards Sustainability. Curr. Org. Synth. 2011, 8, 53–78. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, X.R.; Chang, N.H.; Wang, J.; Wei, J.F.; Shi, X.Y.; Chen, Z.G. A Facile and Practical Copper Powder-Catalyzed, Organic Solvent-and Ligand-Free Ullmann Amination of Aryl Halides. J. Org. Chem. 2011, 76, 1180–1183. [Google Scholar] [CrossRef]
- Kriščiūnienė, V.; Matulevičiūtė, G.; Paliulis, O.; Rollin, P.; Šačkus, A. Conversion of 2-Thioxo-2,3-Dihydroquinazolin-4(1H)-Ones to N(3)-Unsubstituted 2-(Het)Arylquinazolin-4(3H)-Ones by Copper-Mediated Pd-Catalysed Cross-Coupling Reactions. Heterocycles 2016, 93, 150–163. [Google Scholar] [CrossRef]
- Sun, J.; Yoo, S.E.; Yi, K.Y.; Kim, N.; Kim, E.; Jung, E.; Lee, Y.S.; Suh-Kim, H. Benzofuran and Benzothiophene Derivatives Substituted with Amide, Process for the Preparation Thereof, and Pharmaceutical Compositions Containing the Same. WO Patent WO2009/048274A2, 16 April 2009. [Google Scholar]
- Liu, Y.; Bai, Y.; Zhang, J.; Li, Y.; Jiao, J.; Qi, X. Optimization of the Conditions for Copper-Mediated N-Arylation of Heteroarylamines. Eur. J. Org. Chem. 2007, 36, 6084–6088. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y. Efficient synthesis of 2,3-dihydro-1,4-benzoxazines via intramolecular copper-catalyzed O-arylation. Tetrahedron Lett. 2009, 50, 3790–3793. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70, 5164–5173. [Google Scholar] [CrossRef]
- Rejňák, M.; Klíma, J.; Svoboda, J.; Ludvík, J. Synthesis and Electrochemical Reduction of Methyl 3-Halo-1-Benzothiophene-2-Carboxylates. Collect. Czech. Chem. Commun. 2004, 69, 242–260. [Google Scholar] [CrossRef]
- Lindley, J. Tetrahedron report number 163: Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron 1984, 40, 1433–1456. [Google Scholar] [CrossRef]
- Jones, G.O.; Liu, P.; Houk, K.N.; Buchwald, S.L. Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. J. Am. Chem. Soc. 2010, 132, 6205–6213. [Google Scholar] [CrossRef]
- Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. A Versatile and Efficient Ligand for Copper-Catalyzed Formation of C-N, C-O, and P-C Bonds: Pyrrolidine-2-Phosphonic Acid Phenyl Monoester. Chem. Eur. J. 2006, 12, 3636–3646. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wanga, P.C.; Chen, T.; Lu, M. Facile and Efficient Amination of Organic Halides Catalyzed by Copper Sulfate in PEG1000-DIL/Methylcyclohexane Temperature-Dependent Biphasic System. J. Chin. Chem. Soc. 2010, 57, 604–611. [Google Scholar] [CrossRef]
- Hoshino, J.; Park, E.J.; Kondratyuk, T.P.; Marler, L.; Pezzuto, J.M.; Van Breemen, R.B.; Mo, S.; Li, Y.; Cushman, M. Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites. J. Med. Chem. 2010, 53, 5033–5043. [Google Scholar] [CrossRef] [Green Version]
- Tsvelikhovsky, D.; Buchwald, S.L. Concise Palladium-Catalyzed Synthesis of Dibenzodiazepines and Structural Analogues. J. Am. Chem. Soc. 2011, 133, 14228–14231. [Google Scholar] [CrossRef] [Green Version]
- Al-Tel, T.H.; Al-Qawasmeh, R.A.; Schmidt, M.F.; Al-Aboudi, A.; Rao, S.N.; Sabri, S.S.; Voelter, W. Rational Design and Synthesis of Potent Dibenzazepine Motifs as β-Secretase Inhibitors. J. Med. Chem. 2009, 52, 6484–6488. [Google Scholar] [CrossRef] [PubMed]
- Diao, X.; Xu, L.; Zhu, W.; Jiang, Y.; Wang, H.; Guo, Y.; Ma, D. The N-Aryl Aminocarbonyl Ortho-Substituent Effect in Cu-Catalyzed Aryl Amination and Its Application in the Synthesis of 5-Substituted 11-Oxo-Dibenzodiazepines. J. Am. Chem. Soc. 2011, 13, 6422–6425. [Google Scholar] [CrossRef]
- Hamilton, H.W.; Nishiguchi, G.; Hagen, S.E.; Domagala, J.D.; Weber, P.C.; Gracheck, S.; Boulware, S.L.; Nordby, E.C.; Cho, H.; Nakamura, T.; et al. Novel benzthiodiazepinones as antiherpetic agents: SAR improvement of therapeutic index by alterations of the seven-membered ring. Bioorg. Med. Chem. Lett. 2002, 12, 2981–2983. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Liebeskind, L.S. Ambient Temperature, Ullmann-like Reductive Coupling of Aryl, Heteroaryl, and Alkenyl Halides. J. Org. Chem. 1997, 62, 2312–2313. [Google Scholar] [CrossRef]
- Wang, M.; Lin, Z. Stille Cross-Coupling Reactions of Alkenylstannanes with Alkenyl Iodides Mediated by Copper(I) Thiophene-2-Carboxylate: A Density Functional Study. Organometallics 2010, 29, 3077–3084. [Google Scholar] [CrossRef]
- Beck, J.R. A Direct Synthesis of Benzo[b]Thiophene-2-Carboxylate Esters Involving Nitro Displacement. J. Org. Chem. 1972, 37, 3224–3226. [Google Scholar] [CrossRef]
Entry | Base (B) | Solvent (S) | Ligand (L) | 3a, Yield (%) [a] |
---|---|---|---|---|
1 | K2CO3 | Dioxane | DMEDA | 5 [b] |
2 | K3PO4 | Dioxane | DMEDA | 15 [b] |
3 | Cs2CO3 | Dioxane | DMEDA | 31 [b] |
4 | Cs2CO3 | DMSO | DMEDA | traces [b] |
5 | Cs2CO3 | DMF | DMEDA | traces [b] |
6 | Cs2CO3 | Toluene | DMEDA | 20 [c] |
7 | Cs2CO3 | Dioxane | 1,10-phenanthroline | 9 [b] |
8 | Cs2CO3 | Dioxane | l-proline | 58 [b] |
9 | Cs2CO3 | Dioxane | l-proline | 12 [d] |
10 | Cs2CO3 | Dioxane | l-proline | 38 [e] |
11 | Cs2CO3 | Dioxane | l-proline | 28 [f] |
12 | Cs2CO3 | Dioxane | l-proline | 61 [g] |
Entry | CuI:Ligand (Ratio) | CuI | l-Proline | 3a, Yield (%) [a], [b] |
---|---|---|---|---|
1 | 1:0 | 0.2 | - | 54 |
2 | 1:1 | 0.2 | 0.2 | 87 |
3 | 1:2 | 0.2 | 0.4 | 65 |
4 | 1:3 | 0.2 | 0.6 | 58 |
5 | 1:4 | 0.2 | 0.8 | 60 |
6 | 1:1 | 0.1 | 0.1 | 86 |
7 | 1:1 | 0.05 | 0.05 | 61 |
Entry | Substituent (Ar) | Product | Yield (%) [b] | Yield (%) [c] | Yield (%) [d] | Yield (%) [e] |
---|---|---|---|---|---|---|
1 | 4-OCH3C6H5 | 3a | 86 | 10 | 35 | 61 |
2 | 2-OCH3C6H5 | 3b | 72 | 10 | 32 | 52 |
3 | 4-FC6H5 | 3c | 94 | 53 | 75 | 29 |
4 | 2-FC6H5 | 3d | 79 | 20 | 26 | 50 |
5 | 4-CF3C6H5 | 3e | 97 | 75 | 23 | 51 |
6 | 4-CF3C6H5 | 3f | 73 | 18 | 45 | 30 |
Entry | Substituent (Ar) | Product | Yield (%) [b] |
---|---|---|---|
1 | 2-CF3C6H5 | 3g | 72 |
2 | 3-OCH3C6H5 | 3h | 76 |
3 | 4-NO2C6H5 | 3i | 60 |
4 | 3-NO2C6H5 | 3j | 79 |
5 | 2-NO2C6H5 | 3k | 75 |
6 | C6H5 | 3l | 55 |
7 | 4-OHC6H5 | 3m | 25 |
8 | 4-OCOCH3C6H5 | 3m | 50 |
9 | 4-NH2C6H5 | 3n | 15 |
10 | 4-NHCOCH3C6H5 | 3o | 55 |
11 | 2-OHC6H5 | 3p | trace |
12 | 2-NH2C6H5 | 3r | trace |
13 | 2-NHCOCH3C6H5 | 3s | trace |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kederienė, V.; Jaglinskaitė, I.; Voznikaitė, P.; Rousseau, J.; Rollin, P.; Šačkus, A.; Tatibouët, A. Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate. Molecules 2021, 26, 6822. https://doi.org/10.3390/molecules26226822
Kederienė V, Jaglinskaitė I, Voznikaitė P, Rousseau J, Rollin P, Šačkus A, Tatibouët A. Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate. Molecules. 2021; 26(22):6822. https://doi.org/10.3390/molecules26226822
Chicago/Turabian StyleKederienė, Vilija, Indrė Jaglinskaitė, Paulina Voznikaitė, Jolanta Rousseau, Patrick Rollin, Algirdas Šačkus, and Arnaud Tatibouët. 2021. "Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate" Molecules 26, no. 22: 6822. https://doi.org/10.3390/molecules26226822
APA StyleKederienė, V., Jaglinskaitė, I., Voznikaitė, P., Rousseau, J., Rollin, P., Šačkus, A., & Tatibouët, A. (2021). Mild Copper-Catalyzed, l-Proline-Promoted Cross-Coupling of Methyl 3-Amino-1-benzothiophene-2-carboxylate. Molecules, 26(22), 6822. https://doi.org/10.3390/molecules26226822